1
|
Xue ZP, Cu X, Xu K, Peng JH, Liu HR, Zhao RT, Wang Z, Wang T, Xu ZS. The effect of glutathione biosynthesis of Streptococcus thermophilus ST-1 on cocultured Lactobacillus delbrueckii ssp. bulgaricus ATCC11842. J Dairy Sci 2023; 106:884-896. [PMID: 36460506 DOI: 10.3168/jds.2022-22123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus are the main species used for yogurt preparation. Glutathione (GSH) can be synthesized by S. thermophilus and plays a crucial role in combating environmental stress. However, the effect of GSH biosynthesis by S. thermophilus on cocultured L. delbrueckii ssp. bulgaricus is still unknown. In this study, a mutant S. thermophilus ΔgshF was constructed by deleting the GSH synthase. The wild strain S. thermophilus ST-1 and ΔgshF mutants were cocultured with L. delbrueckii ssp. bulgaricus ATCC11842 by using Transwell chambers (Guangzhou Shuopu Biotechnology Co., Ltd.), respectively. It was proven that the GSH synthesized by S. thermophilus ST-1 could be absorbed and used by L. delbrueckii ssp. bulgaricus ATCC11842, and promote growth ability and stress tolerance of L. delbrueckii ssp. bulgaricus ATCC11842. The biomass of L. delbrueckii ssp. bulgaricus ATCC11842 cocultured with S. thermophilus ST-1 or ΔgshF (adding exogenous GSH) increased by 1.8 and 1.4 times compared with the biomass of L. delbrueckii ssp. bulgaricus ATCC11842 cocultured with S. thermophilus ΔgshF. Meanwhile, after H2O2 and low-temperature treatments, the bacterial viability of L. delbrueckii ssp. bulgaricus cocultured with S. thermophilus ΔgshF, with or without GSH, was decreased by 41 and 15% compared with that of L. delbrueckii ssp. bulgaricus cocultured with S. thermophilus ST-1. Furthermore, transcriptome analysis showed that the expression levels of genes involved in purine nucleotide and pyrimidine nucleotide metabolism in L. delbrueckii ssp. bulgaricus ATCC11842 were at least 3 times increased when cocultured with S. thermophilus (fold change > 3.0). Moreover, compared with the mutant strain ΔgshF, the wild-type strain ST-1 could shorten the fermented curd time by 5.3 hours during yogurt preparation. These results indicated that the GSH synthesized by S. thermophilus during cocultivation effectively enhanced the activity of L. delbrueckii ssp. bulgaricus and significantly improved the quality of fermented milk.
Collapse
Affiliation(s)
- Z P Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - X Cu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - K Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - J H Peng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - H R Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - R T Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - Z Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China
| | - T Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China.
| | - Z S Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, P. R. China.
| |
Collapse
|
2
|
Treu L, Campanaro S, Kougias PG, Sartori C, Bassani I, Angelidaki I. Hydrogen-Fueled Microbial Pathways in Biogas Upgrading Systems Revealed by Genome-Centric Metagenomics. Front Microbiol 2018; 9:1079. [PMID: 29892275 PMCID: PMC5985405 DOI: 10.3389/fmicb.2018.01079] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 01/16/2023] Open
Abstract
Biogas upgrading via carbon dioxide hydrogenation is an emerging technology for electrofuel production. The biomethanation efficiency is strongly dependent on a balanced microbial consortium, whose high- resolution characterization along with their functional potential and interactions are pivotal for process optimization. The present work is the first genome-centric metagenomic study on mesophilic and thermophilic biogas upgrading reactors aiming to define the metabolic profile of more than 200 uncultivated microbes involved in hydrogen assisted methanogenesis. The outcomes from predictive functional analyses were correlated with microbial abundance variations to clarify the effect of process parameters on the community. The operational temperature significantly influenced the microbial richness of the reactors, while the H2 addition distinctively alternated the abundance of the taxa. Two different Methanoculleus species (one mesophilic and one thermophilic) were identified as the main responsible ones for methane metabolism. Finally, it was demonstrated that the addition of H2 exerted a selective pressure on the concerted or syntrophic interactions of specific microbes functionally related to carbon fixation, propionate and butanoate metabolisms. Novel bacteria were identified as candidate syntrophic acetate oxidizers (e.g., Tepidanaerobacter sp. DTU063), while the addition of H2 favored the proliferation of potential homoacetogens (e.g., Clostridia sp. DTU183). Population genomes encoding genes of Wood-Ljungdahl pathway were mainly thermophilic, while propionate degraders were mostly identified at mesophilic conditions. Finally, putative syntrophic interactions were identified between microbes that have either versatile metabolic abilities or are obligate/facultative syntrophs.
