1
|
Woerner AE, Mandape S, Kapema KB, Duque TM, Smuts A, King JL, Crysup B, Wang X, Huang M, Ge J, Budowle B. Optimized variant calling for estimating kinship. Forensic Sci Int Genet 2022; 61:102785. [DOI: 10.1016/j.fsigen.2022.102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/07/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
|
2
|
Rougemont Q, Bernatchez L. The demographic history of Atlantic salmon (Salmo salar) across its distribution range reconstructed from approximate Bayesian computations. Evolution 2019; 72:1261-1277. [PMID: 29644624 DOI: 10.1111/evo.13486] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
Understanding the dual roles of demographic and selective processes in the buildup of population divergence is one of the most challenging tasks in evolutionary biology. Here, we investigated the demographic history of Atlantic salmon across the entire species range using 2035 anadromous individuals from North America and Eurasia. By combining results from admixture graphs, geo-genetic maps, and an Approximate Bayesian Computation (ABC) framework, we validated previous hypotheses pertaining to secondary contact between European and Northern American populations, but also identified secondary contacts in European populations from different glacial refugia. We further identified the major sources of admixture from the southern range of North America into more northern populations along with a strong signal of secondary gene flow between genetic regional groups. We hypothesize that these patterns reflect the spatial redistribution of ancestral variation across the entire North American range. Results also support a role for linked selection and differential introgression that likely played an underappreciated role in shaping the genomic landscape of species in the Northern hemisphere. We conclude that studies between partially isolated populations should systematically include heterogeneity in selective and introgressive effects among loci to perform more rigorous demographic inferences of the divergence process.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6 Québec, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6 Québec, Canada
| |
Collapse
|
3
|
|
4
|
Coop G, Ralph P. Patterns of neutral diversity under general models of selective sweeps. Genetics 2012; 192:205-24. [PMID: 22714413 PMCID: PMC3430537 DOI: 10.1534/genetics.112.141861] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022] Open
Abstract
Two major sources of stochasticity in the dynamics of neutral alleles result from resampling of finite populations (genetic drift) and the random genetic background of nearby selected alleles on which the neutral alleles are found (linked selection). There is now good evidence that linked selection plays an important role in shaping polymorphism levels in a number of species. One of the best-investigated models of linked selection is the recurrent full-sweep model, in which newly arisen selected alleles fix rapidly. However, the bulk of selected alleles that sweep into the population may not be destined for rapid fixation. Here we develop a general model of recurrent selective sweeps in a coalescent framework, one that generalizes the recurrent full-sweep model to the case where selected alleles do not sweep to fixation. We show that in a large population, only the initial rapid increase of a selected allele affects the genealogy at partially linked sites, which under fairly general assumptions are unaffected by the subsequent fate of the selected allele. We also apply the theory to a simple model to investigate the impact of recurrent partial sweeps on levels of neutral diversity and find that for a given reduction in diversity, the impact of recurrent partial sweeps on the frequency spectrum at neutral sites is determined primarily by the frequencies rapidly achieved by the selected alleles. Consequently, recurrent sweeps of selected alleles to low frequencies can have a profound effect on levels of diversity but can leave the frequency spectrum relatively unperturbed. In fact, the limiting coalescent model under a high rate of sweeps to low frequency is identical to the standard neutral model. The general model of selective sweeps we describe goes some way toward providing a more flexible framework to describe genomic patterns of diversity than is currently available.
