Laha T, Loukas A, Wattanasatitarpa S, Somprakhon J, Kewgrai N, Sithithaworn P, Kaewkes S, Mitreva M, Brindley PJ. The bandit, a new DNA transposon from a hookworm-possible horizontal genetic transfer between host and parasite.
PLoS Negl Trop Dis 2007;
1:e35. [PMID:
17989781 PMCID:
PMC2041818 DOI:
10.1371/journal.pntd.0000035]
[Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 06/01/2007] [Indexed: 11/19/2022] Open
Abstract
Background
An enhanced understanding of the hookworm genome and its resident mobile genetic elements should facilitate understanding of the genome evolution, genome organization, possibly host-parasite co-evolution and horizontal gene transfer, and from a practical perspective, development of transposon-based transgenesis for hookworms and other parasitic nematodes.
Methodology/Principal Findings
A novel mariner-like element (MLE) was characterized from the genome of the dog hookworm, Ancylostoma caninum, and termed bandit. The consensus sequence of the bandit transposon was 1,285 base pairs (bp) in length. The new transposon was flanked by perfect terminal inverted repeats of 32 nucleotides in length with a common target site duplication TA, and it encoded an open reading frame (ORF) of 342 deduced amino acid residues. Phylogenetic comparisons confirmed that the ORF encoded a mariner-like transposase, which included conserved catalytic domains, and that the bandit transposon belonged to the cecropia subfamily of MLEs. The phylogenetic analysis also indicated that the Hsmar1 transposon from humans was the closest known relative of bandit, and that bandit and Hsmar1 constituted a clade discrete from the Tc1 subfamily of MLEs from the nematode Caenorhabditis elegans. Moreover, homology models based on the crystal structure of Mos1 from Drosophila mauritiana revealed closer identity in active site residues of the catalytic domain including Ser281, Lys289 and Asp293 between bandit and Hsmar1 than between Mos1 and either bandit or Hsmar1. The entire bandit ORF was amplified from genomic DNA and a fragment of the bandit ORF was amplified from RNA, indicating that this transposon is actively transcribed in hookworms.
Conclusions/Significance
A mariner-like transposon termed bandit has colonized the genome of the hookworm A. caninum. Although MLEs exhibit a broad host range, and are identified in other nematodes, the closest phylogenetic relative of bandit is the Hsmar1 element of humans. This surprising finding suggests that bandit was transferred horizontally between hookworm parasites and their mammalian hosts.
Because of its importance to public health, the hookworm parasite has become the focus of increased research over the past decade—research that will ultimately decipher its genetic code. We now report a gene from hookworm chromosomes known as a transposon. Transposons are genes that can move around in the genome and even between genomes of different species. We named the hookworm transposon bandit because hookworms are “thieves” that steal the blood of their hosts, leading to protein deficiency anemia. The bandit transposon is a close relative of a well studied assemblage of transposons, the mariner-like elements, known from the chromosomes of many other organisms. The founding member of this group—the mariner transposon—was isolated originally from a fruit fly; mariner has been harnessed in the laboratory as a valuable gene therapy tool. Likewise, it may be feasible to employ the bandit transposon for genetic manipulation of hookworms and functional genomics to investigate the importance of hookworm genes as new intervention targets. Finally, bandit may have transferred horizontally from primates to hookworm or vice versa in the relatively recent evolutionary history of the hookworm–human host–parasite relationship.
Collapse