1
|
Chromosomal localisation of five genes in Perkinsus olseni (Phylum Perkinsozoa). Eur J Protistol 2012; 48:194-8. [PMID: 22342132 DOI: 10.1016/j.ejop.2011.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 10/29/2011] [Accepted: 11/15/2011] [Indexed: 11/21/2022]
Abstract
The molecular karyotype of Perkinsus olseni, a pathogenic protist that infects the clam Ruditapes decussatus, comprises nine chromosomes, ranging in size from 0.15 Mb to 6.5 Mb, representing a haploid genome of about 28 Mb. In order to establish chromosome specific markers, PCR-amplified DNA sequences belonging to five conserved genes (18S rRNA, actin type I, hsp90, β-tubulin and calmodulin) were hybridised to chromosomal bands separated by pulsed-field gel electrophoresis. Three of those probes (actin type I, hsp90 and calmodulin) hybridised to only one chromosome and the remaining two (18S rRNA and β-tubulin) hybridised to two chromosomes. In the first place, the hybridisation pattern obtained serves to dispel any doubt about the nuclear location of the smallest chromosome observed in the molecular karyotype of Perkinsus olseni. Additionally, it will be a reference for further analysis of karyotype polymorphisms in the genus Perkinsus.
Collapse
|
2
|
Belkorchia A, Biderre C, Militon C, Polonais V, Wincker P, Jubin C, Delbac F, Peyretaillade E, Peyret P. In vitro propagation of the microsporidian pathogen Brachiola algerae and studies of its chromosome and ribosomal DNA organization in the context of the complete genome sequencing project. Parasitol Int 2008; 57:62-71. [DOI: 10.1016/j.parint.2007.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/02/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
|
3
|
Subirana JA, Messeguer X. Structural families of genomic microsatellites. Gene 2007; 408:124-32. [PMID: 18022767 DOI: 10.1016/j.gene.2007.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 10/18/2007] [Accepted: 10/22/2007] [Indexed: 01/15/2023]
Abstract
We present an analysis of tandem repeats of short sequence motifs (microsatellites) in twelve eukaryotes for which a large part of the genome has been sequenced and assembled. The pattern of motif abundance varies significantly in different species, but it is very similar in different chromosomes of the same species. The most abundant repeats can be classified in two main families. The first family has a rigid conformation, with purines in one strand and pyrimidines in the complementary strand, mainly A(n)/T(n) and (AG)(n)/(CT)(n). The second family has alternating, flexible sequences, such as (AT)(n), (AC)(n) and related sequences. In the pluricellular organisms the relative frequency of both families is rather constant. These observations indicate that microsatellites have structural information and may be involved in the organization of chromatin fibers and in chromosome architecture in general. An additional intriguing finding is the absence of microsatellites with sequences which appear to be forbidden, such as (AATT)(n).
Collapse
Affiliation(s)
- Juan A Subirana
- Departament d'Enginyeria Quimica, Universitat Politècnica de Catalunya, Av Diagonal 647, E-08028, Barcelona, Spain.
| | | |
Collapse
|
4
|
Tay WT, O'Mahony EM, Paxton RJ. Complete rRNA Gene Sequences Reveal that the MicrosporidiumNosema bombiInfects Diverse Bumblebee (Bombusspp.) Hosts and Contains Multiple Polymorphic Sites. J Eukaryot Microbiol 2005; 52:505-13. [PMID: 16313443 DOI: 10.1111/j.1550-7408.2005.00057.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Characterisation of microsporidian species and differentiation among genetic variants of the same species has typically relied on ribosomal RNA (rRNA) gene sequences. We characterised the entire rRNA gene of a microsporidium from 11 isolates representing eight different European bumblebee (Bombus) species. We demonstrate that the microsporidium Nosema bombi infected all hosts that originated from a wide geographic area. A total of 16 variable sites (all single nucleotid polymorphisms (SNPs)) was detected in the small subunit (SSU) rRNA gene and 42 (39 SNPs and 3 indels) in the large subunit (LSU) rRNA sequence. Direct sequencing of PCR-amplified DNA products of the internal transcribed spacer (ITS) region revealed identical sequences in all isolates. In contrast, ITS fragment length determined by PAGE and sequencing of cloned amplicons gave better resolution of sequences and revealed multiple SNPs across isolates and two fragment sizes in each isolate (six short and seven long amplicon variants). Genetic variants were not unique to individual host species. Moreover, two or more sequence variants were obtained from individual bumblebee hosts, suggesting the existence of multiple, variable copies of rRNA in the same microsporidium, and contrary to that expected for a class of multi-gene family under concerted evolution theory. Our data on within-genome rRNA variability call into question the usefulness of rRNA sequences to characterise intraspecific genetic variants in the Microsporidia and other groups of unicellular organisms.