Collapse
Affiliation(s)
- Graham Coop
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
5
|
Charlesworth B. The effects of deleterious mutations on evolution at linked sites. Genetics 2012; 190:5-22. [PMID: 22219506 PMCID: PMC3249359 DOI: 10.1534/genetics.111.134288] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/04/2011] [Indexed: 01/14/2023] Open
Abstract
The process of evolution at a given site in the genome can be influenced by the action of selection at other sites, especially when these are closely linked to it. Such selection reduces the effective population size experienced by the site in question (the Hill-Robertson effect), reducing the level of variability and the efficacy of selection. In particular, deleterious variants are continually being produced by mutation and then eliminated by selection at sites throughout the genome. The resulting reduction in variability at linked neutral or nearly neutral sites can be predicted from the theory of background selection, which assumes that deleterious mutations have such large effects that their behavior in the population is effectively deterministic. More weakly selected mutations can accumulate by Muller's ratchet after a shutdown of recombination, as in an evolving Y chromosome. Many functionally significant sites are probably so weakly selected that Hill-Robertson interference undermines the effective strength of selection upon them, when recombination is rare or absent. This leads to large departures from deterministic equilibrium and smaller effects on linked neutral sites than under background selection or Muller's ratchet. Evidence is discussed that is consistent with the action of these processes in shaping genome-wide patterns of variation and evolution.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| |
Collapse
|
6
|
Lohmueller KE, Albrechtsen A, Li Y, Kim SY, Korneliussen T, Vinckenbosch N, Tian G, Huerta-Sanchez E, Feder AF, Grarup N, Jørgensen T, Jiang T, Witte DR, Sandbæk A, Hellmann I, Lauritzen T, Hansen T, Pedersen O, Wang J, Nielsen R. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. PLoS Genet 2011; 7:e1002326. [PMID: 22022285 PMCID: PMC3192825 DOI: 10.1371/journal.pgen.1002326] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 08/16/2011] [Indexed: 12/30/2022] Open
Abstract
A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.
Collapse
Affiliation(s)
- Kirk E Lohmueller
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Lambert CA, Connelly CF, Madeoy J, Qiu R, Olson MV, Akey JM. Highly punctuated patterns of population structure on the X chromosome and implications for African evolutionary history. Am J Hum Genet 2010; 86:34-44. [PMID: 20085712 PMCID: PMC2801747 DOI: 10.1016/j.ajhg.2009.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/22/2009] [Accepted: 12/01/2009] [Indexed: 01/24/2023] Open
Abstract
It is well known that average levels of population structure are higher on the X chromosome compared to autosomes in humans. However, there have been surprisingly few analyses on the spatial distribution of population structure along the X chromosome. With publicly available data from the HapMap Project and Perlegen Sciences, we show a strikingly punctuated pattern of X chromosome population structure. Specifically, 87% of X-linked HapMap SNPs within the top 1% of F(ST) values cluster into five distinct loci. The largest of these regions spans 5.4 Mb and contains 66% of the most highly differentiated HapMap SNPs on the X chromosome. We demonstrate that the extreme clustering of highly differentiated SNPs on the X chromosome is not an artifact of ascertainment bias, nor is it specific to the populations genotyped in the HapMap Project. Rather, additional analyses and resequencing data suggest that these five regions have been substrates of recent and strong adaptive evolution. Finally, we discuss the implications that patterns of X-linked population structure have on the evolutionary history of African populations.
