1
|
Bote L, Taylor-Brown A, Maes M, Ingle DJ, Valcanis M, Howden BP, Thomson NR. Surveillance of travel-associated isolates elucidates the diversity of non-pandemic Vibrio cholerae. Microb Genom 2024; 10. [PMID: 39412871 DOI: 10.1099/mgen.0.001307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
Vibrio cholerae is a Gram-negative bacterium found in aquatic environments and is the aetiological agent of cholera, characterized by acute watery diarrhoea and severe dehydration. Cholera presents a significant global health burden of an estimated 1.3-5 million annual cases, with the current pandemic caused by a toxigenic lineage of the O1 El Tor biotype called seventh pandemic El Tor (7PET) that is still ongoing. Whilst it is known that non-7PET lineages can cause sporadic disease, little is known about the transmission of these non-epidemic lineages. Thirty-four V. cholerae isolates were obtained from travellers returning from Indonesia to Australia between 2005 and 2017. These were whole genome sequenced, placed into a global phylogenetic context with 883 isolates, and screened for known genes associated with antimicrobial resistance and virulence. This analysis revealed that 30 isolates fell within non-7PET lineages and four within the 7PET lineage. Both 7PET and non-7PET isolates carried genes for resistance to antibiotics that are commonly used in cholera treatment such as tetracyclines and fluoroquinolones. Diverse virulence factors were also present in non-7PET isolates, with two isolates notably carrying toxin-coregulated pilus genes, which are primarily responsible for intestinal colonization in 7PET V. cholerae. This study demonstrates the role of travel in long-range carriage of epidemic and non-epidemic lineages of V. cholerae, and how sentinel travel surveillance can enrich our knowledge of V. cholerae diversity, reveal new biology about the spread of diverse lineages with differing disease potential and illuminate disease presence in endemic regions with limited surveillance data.
Collapse
Affiliation(s)
- Lia Bote
- Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Danielle J Ingle
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benjamin P Howden
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Australia
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Netter Z, Dunham DT, Seed KD. Adaptation to bile and anaerobicity limits Vibrio cholerae phage adsorption. mBio 2023; 14:e0198523. [PMID: 37882540 PMCID: PMC10746206 DOI: 10.1128/mbio.01985-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Vibrio cholerae is the bacterial pathogen responsible for cholera, a diarrheal disease that impacts people in areas without access to potable water. In regions that lack such infrastructure, cholera represents a large proportion of disease outbreaks. Bacteriophages (phages, viruses that infect bacteria) have recently been examined as potential therapeutic and prophylactic agents to treat and prevent bacterial disease outbreaks like cholera due to their specificity and stability. This work examines the interaction between V. cholerae and vibriophages in consideration for a cholera prophylaxis regimen (M. Yen, L. S. Cairns, and A. Camilli, Nat Commun 8:14187, 2017, https://doi.org/10.1038/ncomms14187) in the context of stimuli found in the intestinal environment. We discover that common signals in the intestinal environment induce cell surface modifications in V. cholerae that also restrict some phages from binding and initiating infection. These findings could impact considerations for the design of phage-based treatments, as phage infection appears to be limited by bacterial adaptations to the intestinal environment.
Collapse
Affiliation(s)
- Zoe Netter
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Wu J, Liu Y, Li W, Li F, Liu R, Sun H, Qin J, Feng X, Huang D, Liu B. MlrA, a MerR family regulator in Vibrio cholerae, senses the anaerobic signal in the small intestine of the host to promote bacterial intestinal colonization. Gut Microbes 2022; 14:2143216. [PMID: 36369865 PMCID: PMC9662190 DOI: 10.1080/19490976.2022.2143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrio cholerae (V. cholerae), one of the most important bacterial pathogens in history, is a gram-negative motile bacterium that causes fatal pandemic disease in humans via oral ingestion of contaminated water or food. This process involves the coordinated actions of numerous regulatory factors. The MerR family regulators, which are widespread in prokaryotes, have been reported to be associated with pathogenicity. However, the role of the MerR family regulators in V. cholerae virulence remains unknown. Our study systematically investigated the influence of MerR family regulators on intestinal colonization of V. cholerae within the host. Among the five MerR family regulators, MlrA was found to significantly promote the colonization capacity of V. cholerae in infant mice. Furthermore, we revealed that MlrA increases bacterial intestinal colonization by directly enhancing the expression of tcpA, which encodes one of the most important virulence factors in V. cholerae, by binding to its promoter region. In addition, we revealed that during infection, mlrA is activated by anaerobic signals in the small intestine of the host through Fnr. In summary, our findings reveal a MlrA-mediated virulence regulation pathway that enables V. cholerae to sense environmental signals at the infection site to precisely activate virulence gene expression, thus providing useful insights into the pathogenic mechanisms of V. cholerae.