Collapse
Affiliation(s)
- Wee Tek Tay
- School of Biology and Biochemistry, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, United Kingdom.
| | | | | |
Collapse
|
5
|
Abstract
A survey of the molecular features of microsporidia is presented which attempts to comment on unresolved questions concerning the physiology of these amitochondrial intracellular parasites. Various transports of host-derived molecules can be predicted and trehalose appears as a potential reserve of glucose for energy metabolism. Significant insights into membrane lipids, polyamine metabolism and sporogony-specific proteins have been gained. Some species, such as Encephalitozoon cuniculi, are heterogeneous entities and harbor a small genome. Although showing a variation in genome size of 8.5-fold, microsporidia share reduced rDNA genes. Finally, data on gene organization and a possible evolutionary relationship with fungi are considered.
Collapse
Affiliation(s)
- G Méténier
- Laboratoire de parasitologie moléculaire et cellulaire, LBP, UMC CNRS 6023 Biologie A, Université B. Pascal, 63177 cedex, Aubière, France.
| | | |
Collapse
|
6
|
Peyret P, Katinka MD, Duprat S, Duffieux F, Barbe V, Barbazanges M, Weissenbach J, Saurin W, Vivarès CP. Sequence and analysis of chromosome I of the amitochondriate intracellular parasite Encephalitozoon cuniculi (Microspora). Genome Res 2001; 11:198-207. [PMID: 11157783 PMCID: PMC311017 DOI: 10.1101/gr.164301] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A DNA sequencing program was applied to the small (<3 Mb) genome of the microsporidian Encephalitozoon cuniculi, an amitochondriate eukaryotic parasite of mammals, and the sequence of the smallest chromosome was determined. The approximately 224-kb E. cuniculi chromosome I exhibits a dyad symmetry characterized by two identical 37-kb subtelomeric regions which are divergently oriented and extend just downstream of the inverted copies of an 8-kb duplicated cluster of six genes. Each subtelomeric region comprises a single 16S-23S rDNA transcription unit, flanked by various tandemly repeated sequences, and ends with approximately 1 kb of heterogeneous telomeric repeats. The central (or core) region of the chromosome harbors a highly compact arrangement of 132 potential protein-coding genes plus two tRNA genes (one gene per 1.14 kb). Most genes occur as single copies with no identified introns. Of these putative genes, only 53 could be assigned to known functions. A number of genes from the transcription and translation machineries as well as from other cellular processes display characteristic eukaryotic signatures or are clearly eukaryote-specific.
Collapse
Affiliation(s)
- P Peyret
- Equipe de Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 63177 Aubière Cedex, France. pierre.peyret@ lbp.univ-bpclermont.fr
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Encephalitozoon cuniculi is an attractive model system for amitochondriate intracellular eukaryotic parasites. It is characterized by a very small genome (below 3 Mbp) and a unique invasion apparatus. Furthermore, as an infectious agent, it is important in human and veterinary medicine. The compactness of its genome involves the reduction of rDNA sequences as well as of some protein-coding genes and intergenic regions. Its highly differentiated apparatus to penetrate the host cell, an extrusome-like polar tube, is composed of novel proteins and may permit various pathways of infestation. Completion of the systematic E. cuniculi sequencing project should provide an important reference system for the comparative genomics of amitochondriate and mitochondriate parasites. Further analysis of orphan genes should help to identify factors that are responsible for its intracellular parasitic way of life.
