1
|
|
2
|
Cafasso D, Chinali G. An ancient satellite DNA has maintained repetitive units of the original structure in most species of the living fossil plant genus Zamia. Genome 2014; 57:125-35. [PMID: 24884688 DOI: 10.1139/gen-2013-0133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ZpS1 satellite DNA is specific to the genus Zamia and presents repetitive units organized as long arrays and also as very short arrays dispersed in the genome. We have characterized the structure of the ZpS1 repeats in 12 species representative of the whole geographic distribution of the genus. In most species, the clone most common sequences (cMCS) were so similar that a general most common sequence (GMCS) of the ZpS1 repetitive unit in the genus could be obtained. The few partial variations from the GMCS found in cMCS of some species correspond to variable positions present in most other species, as indicated by the clone consensus sequences (cCS). Two species have an additional species-specific variety of ZpS1 satellite. The dispersed repeats were found to contain more mutations than repeats from long arrays. Our results indicate that all or most species of Zamia inherited the ZpS1 satellite from a common ancestor in Miocene and have maintained repetitive units of the original structure till present. The features of ZpS1 satellite in the genus Zamia are poorly compatible with the model of concerted evolution, but they are perfectly consistent with a new model of satellite evolution based on experimental evidences indicating that a specific amplification-substitution repair mechanism maintains the homogeneity and stability of the repeats structure in each satellite DNA originally present in a species as long as the species exists.
Collapse
Affiliation(s)
- Donata Cafasso
- a Dipartimento di Biologia, Complesso Universitario Monte S. Angelo, Università degli Studi di Napoli "Federico II", Via Cinthia, I-80126 Napoli, Italy
| | | |
Collapse
|
3
|
Quesada del Bosque ME, López-Flores I, Suárez-Santiago VN, Garrido-Ramos MA. Differential spreading of HinfI satellite DNA variants during radiation in Centaureinae. ANNALS OF BOTANY 2013; 112:1793-802. [PMID: 24169593 PMCID: PMC3838558 DOI: 10.1093/aob/mct233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/20/2013] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Subtribe Centaureinae appears to be an excellent model group in which to analyse satellite DNA and assess the influence that the biology and/or the evolution of different lineages have had on the evolution of this class of repetitive DNA. Phylogenetic analyses of Centaureinae support two main phases of radiation, leading to two major groups of genera of different ages. Furthermore, different modes of evolution are observed in different lineages, reflected by morphology and DNA sequences. METHODS The sequences of 502 repeat units of the HinfI satellite DNA family from 38 species belonging to ten genera of Centaureinae were isolated and compared. A phylogenetic reconstruction was carried out by maximum likelihood and Bayesian inference. KEY RESULTS Up to eight different HinfI subfamilies were found, based on the presence of a set of diagnostic positions given by a specific mutation shared by all the sequences of one group. Subfamilies V-VIII were mostly found in older genera (first phase of radiation in the subtribe, late Oligocene-Miocene), although some copies of these types of repeats were also found in some species of the derived genera. Subfamilies I-IV spread mostly in species of the derived clade (second phase of radiation, Pliocene to Pleistocene), although repeats of these subfamilies exist in older species. Phylogenetic trees did not group the repeats by taxonomic affinity, but sequences were grouped by subfamily provenance. Concerted evolution was observed in HinfI subfamilies spread in older genera, whereas no genetic differentiation was found between species, and several subfamilies even coexist within the same species, in recently radiated groups or in groups with a history of recurrent hybridization of lineages. CONCLUSIONS The results suggest that the eight HinfI subfamilies were present in the common ancestor of Centaureinae and that each spread differentially in different genera during the two main phases of radiation following the library model of satellite DNA evolution. Additionally, differential speciation pathways gave rise to differential patterns of sequence evolution in different lineages. Thus, the evolutionary history of each group of Centaureinae is reflected in HinfI satellite DNA evolution. The data reinforce the value of satellite DNA sequences as markers of evolutionary processes.