Collapse
Affiliation(s)
- Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Fan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,Di Huang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,CONTACT Bin Liu TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| |
Collapse
|
4
|
Takahashi E, Ochi S, Mizuno T, Morita D, Morita M, Ohnishi M, Koley H, Dutta M, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI, Okamoto K. Virulence of Cholera Toxin Gene-Positive Vibrio cholerae Non-O1/non-O139 Strains Isolated From Environmental Water in Kolkata, India. Front Microbiol 2021; 12:726273. [PMID: 34489915 PMCID: PMC8417801 DOI: 10.3389/fmicb.2021.726273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cholera toxin (CT)-producing Vibrio cholerae O1 and O139 cause acute diarrheal disease and are proven etiological agents of cholera epidemics and pandemics. On the other hand, V. cholerae non-O1/non-O139 are designated as non-agglutinable (NAG) vibrios and are not associated with epidemic cholera. The majority of NAG vibrios do not possess the gene for CT (ctx). In this study, we isolated three NAG strains (strains No. 1, 2, and 3) with ctx from pond water in Kolkata, India, and examined their pathogenic properties. The enterotoxicity of the three NAG strains in vivo was examined using the rabbit ileal intestinal loop test. Strain No. 1 induced the accumulation of fluid in the loop, and the volume of fluid was reduced by simultaneous administration of anti-CT antiserum into the loop. The volume of fluid in the loop caused by strains No. 2 and 3 was small and undetectable, respectively. Then, we cultured these three strains in liquid medium in vitro at two temperatures, 25°C and 37°C, and examined the amount of CT accumulated in the culture supernatant. CT was accumulated in the culture supernatant of strain No.1 when the strain was cultured at 25°C, but that was low when cultured at 37°C. The CT amount accumulated in the culture supernatants of the No. 2 and No. 3 strains was extremely low at both temperature under culture conditions examined. In order to clarify the virulence properties of these strains, genome sequences of the three strains were analyzed. The analysis showed that there was no noticeable difference among three isolates both in the genes for virulence factors and regulatory genes of ctx. However, vibrio seventh pandemic island-II (VSP-II) was retained in strain No. 1, but not in strains No. 2 or 3. Furthermore, it was revealed that the genotype of the B subunit of CT in strain No. 1 was type 1 and those of strains No. 2 and 3 were type 8. Histopathological examination showed the disappearance of villi in intestinal tissue exposed to strain No. 1. In addition, fluid accumulated in the loop due to the action of strain No. 1 had hemolytic activity. This indicated that strain No. 1 may possesses virulence factors to induce severe syndrome when the strain infects humans, and that some strains of NAG vibrio inhabiting pond water in Kolkata have already acquired virulence, which can cause illness in humans. There is a possibility that these virulent NAG vibrios, which have acquired genes encoding factors involved in virulence of V. cholerae O1, may emerge in various parts of the world and cause epidemics in the future.