Collapse
Affiliation(s)
- C P Vivarès
- Parasitologie moléculaire et cellulaire, LBP, Université Blaise Pascal, Clermont-Ferrand, France.
| | | |
Collapse
|
8
|
Duffieux F, Peyret P, Roe BA, Vivares CP. First report on the systematic sequencing of the small genome of Encephalitozoon cuniculi (Protozoa, Microspora): gene organization of a 4.3 kbp region on chromosome I. MICROBIAL & COMPARATIVE GENOMICS 2000; 3:1-11. [PMID: 11013707 DOI: 10.1089/omi.1.1998.3.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Belonging to a large group of parasitic amitochondrial protozoans (Microspora), Encephalitozoon cuniculi infects humans and other mammals. Because of its medical importance and small genome size (2.9 Mbp), we are systematically sequencing its smallest (217 kbp) chromosome. The shotgun cloning strategy now has produced the sequence of randomly dispersed contigs representing more than 180 kbp of this chromosome. The present report describes analysis of the 4.3 kbp contig, which includes the complete coding regions of dihydrofolate reductase (DHFR), thymidylate synthase (TS), and serine hydroxymethyl transferase (SHMT) genes and the partial coding region of an aminopeptidase (AP) gene. In contrast to the other reported protozoan genes, DHFR and TS are encoded by two different open reading frames (ORFs). The SHMT gene is the first one identified in a protozoan and corresponds to the cytosolic form of the enzyme. No introns were detected, and the intergenic noncoding regions do not exceed 50 bp. The mean GC content is close to 60%, and there is a G or C third-base codon bias. Transcription and translation initiation signals also are analyzed, and a model for the mRNA-ssu rRNA interactions is proposed.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Codon
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- Encephalitozoon cuniculi/genetics
- Genome, Protozoan
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Protozoan/chemistry
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- F Duffieux
- Laboratoire de Protistologie Moléculaire et Cellulaire des Parasites Opportunistes, Université B. Pascal, Aubière, France
| | | | | | | |
Collapse
|
9
|
Abstract
Microsporidia are well-known to infect immunocompromised patients and are also responsible for clinical syndromes in immunocompetent individuals. In recent years, evidence has been obtained in support of a very close relationship between Microsporidia and Fungi. In some species, the compaction of the genome and genes is remarkable. Thus, a systematic sequencing project has been initiated for the 2.9 Mbp genome of Encephalitozoon cuniculi, which will be useful for future comparative genomic studies.
Collapse
Affiliation(s)
- C P Vivarès
- Laboratoire Parasitologie Moléculaire et Cellulaire, UMR CNRS 6023, Université Blaise Pascal, 63177, Aubière Cedex, France.
| | | |
Collapse
|
10
|
Brugère JF, Cornillot E, Méténier G, Vivarès CP. Occurence of subtelomeric rearrangements in the genome of the microsporidian parasite Encephalitozoon cuniculi, as revealed by a new fingerprinting procedure based on two-dimensional pulsed field gel electrophoresis. Electrophoresis 2000; 21:2576-81. [PMID: 10939475 DOI: 10.1002/1522-2683(20000701)21:12<2576::aid-elps2576>3.0.co;2-d] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Microsporidia, mitochondria-lacking eukaryotic intracellular parasites, genomic comparisons were so far based on molecular karyotyping. The mammal-infecting species Encephalitozoon cuniculi is characterized by a very low haploid genome size (approximately 2.8 Mbp) and rather high karyotype variability. Recently, we developed a two-dimensional pulsed field gel electrophoresis (2-D PFGE) fingerprinting technique useful for constructing a restriction map fo the genome of a mouse E. cuniculi isolate (karyotype variant A). The so-called karyotype and restriction display 2-D PFGE (KARD-PFGE) protocol involved 1-D chromosome separation, digestion with a rare cutter, Klenow radiolabeling of genomic DNA and 2-D separation of restriction fragments followed by autoradiography. In order to assess its suitability for detecting polymorphic loci in E. cuniculi, we applied KARD-PFGE with either BssHII or Mlul digestion to genome analysis of two rabbit isolates representative of two different karyotype variants (A and C). The 2-D spot pattern of the rabbit isolate variant A is identical to the reference mouse isolate but differs greatly from the rabbit isolate variant C. Chromosomal restriction fragment length polymorphisms (RFLPs) provide strong evidence for homologous chromosomes and frequent DNA rearrangements within subtelomeric regions just upstream of the dispersed rDNA units closely associated with each chromosomal end.