Collapse
Affiliation(s)
- Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Panagiotis G. Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cristina Sartori
- Department of Agronomy, Food Natural Resources Animals and Environment, University of Padova, Padova, Italy
| | - Ilaria Bassani
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
3
|
D'Angelo L, Cicotello J, Zago M, Guglielmotti D, Quiberoni A, Suárez V. Leuconostoc strains isolated from dairy products: Response against food stress conditions. Food Microbiol 2017; 66:28-39. [PMID: 28576370 DOI: 10.1016/j.fm.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/24/2017] [Accepted: 04/02/2017] [Indexed: 11/29/2022]
Abstract
A systematic study about the intrinsic resistance of 29 strains (26 autochthonous and 3 commercial ones), belonging to Leuconostoc genus, against diverse stress factors (thermal, acidic, alkaline, osmotic and oxidative) commonly present at industrial or conservation processes were evaluated. Exhaustive result processing was made by applying one-way ANOVA, Student's test (t), multivariate analysis by Principal Component Analysis (PCA) and Matrix Hierarchical Cluster Analysis. In addition, heat adaptation on 4 strains carefully selected based on previous data analysis was assayed. The strains revealed wide diversity of resistance to stress factors and, in general, a clear relationship between resistance and Leuconostoc species was established. In this sense, the highest resistance was shown by Leuconostoc lactis followed by Leuconostoc mesenteroides strains, while Leuconostoc pseudomesenteroides and Leuconostoc citreum strains revealed the lowest resistance to the stress factors applied. Heat adaptation improved thermal cell survival and resulted in a cross-resistance against the acidic factor. However, all adapted cells showed diminished their oxidative resistance. According to our knowledge, this is the first study regarding response of Leuconostoc strains against technological stress factors and could establish the basis for the selection of "more robust" strains and propose the possibility of improving their performance during industrial processes.
Collapse
Affiliation(s)
- Luisa D'Angelo
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| | - Joaquín Cicotello
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| | - Miriam Zago
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero Casearie (CREA-FLC), Via Lombardo 11, 26900 Lodi, Italy
| | - Daniela Guglielmotti
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| | - Andrea Quiberoni
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina
| | - Viviana Suárez
- Instituto de Lactología Industrial (Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina.
| |
Collapse
|
4
|
Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J Bacteriol 2011; 193:3740-7. [PMID: 21642465 DOI: 10.1128/jb.00389-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RecA is the major enzyme involved in homologous recombination and plays a central role in SOS mutagenesis. In Acinetobacter spp., including Acinetobacter baumannii , a multidrug-resistant bacterium responsible for nosocomial infections worldwide, DNA repair responses differ in many ways from those of other bacterial species. In this work, the function of A. baumannii RecA was examined by constructing a recA mutant. Alteration of this single gene had a pleiotropic effect, showing the involvement of RecA in DNA damage repair and consequently in cellular protection against stresses induced by DNA damaging agents, several classes of antibiotics, and oxidative agents. In addition, the absence of RecA decreased survival in response to both heat shock and desiccation. Virulence assays in vitro (with macrophages) and in vivo (using a mouse model) similarly implicated RecA in the pathogenicity of A. baumannii . Thus, the data strongly suggest a protective role for RecA in the bacterium and indicate that inactivation of the protein can contribute to a combined therapeutic approach to controlling A. baumannii infections.