Collapse
Affiliation(s)
- Eizo Takahashi
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED-JICA Building, Kolkata, India.,Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Sadayuki Ochi
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Tamaki Mizuno
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University, Okayama, Japan
| | - Daichi Morita
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED-JICA Building, Kolkata, India
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hemanta Koley
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Moumita Dutta
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Goutam Chowdhury
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Asish K Mukhopadhyay
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases, NICED-JICA Building, Kolkata, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences of Okayama University, Okayama, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, NICED-JICA Building, Kolkata, India
| |
Collapse
|
5
|
Kumar A, Das B, Kumar N. Vibrio Pathogenicity Island-1: The Master Determinant of Cholera Pathogenesis. Front Cell Infect Microbiol 2020; 10:561296. [PMID: 33123494 PMCID: PMC7574455 DOI: 10.3389/fcimb.2020.561296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cholera is an acute secretory diarrhoeal disease caused by the bacterium Vibrio cholerae. The key determinants of cholera pathogenicity, cholera toxin (CT), and toxin co-regulated pilus (TCP) are part of the genome of two horizontally acquired Mobile Genetic Elements (MGEs), CTXΦ, and Vibrio pathogenicity island 1 (VPI-1), respectively. Besides, V. cholerae genome harbors several others MGEs that provide antimicrobial resistance, metabolic functions, and other fitness traits. VPI-1, one of the most well characterized genomic island (GI), deserved a special attention, because (i) it encodes many of the virulence factors that facilitate development of cholera (ii) it is essential for the acquisition of CTXΦ and production of CT, and (iii) it is crucial for colonization of V. cholerae in the host intestine. Nevertheless, VPI-1 is ubiquitously present in all the epidemic V. cholerae strains. Therefore, to understand the role of MGEs in the evolution of cholera pathogen from a natural aquatic habitat, it is important to understand the VPI-1 encoded functions, their acquisition and possible mode of dissemination. In this review, we have therefore discussed our present understanding of the different functions of VPI-1 those are associated with virulence, important for toxin production and essential for the disease development.
Collapse
Affiliation(s)
- Ashok Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| | - Niraj Kumar
- Translational Health Science and Technology Institute, Faridabad, India.,Centre for Doctoral Studies, Advanced Research Centre, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Zhao X, Zhang Y, Huang X. Pathogenicity-island-encoded regulatory RNAs regulate bacterial virulence and pathogenesis. Microb Pathog 2018; 125:196-204. [PMID: 30227229 DOI: 10.1016/j.micpath.2018.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023]
Abstract
Bacterial regulatory RNAs (regRNAs) have been widely studied for decades and shown to be involved in various aspects of bacterial survival, including their virulence and pathogenesis. Recently, many regRNAs have been found to be encoded within bacterial pathogenicity islands (PAIs). These PAI-encoded regRNAs also play important regulatory roles in bacterial virulence and pathogenesis. In this review, we introduce the reported PAI-encoded regRNAs individually, focusing on their types, target genes, regulatory roles, regulatory mechanisms and significance. We also summarize the virulence and pathogenesis of the pathogens concerned.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
7
|
Chang YW, Kjær A, Ortega DR, Kovacikova G, Sutherland JA, Rettberg LA, Taylor RK, Jensen GJ. Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography. Nat Microbiol 2017; 2:16269. [PMID: 28165453 PMCID: PMC5302817 DOI: 10.1038/nmicrobiol.2016.269] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Yi-Wei Chang
- California Institute of Technology, Pasadena, California 91125, USA
| | - Andreas Kjær
- University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Davi R Ortega
- California Institute of Technology, Pasadena, California 91125, USA
| | | | - John A Sutherland
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Lee A Rettberg
- Howard Hughes Medical Institute, Pasadena, California 91125, USA
| | - Ronald K Taylor
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA
| | - Grant J Jensen
- California Institute of Technology, Pasadena, California 91125, USA.,Howard Hughes Medical Institute, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Abstract
During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending on the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or nonspecific adhesion under various environmental conditions. This article reviews the recent advances in our understanding of the secretion, assembly, and regulation of the bacterial adhesins during biofilm formation, with a particular emphasis on the fimbrial, nonfimbrial, and discrete polysaccharide adhesins in Gram-negative bacteria.
Collapse
|
9
|
Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome. J Bacteriol 2015; 198:766-76. [PMID: 26668266 DOI: 10.1128/jb.00704-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. IMPORTANCE Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two nonhomologous VPIs and demonstrated the dual functionality of RDF proteins: (i) inducing PAI excision and (ii) acting as transcriptional regulators. Findings from this study may be implicated in determining the mobilome contribution of other bacteria with multiple MIGEs.