Collapse
Affiliation(s)
- Charla A. Lambert
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin F. Connelly
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Madeoy
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maynard V. Olson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joshua M. Akey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Amaral AJ, Megens HJ, Kerstens HHD, Heuven HCM, Dibbits B, Crooijmans RPMA, den Dunnen JT, Groenen MAM. Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics 2009; 10:374. [PMID: 19674453 PMCID: PMC2739861 DOI: 10.1186/1471-2164-10-374] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 08/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the Illumina 1 G Genome Analyzer generates billions of base pairs of sequence data, challenges arise in sequence selection due to the varying sequence quality. Therefore, in the framework of the International Porcine SNP Chip Consortium, this pilot study aimed to evaluate the impact of the quality level of the sequenced bases on mapping quality and identification of true SNPs on a large scale. RESULTS DNA pooled from five animals from a commercial boar line was digested with DraI; 150-250-bp fragments were isolated and end-sequenced using the Illumina 1 G Genome Analyzer, yielding 70,348,064 sequences 36-bp long. Rules were developed to select sequences, which were then aligned to unique positions in a reference genome. Sequences were selected based on quality, and three thresholds of sequence quality (SQ) were compared. The highest threshold of SQ allowed identification of a larger number of SNPs (17,489), distributed widely across the pig genome. In total, 3,142 SNPs were validated with a success rate of 96%. The correlation between estimated minor allele frequency (MAF) and genotyped MAF was moderate, and SNPs were highly polymorphic in other pig breeds. Lowering the SQ threshold and maintaining the same criteria for SNP identification resulted in the discovery of fewer SNPs (16,768), of which 259 were not identified using higher SQ levels. Validation of SNPs found exclusively in the lower SQ threshold had a success rate of 94% and a low correlation between estimated MAF and genotyped MAF. Base change analysis suggested that the rate of transitions in the pig genome is likely to be similar to that observed in humans. Chromosome X showed reduced nucleotide diversity relative to autosomes, as observed for other species. CONCLUSION Large numbers of SNPs can be identified reliably by creating strict rules for sequence selection, which simultaneously decreases sequence ambiguity. Selection of sequences using a higher SQ threshold leads to more reliable identification of SNPs. Lower SQ thresholds can be used to guarantee sufficient sequence coverage, resulting in high success rate but less reliable MAF estimation. Nucleotide diversity varies between porcine chromosomes, with the X chromosome showing less variation as observed in other species.
Collapse
Affiliation(s)
- Andreia J Amaral
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6700 AH, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Selektion. Evolution 2009. [DOI: 10.1007/978-3-8274-2233-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Hitch-hiking to a locus under balancing selection: high sequence diversity and low population subdivision at the S-locus genomic region inArabidopsis halleri. Genet Res (Camb) 2008; 90:37-46. [DOI: 10.1017/s0016672307008932] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryHitch-hiking to a site under balancing selection is expected to produce a local increase in nucleotide polymorphism and a decrease in population differentiation compared with the background genomic level, but empirical evidence supporting these predictions is scarce. We surveyed molecular diversity at four genes flanking the region controlling self-incompatibility (the S-locus) in samples from six populations of the herbaceous plantArabidopsis halleri, and compared their polymorphism with sequences from five control genes unlinked to the S-locus. As a preliminary verification, the S-locus flanking genes were shown to co-segregate withSRK, the gene involved in the self-incompatibility reaction at the pistil level. In agreement with theory, our results demonstrated a significant peak of nucleotide diversity around the S-locus as well as a significant decrease in population genetic structure in the S-locus region compared with both control genes and a set of seven unlinked microsatellite markers. This is consistent with the theoretical expectation that balancing selection is increasing the effective migration rate in subdivided populations. Although only four S-locus flanking genes were investigated, our results suggest that these two signatures of the hitch-hiking effect are localized in a very narrow genomic region.
Collapse
|
12
|
|
13
|
Loewe L, Charlesworth B. Background selection in single genes may explain patterns of codon bias. Genetics 2007; 175:1381-93. [PMID: 17194784 PMCID: PMC1840058 DOI: 10.1534/genetics.106.065557] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 12/23/2006] [Indexed: 11/18/2022] Open
Abstract
Background selection involves the reduction in effective population size caused by the removal of recurrent deleterious mutations from a population. Previous work has examined this process for large genomic regions. Here we focus on the level of a single gene or small group of genes and investigate how the effects of background selection caused by nonsynonymous mutations are influenced by the lengths of coding sequences, the number and length of introns, intergenic distances, neighboring genes, mutation rate, and recombination rate. We generate our predictions from estimates of the distribution of the fitness effects of nonsynonymous mutations, obtained from DNA sequence diversity data in Drosophila. Results for genes in regions with typical frequencies of crossing over in Drosophila melanogaster suggest that background selection may influence the effective population sizes of different regions of the same gene, consistent with observed differences in codon usage bias along genes. It may also help to cause the observed effects of gene length and introns on codon usage. Gene conversion plays a crucial role in determining the sizes of these effects. The model overpredicts the effects of background selection with large groups of nonrecombining genes, because it ignores Hill-Robertson interference among the mutations involved.