Collapse
|
5
|
Wang Y, Delettre J, Corrieu G, Béal C. Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758. Biotechnol Prog 2011; 27:342-50. [DOI: 10.1002/btpr.566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/08/2010] [Indexed: 11/09/2022]
|
6
|
Bikels-Goshen T, Landau E, Saguy S, Shapira R. Staphylococcal strains adapted to epigallocathechin gallate (EGCG) show reduced susceptibility to vancomycin, oxacillin and ampicillin, increased heat tolerance, and altered cell morphology. Int J Food Microbiol 2010; 138:26-31. [PMID: 20132996 DOI: 10.1016/j.ijfoodmicro.2010.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/18/2009] [Accepted: 01/07/2010] [Indexed: 11/25/2022]
Abstract
Epigallocathechin gallate (EGCG) possesses many beneficial properties, such as anticarcinogenicity, antiatherogenicity, as well as antioxidant and antibacterial activities. However, the bacterial response to sublethal concentrations of EGCG has not been studied. Here we investigated whether short exposure of staphylococci strains to sublethal doses of EGCG can lead to adaptation and cross-resistance. Two-hour exposure of five strains to 20 microg/ml of EGCG did not affect the growth rate but significantly elevated the resistance towards antibiotics targeting the bacterial cell wall. The magnitude of cross-resistance towards such antibiotics varied with the staphylococci strain, with Staphylococcus aureus Newman exhibiting the highest magnitude of cross-resistance, showing a 2, 4 and 8-fold increase in resistance towards vancomycin, oxacillin and ampicillin respectively. All EGCG-adapted strains were also more heat tolerant than their control counterparts as derived from the Weibull model. Adaptation to EGCG led to a moderate increase in heat resistance of the adapted strains S. epidermis ATCC 12228, S. aureus Newman, and S. aureus ATCC 29213, and an extremely pronounced increase for S. aureus ATCC 6538 and S. aureus RN4220. The shape of the survival curve also varied with the staphylococci strain. Transmission electron microscopy (TEM) analysis revealed suppressed separation of daughter cells in cultures exposed to EGCG, as evidenced by the pseudomulticellular appearance and by more than 2-fold increase in cell wall thickness. These observations raise concerns over the potential of EGCG utilization in therapy in that it may contribute to the development and enhancement of microbial resistance mechanisms.
Collapse
Affiliation(s)
- Tamar Bikels-Goshen
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | | | | | | |
Collapse
|
7
|
Arioli S, Roncada P, Salzano AM, Deriu F, Corona S, Guglielmetti S, Bonizzi L, Scaloni A, Mora D. The relevance of carbon dioxide metabolism in Streptococcus thermophilus. MICROBIOLOGY-SGM 2009; 155:1953-1965. [PMID: 19372152 DOI: 10.1099/mic.0.024737-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus thermophilus is a major component of dairy starter cultures used for the manufacture of yoghurt and cheese. In this study, the CO(2) metabolism of S. thermophilus DSM 20617(T), grown in either a N(2) atmosphere or an enriched CO(2) atmosphere, was analysed using both genetic and proteomic approaches. Growth experiments performed in a chemically defined medium revealed that CO(2) depletion resulted in bacterial arginine, aspartate and uracil auxotrophy. Moreover, CO(2) depletion governed a significant change in cell morphology, and a high reduction in biomass production. A comparative proteomic analysis revealed that cells of S. thermophilus showed a different degree of energy status depending on the CO(2) availability. In agreement with proteomic data, cells grown under N(2) showed a significantly higher milk acidification rate compared with those grown in an enriched CO(2) atmosphere. Experiments carried out on S. thermophilus wild-type and its derivative mutant, which was inactivated in the phosphoenolpyruvate carboxylase and carbamoyl-phosphate synthase activities responsible for fixing CO(2) to organic molecules, suggested that the anaplerotic reactions governed by these enzymes have a central role in bacterial metabolism. Our results reveal the capnophilic nature of this micro-organism, underlining the essential role of CO(2) in S. thermophilus physiology, and suggesting potential applications in dairy fermentation processes.