Collapse
|
10
|
Affiliation(s)
- Alain Filloux
- Alain Filloux, MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; E-mail:
| |
Collapse
|
11
|
Berry JL, Pelicic V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 2014; 39:134-54. [PMID: 25793961 PMCID: PMC4471445 DOI: 10.1093/femsre/fuu001] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prokaryotes have engineered sophisticated surface nanomachines that have allowed them to colonize Earth and thrive even in extreme environments. Filamentous machineries composed of type IV pilins, which are associated with an amazing array of properties ranging from motility to electric conductance, are arguably the most widespread since distinctive proteins dedicated to their biogenesis are found in most known species of prokaryotes. Several decades of investigations, starting with type IV pili and then a variety of related systems both in bacteria and archaea, have outlined common molecular and structural bases for these nanomachines. Using type IV pili as a paradigm, we will highlight in this review common aspects and key biological differences of this group of filamentous structures. Using type IV pili as a paradigm, we review common genetic, structural and mechanistic features (many) as well as differences (few) of the exceptionally widespread and functionally versatile prokaryotic nano-machines composed of type IV pilins.
Collapse
Affiliation(s)
- Jamie-Lee Berry
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Vladimir Pelicic
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Lux TM, Lee R, Love J. Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii. Front Microbiol 2014; 5:435. [PMID: 25191313 PMCID: PMC4139957 DOI: 10.3389/fmicb.2014.00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/31/2014] [Indexed: 11/15/2022] Open
Abstract
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.
Collapse
Affiliation(s)
- Thomas M Lux
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - Rob Lee
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - John Love
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| |
Collapse
|
13
|
The MSHA pilus of Vibrio parahaemolyticus has lectin functionality and enables TTSS-mediated pathogenicity. Int J Med Microbiol 2013; 303:563-73. [DOI: 10.1016/j.ijmm.2013.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023] Open
|
14
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
15
|
Chim N, Harmston CA, Guzman DJ, Goulding CW. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis. BMC STRUCTURAL BIOLOGY 2013; 13:23. [PMID: 24134223 PMCID: PMC3853704 DOI: 10.1186/1472-6807-13-23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/11/2013] [Indexed: 01/19/2023]
Abstract
Background Bacterial Disulfide bond forming (Dsb) proteins facilitate proper folding and disulfide bond formation of periplasmic and secreted proteins. Previously, we have shown that Mycobacterium tuberculosis Mt-DsbE and Mt-DsbF aid in vitro oxidative folding of proteins. The M. tuberculosis proteome contains another predicted membrane-tethered Dsb protein, Mt-DsbA, which is encoded by an essential gene. Results Herein, we present structural and biochemical analyses of Mt-DsbA. The X-ray crystal structure of Mt-DsbA reveals a two-domain structure, comprising a canonical thioredoxin domain with the conserved CXXC active site cysteines in their reduced form, and an inserted α-helical domain containing a structural disulfide bond. The overall fold of Mt-DsbA resembles that of other DsbA-like proteins and not Mt-DsbE or Mt-DsbF. Biochemical characterization demonstrates that, unlike Mt-DsbE and Mt-DsbF, Mt-DsbA is unable to oxidatively fold reduced, denatured hirudin. Moreover, on the substrates tested in this study, Mt-DsbA has disulfide bond isomerase activity contrary to Mt-DsbE and Mt-DsbF. Conclusion These results suggest that Mt-DsbA acts upon a distinct subset of substrates as compared to Mt-DsbE and Mt-DsbF. One could speculate that Mt-DsbE and Mt-DsbF are functionally redundant whereas Mt-DsbA is not, offering an explanation for the essentiality of Mt-DsbA in M. tuberculosis.