Collapse
Affiliation(s)
| | | | | | - Manuel A. Garrido-Ramos
- Departamentos de Genética y de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
4
|
Giovannotti M, Rojo V, Nisi Cerioni P, González-Tizón A, Martínez-Lage A, Splendiani A, Naveira H, Ruggeri P, Arribas Ó, Olmo E, Caputo Barucchi V. Isolation and characterization of two satellite DNAs in some Iberian rock lizards (Squamata, Lacertidae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:13-26. [PMID: 24014193 DOI: 10.1002/jez.b.22530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 01/15/2023]
Abstract
Satellite DNAs represent a large portion of all high eukaryotic genomes. They consist of numerous very similar repeated sequences, tandemly arranged in large clusters up to 100 million base pairs in length, usually located in the heterochromatic parts of chromosomes. The biological significance of satDNAs is still under discussion, but most of their proposed functions are related to heterochromatin and/or centromere formation and function. Because information about the structure of reptilian satDNA is far from exhaustive, we present a molecular and cytogenetic characterization of two satDNA families in four lacertid species. Two families of tandemly repeated DNAs, namely TaqI and HindIII satDNAs, have been cloned and sequenced from four species belonging to the genus Iberolacerta. These satDNAs are characterized by a monomer length of 171-188 and 170-172 bp, and by an AT content of 60.5% and 58.1%, respectively. FISH experiments with TaqI satDNA probe produced bright signals in pericentromeric regions of a subset of chromosomes whereas all the centromeres were marked by HindIII probe. The results obtained in this study suggest that chromosome location and abundance of satDNAs influence the evolution of these elements, with centromeric families evolving tenfold faster than interstitial/pericentromeric ones. Such different rates render different satellites useful for phylogenetic investigation at different taxonomic ranks.
Collapse
Affiliation(s)
- Massimo Giovannotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Two distinct classes of repetitive sequences, interspersed mobile elements and satellite DNAs, shape eukaryotic genomes and drive their evolution. Short arrays of tandem repeats can also be present within nonautonomous miniature inverted repeat transposable elements (MITEs). In the clam Donax trunculus, we characterized a composite, high copy number MITE, named DTC84. It is composed of a central region built of up to five core repeats linked to a microsatellite segment at one array end and flanked by sequences holding short inverted repeats. The modular composition and the conserved putative target site duplication sequence AA at the element termini are equivalent to the composition of several elements found in the cupped oyster Crassostrea virginica and in some insects. A unique feature of D. trunculus element is ordered array of core repeat variants, distinctive by diagnostic changes. Position of variants in the array is fixed, regardless of alterations in the core repeat copy number. Each repeat harbors a palindrome near the junction with the following unit, being a potential hotspot responsible for array length variations. As a consequence, variations in number of tandem repeats and variations in flanking sequences make every sequenced element unique. Core repeats may be thus considered as individual units within the MITE, with flanking sequences representing a "cassette" for internal repeats. Our results demonstrate that onset and spread of tandem repeats can be more intimately linked to processes of transposition than previously thought and suggest that genomes are shaped by interplays within a complex network of repetitive sequences.
Collapse
Affiliation(s)
- Eva Šatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
6
|
Cavallini A, Natali L, Zuccolo A, Giordani T, Jurman I, Ferrillo V, Vitacolonna N, Sarri V, Cattonaro F, Ceccarelli M, Cionini PG, Morgante M. Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:491-508. [PMID: 19826774 DOI: 10.1007/s00122-009-1170-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 09/27/2009] [Indexed: 05/25/2023]
Abstract
A sample-sequencing strategy combined with slot-blot hybridization and FISH was used to study the composition of the repetitive component of the sunflower genome. One thousand six hundred thirty-eight sequences for a total of 954,517 bp were analyzed. The fraction of sequences that can be classified as repetitive using computational and hybridization approaches amounts to 62% in total. Almost two thirds remain as yet uncharacterized in nature. Of those characterized, most belong to the gypsy superfamily of LTR-retrotransposons. Unlike in other species, where single families can account for large fractions of the genome, it appears that no transposon family has been amplified to very high levels in sunflower. All other known classes of transposable elements were also found. One family of unknown nature (contig 61) was the most repeated in the sunflower genome. The evolution of the repetitive component in the Helianthus genus and in other Asteraceae was studied by comparative analysis of the hybridization of total genomic DNAs from these species to the sunflower small-insert library and compared to gene-based phylogeny. Very little similarity is observed between Helianthus species and two related Asteraceae species outside of the genus. Most repetitive elements are similar in annual and perennial Helianthus species indicating that sequence amplification largely predates such divergence. Gypsy-like elements are more represented in the annuals than in the perennials, while copia-like elements are similarly represented, attesting a different amplification history of the two superfamilies of LTR-retrotransposons in the Helianthus genus.