Collapse
Affiliation(s)
| | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro Spallanzani, sezione di Proteomica, Facoltà di Medicina Veterinaria, Milan, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Francesca Deriu
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Milan, Italy
| | | | | | - Luigi Bonizzi
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Milan, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Diego Mora
- Department of Food Science and Microbiology, Milan, Italy
| |
Collapse
|
8
|
Zotta T, Asterinou K, Rossano R, Ricciardi A, Varcamonti M, Parente E. Effect of inactivation of stress response regulators on the growth and survival of Streptococcus thermophilus Sfi39. Int J Food Microbiol 2009; 129:211-20. [DOI: 10.1016/j.ijfoodmicro.2008.11.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 01/17/2023]
|
9
|
Diversity of stress responses in dairy thermophilic streptococci. Int J Food Microbiol 2008; 124:34-42. [DOI: 10.1016/j.ijfoodmicro.2008.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/14/2008] [Accepted: 02/14/2008] [Indexed: 11/23/2022]
|
10
|
Salzano AM, Arena S, Renzone G, D'Ambrosio C, Rullo R, Bruschi M, Ledda L, Maglione G, Candiano G, Ferrara L, Scaloni A. A widespread picture of theStreptococcus thermophilus proteome by cell lysate fractionation and gel-based/gel-free approaches. Proteomics 2007; 7:1420-33. [PMID: 17407180 DOI: 10.1002/pmic.200601030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among the group of lactic acid bacteria, Streptococcus thermophilus has found a wide application in industrial processes used for the manufacture of dairy products. Taking advantage of different proteome extraction and subfractionation protocols, bacterial cytosolic and membrane proteins were isolated and resolved by independent gel-free and gel-based separation procedures. Whole cytosolic fraction and its acid, basic and low molecular mass protein components were separated by different resolutive 2-DE and tricine 1-DE gels and identified by MALDI-TOF PMF and/or microLC-ESI-IT-MS/MS. Membrane proteins were resolved by 2-DE and SDS-PAGE gels and similarly identified by PMF and TMS analysis. In parallel, whole extract was trypsinized and resulting peptides were identified by shotgun 2-D LC-ESI-IT-MS/MS analysis. Using this combined approach, expression products corresponding to 458 different genes were identified, which cover almost a third of the predicted vegetative proteome. Relative protein concentration and hydrophobicity affected protein detection. Broad recognition was obtained for enzymes involved in carbohydrate, fatty acid, amino acid and nucleotide metabolism, replication, transcription, translation, cell wall synthesis, as well as for proteins affecting bacterial functions important for industrial applications, i.e. milk sugar import and exopolysaccharide biosynthesis. By providing detailed reference electrophoretic/chromatographic maps to be used in future comparative proteomic investigations on bacteria grown under various experimental conditions or on different bacterial strains, our results will favour dedicated studies on S. thermophilus metabolism and its regulation or on detection of biomarkers for selection of optimal strains for industrial applications.
Collapse
Affiliation(s)
- Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo, National Research Council, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Giliberti G, Baccigalupi L, Cordone A, Ricca E, De Felice M. Transcriptional analysis of the recA gene of Streptococcus thermophilus. Microb Cell Fact 2006; 5:29. [PMID: 16972988 PMCID: PMC1592510 DOI: 10.1186/1475-2859-5-29] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 09/14/2006] [Indexed: 12/03/2022] Open
Abstract
Background RecA is a highly conserved prokaryotic protein that not only plays several important roles connected to DNA metabolism but also affects the cell response to various stress conditions. While RecA is highly conserved, the mechanism of transcriptional regulation of its structural gene is less conserved. In Escherichia coli the LexA protein acts as a recA repressor and is able, in response to DNA damage, of RecA-promoted self-cleavage, thus allowing recA transcription. The LexA paradigm, although confirmed in a wide number of cases, is not universally valid. In some cases LexA does not control recA transcription while in other RecA-containing bacteria a LexA homologue is not present. Results We have studied the recA transcriptional regulation in S. thermophilus, a bacterium that does not contain a LexA homologue. We have characterized the promoter region of the gene and observed that its expression is strongly induced by DNA damage. The analysis of deletion mutants and of translational gene fusions showed that a DNA region of 83 base pairs, containg the recA promoter and the transcriptional start site, is sufficient to ensure normal expression of the gene. Unlike LexA of E. coli, the factor controlling recA expression in S. thermophilus acts in a RecA-independent way since recA induction was observed in a strain carrying a recA null mutation. Conclusion In S. thermophilus, as in many other bacteria,recA expression is strongly induced by DNA damage, however, in this organism expression of the gene is controlled by a factor different from those well characterized in other bacteria. A small DNA region extending from 62 base pairs upstream of the recA transcriptional start site to 21 base pairs downstream of it carries all the information needed for normal regulation of the S. thermophilus recA gene.