Collapse
Affiliation(s)
| | | | | | - Celia W Goulding
- Departments of Molecular Biology and Biochemistry, UCI, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Secretion of TcpF by the Vibrio cholerae toxin-coregulated pilus biogenesis apparatus requires an N-terminal determinant. J Bacteriol 2013; 195:2718-27. [PMID: 23564177 DOI: 10.1128/jb.01122-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type IV pili are important for microcolony formation, biofilm formation, twitching motility, and attachment. We and others have shown that type IV pili are important for protein secretion across the outer membrane, similar to type II secretion systems. This study explored the relationship between protein secretion and pilus formation in Vibrio cholerae. The toxin-coregulated pilus (TCP), a type IV pilus required for V. cholerae pathogenesis, is necessary for the secretion of the colonization factor TcpF (T. J. Kirn, N. Bose, and R. K. Taylor, Mol. Microbiol. 49:81-92, 2003). This phenomenon is not unique to V. cholerae; secreted virulence factors that are dependent on the presence of components of the type IV pilus biogenesis apparatus for secretion have been reported with Dichelobacter nodosus (R. M. Kennan, O. P. Dhungyel, R. J. Whittington, J. R. Egerton, and J. I. Rood, J. Bacteriol. 183:4451-4458, 2001) and Francisella tularensis (A. J. Hager et al., Mol. Microbiol. 62:227-237, 2006). Using site-directed mutagenesis, we demonstrated that the secretion of TcpF is dependent on the presence of selected amino acid R groups at position five. We were unable to find other secretion determinants, suggesting that Y5 is the major secretion determinant within TcpF. We also report that proteins secreted in a type IV pilus biogenesis apparatus-dependent manner have a YXS motif within the first 15 amino acids following the Sec cleavage site. The YXS motif is not present in proteins secreted by type II secretion systems, indicating that this is unique to type IV pilus-mediated secretion. Moreover, we show that TcpF interacts with the pilin TcpA, suggesting that these proteins are secreted by the type IV pilus biogenesis system. These data provide a starting point for understanding how type IV pili can mediate secretion of virulence factors important for bacterial pathogenesis.
Collapse
|
17
|
Thanassi DG, Bliska JB, Christie PJ. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 2012; 36:1046-82. [PMID: 22545799 PMCID: PMC3421059 DOI: 10.1111/j.1574-6976.2012.00342.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/08/2012] [Accepted: 04/13/2012] [Indexed: 11/29/2022] Open
Abstract
Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher (CU) and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the CU pathway, the type IV pilus pathway, and the type III and type IV secretion systems.
Collapse
Affiliation(s)
- David G Thanassi
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, USA.
| | | | | |
Collapse
|
18
|
Garzetti D, Bouabe H, Heesemann J, Rakin A. Tracing genomic variations in two highly virulent Yersinia enterocolitica strains with unequal ability to compete for host colonization. BMC Genomics 2012; 13:467. [PMID: 22963272 PMCID: PMC3469391 DOI: 10.1186/1471-2164-13-467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness properties in a mouse model. In vivo co-infection experiments revealed that strain WA-314 overcomes strain 8081 in the colonization of spleen and liver. To trace the reasons of this incongruity, we present here the first high-quality sequence of the whole genome of strain WA-314 and compare it to the published genome of strain 8081. Results Regions previously accepted as unique to strain 8081, like the YAPI and YGI-3 genomic islands, are absent from strain WA-314, confirming their strain-specificity. On the other hand, some fitness- and bacterial competition-associated features, such as a putative colicin cluster and a xenobiotic-acyltransferase-encoding gene, are unique to strain WA-314. Additional acquisitions of strain WA-314 are seven prophage-like regions. One of these prophages, the 28-kb P4-like prophage YWA-4, encodes a PilV-like protein that may be used for adhesion to and invasion of the intestinal cells. Furthermore, a putative autotransporter and two type 1 fimbrial proteins of strain WA-314 show a sequence similarity <50% with the orthologous proteins in strain 8081. The dissimilar sequences of these proteins indicate possible different functions or interaction modes, reflecting the specific adhesion properties of Y. enterocolitica strains 8081 and WA-314 and thus the different efficiency of host colonization. Further important differences were found in two pYV plasmid-encoded virulence factors, YopM and YscP. The impact of these differences on virulence is discussed. Conclusions Our study emphasizes that the virulence of pathogens can be increased, by acquiring new genes and/or improving the function of essential virulence proteins, resulting in permanently hyper-virulent strains. This work also highlights the importance of addressing genetic and phenotypic variations among closely related bacterial strains, even those belonging to the same bioserotype.