Collapse
Affiliation(s)
- J F Brugère
- Laboratoire de Parasitologie Moléculaire et Cellulaire, Université Blaise Pascal, Aubière, France
| | | | | | | |
Collapse
|
11
|
Mathis A. Microsporidia: emerging advances in understanding the basic biology of these unique organisms. Int J Parasitol 2000; 30:795-804. [PMID: 10899524 DOI: 10.1016/s0020-7519(00)00064-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microsporidia are long-known parasites of a wide variety of invertebrate and vertebrate hosts. The emergence of these obligate intracellular organisms as important opportunistic pathogens during the AIDS pandemic and the discovery of new species in humans renewed interest in this unique group of organisms. This review summarises recent advances in the field of molecular biology of microsporidia which (i) contributed to the understanding of the natural origin of human-infecting microsporidia, (ii) revealed unique genetic features of their dramatically reduced genome and (iii) resulted in the correction of their phylogenetic placement among eukaryotes from primitive protozoans to highly evolved organisms related to fungi. Microsporidia might serve as new intracellular model organisms in the future given that gene transfer systems will be developed.
Collapse
Affiliation(s)
- A Mathis
- Institute of Parasitology, Winterthurerstr. 266A, CH-8057, Zürich, Switzerland.
| |
Collapse
|
12
|
Brugère JF, Cornillot E, Méténier G, Bensimon A, Vivarès CP. Encephalitozoon cuniculi (Microspora) genome: physical map and evidence for telomere-associated rDNA units on all chromosomes. Nucleic Acids Res 2000; 28:2026-33. [PMID: 10773069 PMCID: PMC105373 DOI: 10.1093/nar/28.10.2026] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A restriction map of the 2.8-Mb genome of the unicellular eukaryote Encephalitozoon cuniculi (phylum Microspora), a mammal-infecting intracellular parasite, has been constructed using two restriction enzymes with 6 bp recognition sites (Bss HII and Mlu I). The fragments resulting from either single digestions of the whole molecular karyotype or double digestions of 11 individual chromosomes have been separated by two-dimensional pulsed field gel electrophoresis (2D-PFGE) procedures. The average distance between successive restriction sites is approximately 19 kb. The terminal regions of the chromosomes show a common pattern covering approximately 15 kb and including one 16S-23S rDNA unit. Results of hybridisation and molecular combing experiments indicate a palindromic-like orientation of the two subtelomeric rDNA copies on each chromosome. We have also located 67 DNA markers (clones from a partial E. cuniculi genomic library) by hybridisation to restriction fragments. Partial or complete sequencing has revealed homologies with known protein-coding genes for 32 of these clones. Evidence for two homologous chromosomes III, with a size difference (3 kb) related to a subtelomeric deletion/insertion event, argues for diploidy of E.cuniculi. The physical map should be useful for both the whole genome sequencing project and studies on genome plasticity of this widespread parasite.
Collapse
Affiliation(s)
- J F Brugère
- Equipe de Parasitologie Moléculaire et Cellulaire, UPRES A CNRS 6023, Université Blaise Pascal, 63177 Aubière cedex, France
| | | | | | | | | |
Collapse
|
13
|
Moser BA, Becnel JJ, Williams DF. Morphological and molecular characterization of the Thelohania solenopsae complex (microsporidia: thelohaniidae). J Invertebr Pathol 2000; 75:174-7. [PMID: 10772331 DOI: 10.1006/jipa.1999.4895] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B A Moser
- United States Department of Agriculture, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, Florida 32604, USA.