Collapse
Affiliation(s)
- Andrea Cavallini
- Genetics Section, Department of Crop Plant Biology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Martinsen L, Venanzetti F, Johnsen A, Sbordoni V, Bachmann L. Molecular evolution of the pDo500 satellite DNA family in Dolichopoda cave crickets (Rhaphidophoridae). BMC Evol Biol 2009; 9:301. [PMID: 20038292 PMCID: PMC2808323 DOI: 10.1186/1471-2148-9-301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 12/28/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Non-coding satellite DNA (satDNA) usually has a high turn-over rate frequently leading to species specific patterns. However, some satDNA families evolve more slowly and can be found in several related species. Here, we analyzed the mode of evolution of the pDo500 satDNA family of Dolichopoda cave crickets. In addition, we discuss the potential of slowly evolving satDNAs as phylogenetic markers. RESULTS We sequenced 199 genomic or PCR amplified satDNA repeats of the pDo500 family from 12 Dolichopoda species. For the 38 populations under study, 39 pDo500 consensus sequences were deduced. Phylogenetic analyses using Bayesian, Maximum Parsimony, and Maximum Likelihood approaches yielded largely congruent tree topologies. The vast majority of pDo500 sequences grouped according to species designation. Scatter plots and statistical tests revealed a significant correlation between genetic distances for satDNA and mitochondrial DNA. Sliding window analyses showed species specific patterns of variable and conserved regions. The evolutionary rate of the pDo500 satDNA was estimated to be 1.63-1.78% per lineage per million years. CONCLUSIONS The pDo500 satDNA evolves gradually at a rate that is only slightly faster than previously published rates of insect mitochondrial COI sequences. The pDo500 phylogeny was basically congruent with the previously published mtDNA phylogenies. Accordingly, the slowly evolving pDo500 satDNA family is indeed informative as a phylogenetic marker.
Collapse
Affiliation(s)
- Lene Martinsen
- National Centre of Biosystematics, Natural History Museum, University of Oslo, 0318 Oslo, Norway
| | | | - Arild Johnsen
- National Centre of Biosystematics, Natural History Museum, University of Oslo, 0318 Oslo, Norway
| | - Valerio Sbordoni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Lutz Bachmann
- National Centre of Biosystematics, Natural History Museum, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
8
|
Macas J, Koblízková A, Navrátilová A, Neumann P. Hypervariable 3' UTR region of plant LTR-retrotransposons as a source of novel satellite repeats. Gene 2009; 448:198-206. [PMID: 19563868 DOI: 10.1016/j.gene.2009.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 11/15/2022]
Abstract
The repetitive sequence PisTR-A has an unusual organization in the pea (Pisum sativum) genome, being present both as short dispersed repeats as well as long arrays of tandemly arranged satellite DNA. Cloning, sequencing and FISH analysis of both PisTR-A variants revealed that the former occurs in the genome embedded within the sequence of Ty3/gypsy-like Ogre elements, whereas the latter forms homogenized arrays of satellite repeats at several genomic loci. The Ogre elements carry the PisTR-A sequences in their 3' untranslated region (UTR) separating the gag-pol region from the 3' LTR. This region was found to be highly variable among pea Ogre elements, and includes a number of other tandem repeats along with or instead of PisTR-A. Bioinformatic analysis of LTR-retrotransposons mined from available plant genomic sequence data revealed that the frequent occurrence of variable tandem repeats within 3' UTRs is a typical feature of the Tat lineage of plant retrotransposons. Comparison of these repeats to known plant satellite sequences uncovered two other instances of satellites with sequence similarity to a Tat-like retrotransposon 3' UTR regions. These observations suggest that some retrotransposons may significantly contribute to satellite DNA evolution by generating a library of short repeat arrays that can subsequently be dispersed through the genome and eventually further amplified and homogenized into novel satellite repeats.