Collapse
|
19
|
Evaluation of TcpF-A2-CTB chimera and evidence of additive protective efficacy of immunizing with TcpF and CTB in the suckling mouse model of cholera. PLoS One 2012; 7:e42434. [PMID: 22879984 PMCID: PMC3413659 DOI: 10.1371/journal.pone.0042434] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
The secreted colonization factor, TcpF, which is produced by Vibrio cholerae 01 and 0139, has generated interest as a potential protective antigen in the development of a subunit vaccine against cholera. This study evaluated immunogenicity/protective efficacy of a TcpF holotoxin-like chimera (TcpF-A2-CTB) following intraperitoneal immunization compared to TcpF alone, a TcpF+CTB mixture, or CTB alone. Immunization with the TcpF-A2-CTB chimera elicited significantly greater amounts of anti-TcpF IgG than immunization with the other antigens (P<0.05). Protective efficacy was measured using 6-day-old pups reared from immunized dams and orogastrically challenged with a lethal dose of El Tor V. cholerae 01 Inaba strain N16961. Protection from death, and weight loss analysis at 24 and 48 hours post-infection demonstrated that immunization with TcpF alone was poorly protective. However, immunization with TcpF+CTB was highly protective and showed a trend toward greater protection than immunization with CTB alone (82% vs 64% survival). Immunization with the TcpF-A2-CTB chimera demonstrated less protection (50% survival) than immunization with the TcpF+CTB mixture. The TcpF-A2-CTB chimera used for this study contained the heterologous classical CTB variant whereas the El Tor CTB variant (expressed by the challenge strain) was used in the other immunization groups. For all immunization groups that received CTB, quantitative ELISA data demonstrated that the amounts of serum IgG directed against the homologous immunizing CTB antigen was statistically greater than the amount to the heterologous CTB antigen (P≤0.003). This finding provides a likely explanation for the poorer protection observed following immunization with the TcpF-A2-CTB chimera and the relatively high level of protection seen after immunization with homologous CTB alone. Though immunization with TcpF alone provided no protection, the additive protective effect when TcpF was combined with CTB demonstrates its possible value as a component of a multivalent subunit vaccine against Vibrio cholerae 01 and 0139.
Collapse
|
20
|
Aagesen AM, Häse CC. Sequence analyses of type IV pili from Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. MICROBIAL ECOLOGY 2012; 64:509-524. [PMID: 22383120 DOI: 10.1007/s00248-012-0021-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
Bacterial surface structures called pili have been studied extensively for their role as possible colonization factors. Most sequenced Vibrio genomes predict a variety of pili genes in these organisms, including several types of type IV pili. In particular, the mannose-sensitive hemagglutinin (MSHA) and the PilA pili, also known as the chitin-regulated pilus (ChiRP), are type IVa pili commonly found in Vibrio genomes and have been shown to play a role in the colonization of Vibrio species in the environment and/or host tissue. Here, we report sequence comparisons of two type IVa pilin subunit genes, mshA and pilA, and their corresponding amino acid sequences, for several strains from the three main human pathogenic Vibrio species, V. cholerae, V. parahaemolyticus, and V. vulnificus. We identified specific groupings of these two genes in V. cholerae, whereas V. parahaemolyticus and V. vulnificus strains had no apparent allelic clusters, and these genes were strikingly divergent. These results were compared with other genes from the MSHA and PilA operons as well as another Vibrio pili from the type IVb group, the toxin co-regulated pilus (TCP) from V. cholerae. Our data suggest that a selective pressure exists to cause these strains to vary their MSHA and PilA pilin subunits. Interestingly, V. cholerae strains possessing TCP have the same allele for both mshA and pilA. In contrast, V. cholerae isolates without TCP have polymorphisms in their mshA and pilA sequences similar to what was observed for both V. parahaemolyticus and V. vulnificus. This data suggests a possible linkage between host interactions and maintaining a highly conserved type IV pili sequence in V. cholerae. Although the mechanism underlying this intriguing diversity has yet to be elucidated, our analyses are an important first step towards gaining insights into the various aspects of Vibrio ecology.
