1
|
Khalife S, Aliouat EM, Gantois N, Jakobczyk H, Demay F, Chabé M, Pottier M, Dabboussi F, Hamze M, Dei-Cas E, Standaert-Vitse A, Aliouat-Denis CM. Complementation of a manganese-dependent superoxide dismutase-deficient yeast strain with Pneumocystis carinii sod2 gene. Fungal Biol 2014; 118:885-95. [PMID: 25442292 DOI: 10.1016/j.funbio.2014.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 11/25/2022]
Abstract
Manganese-dependent superoxide dismutase (MnSOD) is one of the key enzymes involved in the cellular defense against oxidative stress. Previously, the Pneumocystis carinii sod2 gene (Pcsod2) was isolated and characterized. Based on protein sequence comparison, Pcsod2 was suggested to encode a putative MnSOD protein likely to be targeted into the mitochondrion. In this work, the Pcsod2 was cloned and expressed as a recombinant protein in EG110 Saccharomyces cerevisiae strain lacking the MnSOD-coding gene (Scsod2) in order to investigate the function and subcellular localization of P. carinii MnSOD (PcMnSOD). The Pcsod2 gene was amplified by PCR and cloned into the pYES2.1/V5-His-TOPO(®) expression vector. The recombinant construct was then transformed into EG110 strain. Once its expression had been induced, PcMnSOD was able to complement the growth defect of EG110 yeast cells that had been exposed to the redox-cycling compound menadione. N-term sequencing of the PcMnSOD protein allowed identifying the cleavage site of a mitochondrial targeting peptide. Immune-colocalization of PcMnSOD and yeast CoxIV further confirmed the mitochondrial localization of the PcMnSOD. Heterologous expression of PcMnSOD in yeast indicates that Pcsod2 encodes an active MnSOD, targeted to the yeast mitochondrion that allows the yeast cells to grow in the presence of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Sara Khalife
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Université Libanaise, Tripoli, Liban
| | - El Moukhtar Aliouat
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France
| | - Nausicaa Gantois
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France
| | - Hélène Jakobczyk
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France
| | - François Demay
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France
| | - Magali Chabé
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France
| | - Muriel Pottier
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France
| | - Fouad Dabboussi
- Laboratoire de Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Université Libanaise, Tripoli, Liban
| | - Monzer Hamze
- Laboratoire de Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Université Libanaise, Tripoli, Liban
| | - Eduardo Dei-Cas
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie-Mycologie, CHRU de Lille & Faculté de Médecine de Lille, Univ Lille Nord de France, Univ Lille 2, Lille F-59045, France
| | - Annie Standaert-Vitse
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France.
| | - Cécile-Marie Aliouat-Denis
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Univ Lille2, Lille F-59019, France; Laboratoire de Parasitologie, Faculté de Pharmacie, Univ Lille 2, Lille F-59006, France
| |
Collapse
|
2
|
Matos O, Esteves F. Pneumocystis jirovecii multilocus gene sequencing: findings and implications. Future Microbiol 2010; 5:1257-67. [DOI: 10.2217/fmb.10.75] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pneumocystis jirovecii pneumonia (PcP) remains a major cause of respiratory illness among immunocompromised patients, especially patients infected with HIV, but it has also been isolated from immunocompetent persons. This article discusses the application of multilocus genotyping analysis to the study of the genetic diversity of P. jirovecii and its epidemiological and clinical parameters, and the important concepts achieved to date with these approaches. The multilocus typing studies performed until now have shown that there is an important genetic diversity of stable and ubiquitous P. jirovecii genotypes; infection with P. jirovecii is not necessarily clonal, recombination between some P. jirovecii multilocus genotypes has been suggested. P. jirovecii-specific multilocus genotypes can be associated with severity of PcP. Patients infected with P. jirovecii, regardless of the form of infection they present with, are part of a common human reservoir for future infections. The CYB, DHFR, DHPS, mtLSU rRNA, SOD and the ITS loci are suitable genetic targets to be used in further epidemiological studies focused on the identification and characterization of P. jirovecii haplotypes correlated with drug resistance and PcP outcome.
Collapse
Affiliation(s)
| | - Francisco Esteves
- Unidade de Protozoários Oportunistas/VIH e Outras Protozooses, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Keely SP, Renauld H, Wakefield AE, Cushion MT, Smulian AG, Fosker N, Fraser A, Harris D, Murphy L, Price C, Quail MA, Seeger K, Sharp S, Tindal CJ, Warren T, Zuiderwijk E, Barrell BG, Stringer JR, Hall N. Gene arrays at Pneumocystis carinii telomeres. Genetics 2005; 170:1589-600. [PMID: 15965256 PMCID: PMC1449779 DOI: 10.1534/genetics.105.040733] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the fungus Pneumocystis carinii, at least three gene families (PRT1, MSR, and MSG) have the potential to generate high-frequency antigenic variation, which is likely to be a strategy by which this parasitic fungus is able to prolong its survival in the rat lung. Members of these gene families are clustered at chromosome termini, a location that fosters recombination, which has been implicated in selective expression of MSG genes. To gain insight into the architecture, evolution, and regulation of these gene clusters, six telomeric segments of the genome were sequenced. Each of the segments began with one or more unique genes, after which were members of different gene families, arranged in a head-to-tail array. The three-gene repeat PRT1-MSR-MSG was common, suggesting that duplications of these repeats have contributed to expansion of all three families. However, members of a gene family in an array were no more similar to one another than to members in other arrays, indicating rapid divergence after duplication. The intergenic spacers were more conserved than the genes and contained sequence motifs also present in subtelomeres, which in other species have been implicated in gene expression and recombination. Long mononucleotide tracts were present in some MSR genes. These unstable sequences can be expected to suffer frequent frameshift mutations, providing P. carinii with another mechanism to generate antigen variation.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Fungal
- Base Sequence
- Chromosome Mapping
- Chromosomes, Fungal
- Cloning, Molecular
- Cosmids
- DNA, Fungal
- Evolution, Molecular
- Gene Duplication
- Gene Expression Regulation, Fungal
- Gene Library
- Genes, Fungal
- Genetic Linkage
- Genome, Fungal
- Open Reading Frames
- Pneumocystis carinii/genetics
- RNA, Messenger/genetics
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Selection, Genetic
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Telomere/genetics
Collapse
Affiliation(s)
- Scott P Keely
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|