Collapse
Affiliation(s)
- Jirí Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branisovská 31, Ceské Budejovice, CZ-37005, Czech Republic.
| | | | | | | |
Collapse
|
9
|
Louzada S, Paço A, Kubickova S, Adega F, Guedes-Pinto H, Rubes J, Chaves R. Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Micron 2008; 39:1149-55. [PMID: 18602266 DOI: 10.1016/j.micron.2008.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 05/23/2008] [Accepted: 05/24/2008] [Indexed: 11/26/2022]
Abstract
Constitutive heterochromatin comprises a substantial fraction of the eukaryotic genomes and is mainly composed of tandemly arrayed satellite DNAs (satDNA). These repetitive sequences represent a very dynamic and fast evolving component of genomes. In the present work we report the isolation of Cricetus cricetus (CCR, Cricetidae, Rodentia) centromeric repetitive sequences from chromosome 4 (CCR4/10sat), using the laser microdissection and laser pressure catapulting procedure, followed by DOP-PCR amplification and labelling. Physical mapping by fluorescent in situ hybridisation of these sequences onto C. cricetus and another member of Cricetidae, Peromyscus eremicus, displayed quite interesting patterns. Namely, the centromeric sequences showed to be present in another C. cricetus chromosome (CCR10) besides CCR4. Moreover, these almost chromosome-specific sequences revealed to be present in the P. eremicus genome, and most interestingly, displaying a ubiquitous scattered distribution throughout this karyotype. Finally and in both species, a co-localisation of CCR4/10sat with constitutive heterochromatin was found, either by classical C-banding or C-banding sequential to in situ endonuclease restriction. The presence of these orthologous sequences in both genomes is suggestive of a phylogenetic proximity. Furthermore, the existence of common repetitive DNA sequences with a different chromosomal location foresees the occurrence of an extensive process of karyotype restructuring somehow related with intragenomic movements of these repetitive sequences during the evolutionary process of C. cricetus and P. eremicus species.
Collapse
Affiliation(s)
- Sandra Louzada
- Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (IBB/CGB-UTAD), Apdo 1013, 5001-801 Vila Real, Portugal
| | | | | | | | | | | | | |
Collapse
|
10
|
Suiformes orthologous satellite DNAs as a hallmark of Pecari tajacu and Tayassu pecari (Tayassuidae) evolutionary rearrangements. Micron 2008; 39:1281-7. [PMID: 18440236 DOI: 10.1016/j.micron.2008.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 01/19/2023]
Abstract
In a broad general way, eukaryotic satellite DNA sequences are characterized by a highly dynamic molecular behavior due to concerted evolution that leads to rapid change between repeat sequences of different species, achieved by amplification of new variants during speciation or by gradual sequence evolution due to the accumulation of nucleotide substitutions. There are, although exceptions for this almost universal rule. We isolated variants from both the Mc1 and Ac2 pig (Sus scrofa, Suidae) satellite DNA families from the genomes of two Tayassuidae members: Pecari tajacu and Tayassu pecari, which have highly derived karyotypes. The presence of these sequences in both families' genomes (Suidae and Tayassuidae) implies their existence in a common ancestor, what confers to the variants the status of orthology and the approximate age of, at least 40 million years. While at the molecular composition level these orthologous sequences are highly homologous, cross-species physical mapping revealed a completely different chromosomal location in Suidae versus Tayassuidae families, most probably, reflecting the high level of divergence and chromosomes evolution pathways after radiation of each family. Detailed comparative analysis of the satellites assignment on the peccary's chromosomes revealed its co-localization with homologous evolutionary breakpoints in both species, suggesting their involvement in the rearrangement events. The complex behavior of the repeats evolution in the pig/peccaries genomes is here clearly illustrated. These sequences are molecularly preserved for a considerable period of time and display slow rates of sequence change, but show a dynamic motion behavior throughout the peccary's genomes that accompanied the great architectonic reorganization of Tayassuidae chromosomes during evolution.