Collapse
Affiliation(s)
- Gabriele Giliberti
- Dipartimento di Biologia Strutturale e Funzionale, Università Federico II, Napoli, Italy
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Loredana Baccigalupi
- Dipartimento di Biologia Strutturale e Funzionale, Università Federico II, Napoli, Italy
| | - Angelina Cordone
- Dipartimento di Biologia Strutturale e Funzionale, Università Federico II, Napoli, Italy
| | - Ezio Ricca
- Dipartimento di Biologia Strutturale e Funzionale, Università Federico II, Napoli, Italy
| | - Maurilio De Felice
- Dipartimento di Biologia Strutturale e Funzionale, Università Federico II, Napoli, Italy
| |
Collapse
|
12
|
Varcamonti M, Arsenijevic S, Martirani L, Fusco D, Naclerio G, De Felice M. Expression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock. Microb Cell Fact 2006; 5:6. [PMID: 16480499 PMCID: PMC1409795 DOI: 10.1186/1475-2859-5-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 02/15/2006] [Indexed: 11/10/2022] Open
Abstract
Background Heat and cold shock response are normally considered as independent phenomena. A small amount of evidence suggests instead that interactions may exist between them in two Lactococcus strains. Results We show the occurrence of molecular relationships between the mechanisms of cold and heat adaptations in Streptococcus thermophilus, a lactic acid bacterium widely used in dairy fermentation, where it undergoes both types of stress. We observed that cryotolerance is increased when cells are pre-incubated at high temperature. In addition, the production of a protein, identified as ClpL, a member of the heat-shock ATPase family Clp A/B, is induced at both high and low temperature. A knock-out clpL mutant is deficient in both heat and cold tolerance. However lack of production of this protein does not abolish the positive effect of heat pre-treatment towards cryotolerance. Conclusion Dual induction of ClpL by cold and heat exposure of cells and reduced tolerance to both temperature shocks in a clpL mutant indicates that the two stress responses are correlated in S. thermophilus. However this protein is not responsible by itself for cryotolerance of cells pre-treated at high temperature, indicating that ClpL is necessary for the two phenomena, but does not account by itself for the relationships between them.
Collapse
Affiliation(s)
- Mario Varcamonti
- Dept. of Structural and Functional Biology, University "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Slavica Arsenijevic
- Laboratory of Molecular Microbiology and Biotechnology, Department of Molecular Biology, University of Siena, Italy
| | - Luca Martirani
- Dept. of Structural and Functional Biology, University "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Daniela Fusco
- Department of Experimental Pathology, Section on Microbiology and Virology, University of Bologna, Italy
| | - Gino Naclerio
- Faculty of Science, University of Molise, via Mazzini 8, 86170 Isernia, Italy
| | - Maurilio De Felice
- Dept. of Structural and Functional Biology, University "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
13
|
Arena S, D'Ambrosio C, Renzone G, Rullo R, Ledda L, Vitale F, Maglione G, Varcamonti M, Ferrara L, Scaloni A. A study ofStreptococcus thermophilus proteome by integrated analytical procedures and differential expression investigations. Proteomics 2006; 6:181-92. [PMID: 16281183 DOI: 10.1002/pmic.200402109] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Streptococcus thermophilus is a Gram-positive bacterium belonging to the group of lactic acid bacteria, among which several genera play an essential role in manufacture of food products. Recently, a genomic consortium sequenced and annotated its entire genome, which has been demonstrated to contain 1900 coding sequences. In this study, we have revealed the expression products of almost 200 different genes using a proteomic strategy combining 2-DE plus MALDI-TOF PMF and differential 1-DE plus muLC-ESI-IT-MS/MS. Thus, a number of cellular pathways related to important physiological processes were described at the proteomic level. Almost 50 genes were related to multiple electrophoretic species, whose heterogeneity was mainly due to variability in pI values. A 2-DE reference map obtained for lactose-grown cells was compared with those obtained after heat, cold, acid, oxidative and starvation stresses. Protein up/down-regulation measurements demonstrated that adaptation to different environmental challenges may involve the contribution of unique as well as combined physiological mechanisms. Common regulatory sites in the promoter region of genes whose expression was induced after stress were identified. These results provide a better comprehension of biochemical processes related to stress resistance in S. thermophilus, allowing defining the molecular bases of adaptative responses or markers for the identification of strains with potential industrial applications.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics & Mass Spectrometry Laboratory, I.S.P.A.A.M., National Research Council, via Argine 1085, 80147 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|