Collapse
Affiliation(s)
- Laurence Loewe
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom.
| | | |
Collapse
|
14
|
Abstract
Contrasting patterns of X-linked vs. autosomal diversity may be indicative of the mode of selection operating in natural populations. A number of observations have shown reduced X-linked (or Z-linked) diversity relative to autosomal diversity in various organisms, suggesting a large impact of genetic hitchhiking. However, the relative contribution of other forces such as population bottlenecks, variation in reproductive success of the two sexes, and differential introgression remains unclear. Here, we survey 13 loci, 6 X-linked and 7 autosomal, in natural populations of the house mouse (Mus musculus) subspecies complex. We studied seven populations of three different subspecies, the eastern house mouse M. musculus castaneus, the central house mouse M. m. musculus, and the western house mouse M. m. domesticus, including putatively ancestral and derived populations for each. All populations display lower diversity on the X chromosomes relative to autosomes, and this effect is most pronounced in derived populations. To assess the role of demography, we fit the demographic parameters that gave the highest likelihood of the data using coalescent simulations. We find that the reduction in X-linked diversity is too large to be explained by a simple demographic model in at least two of four derived populations. These observations are also not likely to be explained by differences in reproductive success between males and females. They are consistent with a greater impact of positive selection on the X chromosome, and this is supported by the observation of an elevated K(A) and elevated K(A)/K(S) ratios on the rodent X chromosome. A second contribution may be that the X chromosome less readily introgresses across subspecies boundaries.
Collapse
Affiliation(s)
- John F Baines
- Institute for Genetics, Department of Evolutionary Genetics, University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
15
|
Shriver MD, Mei R, Parra EJ, Sonpar V, Halder I, Tishkoff SA, Schurr TG, Zhadanov SI, Osipova LP, Brutsaert TD, Friedlaender J, Jorde LB, Watkins WS, Bamshad MJ, Gutierrez G, Loi H, Matsuzaki H, Kittles RA, Argyropoulos G, Fernandez JR, Akey JM, Jones KW. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation. Hum Genomics 2006; 2:81-9. [PMID: 16004724 PMCID: PMC3525270 DOI: 10.1186/1479-7364-2-2-81] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican), we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations.
Collapse
Affiliation(s)
- Mark D Shriver
- Penn State University, University Park, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Parr RL, Dakubo GD, Crandall KA, Maki J, Reguly B, Aguirre A, Wittock R, Robinson K, Alexander JS, Birch-Machin MA, Abdel-Malak M, Froberg MK, Diamandis EP, Thayer RE. Somatic mitochondrial DNA mutations in prostate cancer and normal appearing adjacent glands in comparison to age-matched prostate samples without malignant histology. J Mol Diagn 2006; 8:312-9. [PMID: 16825503 PMCID: PMC1867611 DOI: 10.2353/jmoldx.2006.050112] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2006] [Indexed: 11/20/2022] Open
Abstract
Studies of somatic mitochondrial DNA mutations have become an important aspect of cancer research because these mutations might have functional significance and/or serve as a biosensor for tumor detection. Here we report somatic mitochondrial DNA mutations from three specific tissue types (tumor, adjacent benign, and distant benign) recovered from 24 prostatectomy samples. Needle biopsy tissue from 12 individuals referred for prostate biopsy, yet histologically benign (symptomatic benign), were used as among individual control samples. We also sampled blood (germplasm tissue) from each patient to serve as within individual controls relative to the somatic tissues sampled (malignant, adjacent, and distant benign). Complete mitochondrial genome sequencing was attempted on each sample. In contrast to both control groups [within patient (blood) and among patient (symptomatic benign)], all of the tissue types recovered from the malignant group harbored significantly different mitochondrial DNA (mtDNA) mutations. We conclude that mitochondrial genome mutations are an early indicator of malignant transformation in prostate tissue. These mutations occur well before changes in tissue histo-pathology, indicative of prostate cancer, are evident to the pathologist.