Collapse
|
11
|
Feliciello I, Picariello O, Chinali G. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA. Gene 2006; 383:81-92. [PMID: 16956734 DOI: 10.1016/j.gene.2006.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/06/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
We have characterized the S1 satellite from eight European populations of Rana dalmatina by Southern blot, cloning and a new method that determines the sequence variability of repetitive units in the genome. This report completes our previous studies on this satellite DNA family, thus providing the first characterization of the overall variability of the structure and genomic organization of a satellite DNA within a species and among related species. The S1 satellite from R. dalmatina has a pericentromeric location on ten chromosome pairs and presents two homologous repeats S1a (494 bp) and S1b (332 bp), mostly organized as composite S1a-S1b repetitive units. In other brown frog species, both repeats have different sequences and locations, and are usually organized as separate arrays, although composite S1a-S1b repeats represent a minor, widely variable component in Rana italica. The average genomic sequences indicate that the species contains an enormous number of variants of each repeat derived from a unique, species-specific common sequence. The repeat variability is restricted to specific base changes in specific sequence positions in all population samples. Our data show that the structure and evolution of S1 satellite family is not due to crossing-over and gene conversion, but to a mechanism that maintains the ability of the satellite DNA to assemble in constitutive heterochromatin by replacing altered satellite segments with new arrays generated by rolling circle amplification. The mode of action of this repair process not only directly explains the intra- and inter-specific variability of the structure and organization of the S1 satellite repeats from European brown frogs, but also accounts for all general features of satellite DNA in eukaryotes, including its discontinuous evolution. This repair mechanism can maintain the satellite structure in a species indefinitely, but also promote a rapid generation of new variants or types of satellite DNA when environmental conditions favor the formation of new species.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Dipartimento di Medicina Clinica e Sperimentale, Università di Napoli Federico II, Via Pansini 5, I-80131 Napoli, Italy
| | | | | |
Collapse
|
12
|
Mravinac B, Plohl M, Ugarković D. Preservation and high sequence conservation of satellite DNAs suggest functional constraints. J Mol Evol 2005; 61:542-50. [PMID: 16155746 DOI: 10.1007/s00239-004-0342-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 05/17/2005] [Indexed: 01/29/2023]
Abstract
Due to a high evolutionary turnover many satellite DNAs are restricted to a group of closely related species. Here we demonstrate that the satellite DNA family PSUB, abundant in the beetle Palorus subdepressus, is distributed in a low number of copies among diverse taxa of Coleoptera (Insecta), some of them separated for an evolutionary period of up to 60 Myr. Comparison of PSUB cloned from the species Tribolium brevicornis with the PSUB family previously characterized in Palorus subdepressus revealed high sequence conservation and absence of fixed species-specific mutations. The most polymorphic sites are those with ancestral mutations shared among clones of both species. Since the ancestral mutations contribute significantly to overall diversity, it could be proposed that a similar mutational profile already existed in an ancestral species. The pattern of variability along the satellite monomer is characterized by the presence of conserved and variable regions. The nonrandom pattern of variability as well as the absence of sequence divergence is also discerned for PRAT satellite DNA, cloned previously from two Palorus species and a distantly related Pimelia elevata. Since PRAT and PSUB are present in parallel in diverse taxa of Coleoptera, we propose that their long evolutionary preservation suggests a possible functional significance. This indication is additionally supported not only by the high evolutionary conservation of the sequences, but also by the presence of significantly conserved and variable regions along the monomers.