| | | | | |
Collapse
|
14
|
Comparison of two isolates of Encephalitozoon hellem and E. intestinalis (microspora) by pulsed field gel electrophoresis. Eur J Protistol 1999. [DOI: 10.1016/s0932-4739(99)80037-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Franzen C, Müller A. Molecular techniques for detection, species differentiation, and phylogenetic analysis of microsporidia. Clin Microbiol Rev 1999; 12:243-85. [PMID: 10194459 PMCID: PMC88917 DOI: 10.1128/cmr.12.2.243] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsporidia are obligate intracellular protozoan parasites that infect a broad range of vertebrates and invertebrates. These parasites are now recognized as one of the most common pathogens in human immunodeficiency virus-infected patients. For most patients with infectious diseases, microbiological isolation and identification techniques offer the most rapid and specific determination of the etiologic agent. This is not a suitable procedure for microsporidia, which are obligate intracellular parasites requiring cell culture systems for growth. Therefore, the diagnosis of microsporidiosis currently depends on morphological demonstration of the organisms themselves. Although the diagnosis of microsporidiosis and identification of microsporidia by light microscopy have greatly improved during the last few years, species differentiation by these techniques is usually impossible and transmission electron microscopy may be necessary. Immunfluorescent-staining techniques have been developed for species differentiation of microsporidia, but the antibodies used in these procedures are available only at research laboratories at present. During the last 10 years, the detection of infectious disease agents has begun to include the use of nucleic acid-based technologies. Diagnosis of infection caused by parasitic organisms is the last field of clinical microbiology to incorporate these techniques and molecular techniques (e.g., PCR and hybridization assays) have recently been developed for the detection, species differentiation, and phylogenetic analysis of microsporidia. In this paper we review human microsporidial infections and describe and discuss these newly developed molecular techniques.
Collapse
Affiliation(s)
- C Franzen
- Department of Internal Medicine I, University of Cologne, 50924 Cologne,
| | | |
Collapse
|
16
|
Peyretaillade E, Biderre C, Peyret P, Duffieux F, Méténier G, Gouy M, Michot B, Vivarès CP. Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core. Nucleic Acids Res 1998; 26:3513-20. [PMID: 9671812 PMCID: PMC147740 DOI: 10.1093/nar/26.15.3513] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microsporidia are eukaryotic parasites lacking mitochondria, the ribosomes of which present prokaryote-like features. In order to better understand the structural evolution of rRNA molecules in microsporidia, the 5S and rDNA genes were investigated in Encephalitozoon cuniculi . The genes are not in close proximity. Non-tandemly arranged rDNA units are on every one of the 11 chromosomes. Such a dispersion is also shown in two other Encephalitozoon species. Sequencing of the 5S rRNA coding region reveals a 120 nt long RNA which folds according to the eukaryotic consensus structural shape. In contrast, the LSU rRNA molecule is greatly reduced in length (2487 nt). This dramatic shortening is essentially due to truncation of divergent domains, most of them being removed. Most variable stems of the conserved core are also deleted, reducing the LSU rRNA to only those structural features preserved in all living cells. This suggests that the E.cuniculi LSU rRNA performs only the basic mechanisms of translation. LSU rRNA phylogenetic analysis with the BASEML program favours a relatively recent origin of the fast evolving microsporidian lineage. Therefore, the prokaryote-like ribosomal features, such as the absence of ITS2, may be derived rather than primitive characters.
Collapse
Affiliation(s)
- E Peyretaillade
- Laboratoire de Protistologie Moléculaire et Cellulaire des Parasites Opportunistes, LBCP, UPESA CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Biderre C, Méténier G, Vivarès CP. A small spliceosomal-type intron occurs in a ribosomal protein gene of the microsporidian Encephalitozoon cuniculi. Mol Biochem Parasitol 1998; 94:283-6. [PMID: 9747977 DOI: 10.1016/s0166-6851(98)00064-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- C Biderre
- Laboratoire de Protistologie Moléculaire et Cellulaire des Parasites Opportunistes, UPESA CNRS 6023, Université Blaise Pascal, Aubière, France
| | | | | |
Collapse
|