Collapse
Affiliation(s)
- Ryan L Parr
- Genesis Genomics Inc., 1294 Balmoral St., Thunder Bay, Ontario, Canada, P7B 5Z5.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Beisswanger S, Stephan W, De Lorenzo D. Evidence for a selective sweep in the wapl region of Drosophila melanogaster. Genetics 2006; 172:265-74. [PMID: 16204208 PMCID: PMC1456153 DOI: 10.1534/genetics.105.049346] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 09/20/2005] [Indexed: 11/18/2022] Open
Abstract
A scan of the X chromosome of a European Drosophila melanogaster population revealed evidence for the recent action of positive directional selection at individual loci. In this study we analyze one such region that showed no polymorphism in the genome scan (located in cytological division 2C10-2E1). We detect a 60.5-kb stretch of DNA encompassing the genes ph-d, ph-p, CG3835, bcn92, Pgd, wapl, and Cyp4d1, which almost completely lacks variation in the European sample. Loci flanking this region show a skewed frequency spectrum at segregating sites, strong haplotype structure, and high levels of linkage disequilibrium. Neutrality tests reveal that these data are unlikely under both the neutral equilibrium model and the simple bottleneck scenarios. In contrast, newly developed maximum-likelihood ratio tests suggest that strong selection has acted recently on the region under investigation, causing a selective sweep. Evidence that this sweep may have originated in an ancestral population in Africa is presented.
Collapse
Affiliation(s)
- Steffen Beisswanger
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
18
|
Abstract
We study levels of X-linked vs. autosomal diversity using a model developed to analyze the hitchhiking effect. Repeated bouts of hitchhiking are thought to lower X-linked diversity for two reasons: first, because sojourn times of beneficial mutations are shorter on the X, and second, because adaptive substitutions may be more frequent on the X. We investigate whether each of these effects does, in fact, cause reduced X-linked diversity under hitchhiking. We study the strength of the hitchhiking effect on the X vs. autosomes when there is no recombination and under two different recombination schemes. When recombination occurs in both sexes, X-linked vs. autosomal diversity is reduced by hitchhiking under a broad range of conditions, but when there is no recombination in males, as in Drosophila, the required conditions are considerably more restrictive.
Collapse
|
19
|
Abstract
The effect of genetic hitchhiking on neutral variation is analyzed in subdivided populations with differentiated demes. After fixation of a favorable mutation, the consequences on particular subpopulations can be radically different. In the subpopulation where the mutation first appeared by mutation, variation at linked neutral loci is expected to be reduced, as predicted by the classical theory. However, the effect in the other subpopulations, where the mutation is introduced by migration, can be the opposite. This effect depends on the level of genetic differentiation of the subpopulations, the selective advantage of the mutation, the recombination frequency, and the population size, as stated by analytical derivations and computer simulations. The characteristic outcomes of the effect are three. First, the genomic region of reduced variation around the selected locus is smaller than that predicted in a panmictic population. Second, for more distant neutral loci, the amount of variation increases over the level they had before the hitchhiking event. Third, for these loci, the spectrum of gene frequencies is dominated by an excess of alleles at intermediate frequencies when compared with the neutral theory. At these loci, hitchhiking works like a system that takes variation from the between-subpopulation component and introduces it into the subpopulations. The mechanism can also operate in other systems in which the genetic variation is distributed in clusters with limited exchange of variation, such as chromosome arrangements or genomic regions closely linked to targets of balancing selection.
Collapse
Affiliation(s)
- Enrique Santiago
- Departamento de Biología Funcional, Facultad de Biología, Universidad de Oviedo, 33071 Oviedo, Spain.
| | | |
Collapse
|
20
|
Tishkoff SA, Verrelli BC. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet 2003; 4:293-340. [PMID: 14527305 DOI: 10.1146/annurev.genom.4.070802.110226] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the completion of the human genome sequencing project, the discovery and characterization of human genetic variation is a principal focus for future research. Comparative studies across ethnically diverse human populations and across human and nonhuman primate species is important for reconstructing human evolutionary history and for understanding the genetic basis of human disease. In this review, we summarize data on patterns of human genetic diversity and the evolutionary forces (mutation, genetic drift, migration, and selection) that have shaped these patterns of variation across both human populations and the genome. African population samples typically have higher levels of genetic diversity, a complex population substructure, and low levels of linkage disequilibrium (LD) relative to non-African populations. We discuss these differences and their implications for mapping disease genes and for understanding how population and genomic diversity have been important in the evolution, differentiation, and adaptation of humans.