Collapse
Affiliation(s)
- Brankica Mravinac
- Department of Molecular Biology, Ruder Bosković Institute, Bijenicka 54, HR-10002, Zagreb, Croatia
| | | | | |
Collapse
|
13
|
Feliciello I, Picariello O, Chinali G. The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA. Gene 2005; 349:153-64. [PMID: 15777738 DOI: 10.1016/j.gene.2004.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 10/21/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
We investigated the overall variability of the S1a satellite DNA repeats in ten European populations of Rana temporaria by a new procedure that determines the average sequence of the repeats in a genome. The average genomic sequences show that only 17% of the S1a repeat sequence (494 bp) is variable. The variable positions contain the same major and minor bases in all or many of the population samples tested, but the percentages of these bases can greatly vary among populations. This indicates the presence in the species of an enormous number of repeats having a different distribution of bases in these variable positions. Individual genomes contain thousands of repeat variants, but these mixtures have very similar characteristics in all populations because they present the same type of restricted and species-specific variability. Southern blots analyses and sequences of cloned S1a repeats fully support this conclusion. The S1 satellite DNA of other European brown frog species also presents properties indicating the same type of variability. This first characterisation of the overall repeat variability of a satellite DNA in a species has revealed features that cannot be determined by gene conversion and crossing over. Our results suggest that a specific directional process based on rolling circle amplification should play a relevant role in the evolution of satellite DNA.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Dipartimento di Medicina Clinica e Sperimentale, Facoltà di Medicina e Chirurgia, Università di Napoli Federico II, Via Pansini 5, I-80131 Napoli, Italy
| | | | | |
Collapse
|
14
|
Clemente M, de Miguel N, Lia VV, Matrajt M, Angel SO. Structure analysis of two Toxoplasma gondii and Neospora caninum satellite DNA families and evolution of their common monomeric sequence. J Mol Evol 2004; 58:557-67. [PMID: 15170259 DOI: 10.1007/s00239-003-2578-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 11/26/2003] [Indexed: 10/26/2022]
Abstract
A family of repetitive DNA elements of approximately 350 bp-Sat350-that are members of Toxoplasma gondii satellite DNA was further analyzed. Sequence analysis identified at least three distinct repeat types within this family, called types A, B, and C. B repeats were divided into the subtypes B1 and B2. A search for internal repetitions within this family permitted the identification of conserved regions and the design of PCR primers that amplify almost all these repetitive elements. These primers amplified the expected 350-bp repeats and a novel 680-bp repetitive element (Sat680) related to this family. Two additional tandemly repeated high-order structures corresponding to this satellite DNA family were found by searching the Toxoplasma genome database with these sequences. These studies were confirmed by sequence analysis and identified: (1). an arrangement of AB1CB2 350-bp repeats and (2). an arrangement of two 350-bp-like repeats, resulting in a 680-bp monomer. Sequence comparison and phylogenetic analysis indicated that both high-order structures may have originated from the same ancestral 350-bp repeat. PCR amplification, sequence analysis and Southern blot showed that similar high-order structures were also found in the Toxoplasma-sister taxon Neospora caninum. The Toxoplasma genome database (http://ToxoDB.org ) permitted the assembly of a contig harboring Sat350 elements at one end and a long nonrepetitive DNA sequence flanking this satellite DNA. The region bordering the Sat350 repeats contained two differentially expressed sequence-related regions and interstitial telomeric sequences.
Collapse
|
15
|
Robles F, de la Herrán R, Ludwig A, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA. Evolution of ancient satellite DNAs in sturgeon genomes. Gene 2004; 338:133-42. [PMID: 15302414 DOI: 10.1016/j.gene.2004.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/03/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
This study characterizes a repetitive DNA family of sequences in sturgeon, the PstI satellite DNA. We have found a high degree of preservation for these sequences, which are present in all 13 species analyzed, including within the genera Acipenser, Huso, and Scaphirhynchus of the family Acipenseridae. This is one of the most ancient satellite DNAs found to date, because it has been estimated to be more than 100 million years old. Alternatively, to the current view that most satellite DNAs are species-specific or preserved in a few closely related species, the PstI family and other previously characterized sturgeon satellite DNA, the HindIII, represent the most fascinating exceptions to the rapid sequence change usually undergone by satellite DNAs. Here, we compare the evolutionary pattern of these two satellite DNA families, PstI and HindIII, which differ markedly in length, sequence, and nucleotide composition. We have found that, in contrast to the situation in most other living beings, a high degree of preservation, a slow sequence change rate and slowed concerted evolution, appears to be a general rule for sturgeon satellite DNAs. The possible causes for all these features are discussed in the light of the evolutionary specifics found within these ancient organisms.
Collapse
Affiliation(s)
- Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|