Collapse
Affiliation(s)
- Sarah A Tishkoff
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
21
|
Hellmann I, Ebersberger I, Ptak SE, Pääbo S, Przeworski M. A neutral explanation for the correlation of diversity with recombination rates in humans. Am J Hum Genet 2003; 72:1527-35. [PMID: 12740762 PMCID: PMC1180312 DOI: 10.1086/375657] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 03/31/2003] [Indexed: 11/03/2022] Open
Abstract
One of the most striking findings to emerge from the study of genomic patterns of variation is that regions with lower recombination rates tend to have lower levels of intraspecific diversity but not of interspecies divergence. This uncoupling of variation within and between species has been widely interpreted as evidence that natural selection shapes patterns of genetic variability genomewide. We revisited the relationship between diversity, divergence, and recombination in humans, using data from closely related species and better estimates of recombination rates than previously available. We show that regions that experience less recombination have reduced divergence to chimpanzee and to baboon, as well as lower levels of diversity. This observation suggests that mutation and recombination are associated processes in humans, so that the positive correlation between diversity and recombination may have a purely neutral explanation. Consistent with this hypothesis, diversity levels no longer increase significantly with recombination rates after correction for divergence to chimpanzee.
Collapse
Affiliation(s)
- Ines Hellmann
- Max Planck Institute for Evolutionary Anthropology and Interdisciplinary Center for Bioinformatics, Leipzig
| | - Ingo Ebersberger
- Max Planck Institute for Evolutionary Anthropology and Interdisciplinary Center for Bioinformatics, Leipzig
| | - Susan E. Ptak
- Max Planck Institute for Evolutionary Anthropology and Interdisciplinary Center for Bioinformatics, Leipzig
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology and Interdisciplinary Center for Bioinformatics, Leipzig
| | - Molly Przeworski
- Max Planck Institute for Evolutionary Anthropology and Interdisciplinary Center for Bioinformatics, Leipzig
| |
Collapse
|
22
|
Saunders MA, Hammer MF, Nachman MW. Nucleotide variability at G6pd and the signature of malarial selection in humans. Genetics 2002; 162:1849-61. [PMID: 12524354 PMCID: PMC1462360 DOI: 10.1093/genetics/162.4.1849] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. Deficiency alleles for this X-linked disorder are geographically correlated with historical patterns of malaria, and the most common deficiency allele in Africa (G6PD A-) has been shown to confer some resistance to malaria in both hemizygous males and heterozygous females. We studied DNA sequence variation in 5.1 kb of G6pd from 47 individuals representing a worldwide sample to examine the impact of selection on patterns of human nucleotide diversity and to infer the evolutionary history of the G6PD A- allele. We also sequenced 3.7 kb of a neighboring locus, L1cam, from the same set of individuals to study the effect of selection on patterns of linkage disequilibrium. Despite strong clinical evidence for malarial selection maintaining G6PD deficiency alleles in human populations, the overall level of nucleotide heterozygosity at G6pd is typical of other genes on the X chromosome. However, the signature of selection is evident in the absence of genetic variation among A- alleles from different parts of Africa and in the unusually high levels of linkage disequilibrium over a considerable distance of the X chromosome. In spite of a long-term association between Plasmodium falciparum and the ancestors of modern humans, patterns of nucleotide variability and linkage disequilibrium suggest that the A- allele arose in Africa only within the last 10,000 years and spread due to selection.
Collapse
Affiliation(s)
- Matthew A Saunders
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|