Collapse
Affiliation(s)
- Alisha M Aagesen
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
21
|
Kahlke T, Goesmann A, Hjerde E, Willassen NP, Haugen P. Unique core genomes of the bacterial family vibrionaceae: insights into niche adaptation and speciation. BMC Genomics 2012; 13:179. [PMID: 22574681 PMCID: PMC3464603 DOI: 10.1186/1471-2164-13-179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/12/2012] [Indexed: 01/05/2023] Open
Abstract
Background The criteria for defining bacterial species and even the concept of bacterial species itself are under debate, and the discussion is apparently intensifying as more genome sequence data is becoming available. However, it is still unclear how the new advances in genomics should be used most efficiently to address this question. In this study we identify genes that are common to any group of genomes in our dataset, to determine whether genes specific to a particular taxon exist and to investigate their potential role in adaptation of bacteria to their specific niche. These genes were named unique core genes. Additionally, we investigate the existence and importance of unique core genes that are found in isolates of phylogenetically non-coherent groups. These groups of isolates, that share a genetic feature without sharing a closest common ancestor, are termed genophyletic groups. Results The bacterial family Vibrionaceae was used as the model, and we compiled and compared genome sequences of 64 different isolates. Using the software orthoMCL we determined clusters of homologous genes among the investigated genome sequences. We used multilocus sequence analysis to build a host phylogeny and mapped the numbers of unique core genes of all distinct groups of isolates onto the tree. The results show that unique core genes are more likely to be found in monophyletic groups of isolates. Genophyletic groups of isolates, in contrast, are less common especially for large groups of isolate. The subsequent annotation of unique core genes that are present in genophyletic groups indicate a high degree of horizontally transferred genes. Finally, the annotation of the unique core genes of Vibrio cholerae revealed genes involved in aerotaxis and biosynthesis of the iron-chelator vibriobactin. Conclusion The presented work indicates that genes specific for any taxon inside the bacterial family Vibrionaceae exist. These unique core genes encode conserved metabolic functions that can shed light on the adaptation of a species to its ecological niche. Additionally, our study suggests that unique core genes can be used to aid classification of bacteria and contribute to a bacterial species definition on a genomic level. Furthermore, these genes may be of importance in clinical diagnostics and drug development.
Collapse
Affiliation(s)
- Tim Kahlke
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre, University of Tromsø, Tromsø, Norway.
| | | | | | | | | |
Collapse
|
22
|
Megli CJ, Yuen ASW, Kolappan S, Richardson MR, Dharmasena MN, Krebs SJ, Taylor RK, Craig L. Crystal structure of the Vibrio cholerae colonization factor TcpF and identification of a functional immunogenic site. J Mol Biol 2011; 409:146-58. [PMID: 21440558 DOI: 10.1016/j.jmb.2011.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 01/09/2023]
Abstract
Vibrio cholerae relies on two main virulence factors--toxin-coregulated pilus (TCP) and cholera toxin--to cause the gastrointestinal disease cholera. TCP is a type IV pilus that mediates bacterial autoagglutination and colonization of the intestine. TCP is encoded by the tcp operon, which also encodes TcpF, a protein of unknown function that is secreted by V. cholerae in a TCP-dependent manner. Although TcpF is not required for TCP biogenesis, a tcpF mutant has a colonization defect in the infant mouse cholera model that is as severe as a pilus mutant. Furthermore, TcpF antisera protect against V. cholerae infection. TcpF has no apparent sequence homology to any known protein. Here, we report the de novo X-ray crystal structure of TcpF and the identification of an epitope that is critical for its function as a colonization factor. A monoclonal antibody recognizing this epitope is protective against V. cholerae challenge and adds to the protection provided by an anti-TcpA antibody. These data suggest that TcpF has a novel function in V. cholerae colonization and define a region crucial for this function.
Collapse
Affiliation(s)
- Christina J Megli
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ayers M, Howell PL, Burrows LL. Architecture of the type II secretion and type IV pilus machineries. Future Microbiol 2010; 5:1203-18. [PMID: 20722599 DOI: 10.2217/fmb.10.76] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Motility and protein secretion are key processes contributing to bacterial virulence. A wealth of phylogenetic, biochemical and structural evidence support the hypothesis that the widely distributed type IV pilus (T4P) system, involved in twitching motility, and the type II secretion (T2S) system, involved in exoprotein release, are descended from a common progenitor. Both are composed of dedicated but dynamic assemblages, which have been proposed to function through alternate polymerization and depolymerization or degradation of pilin-like subunits. While ongoing studies aimed at understanding the details of assembly and function of these systems are leading to new insights, there are still large knowledge gaps with respect to several fundamental aspects of their biology, including the localization and stoichiometry of critical assembly components, and the nature of their interactions. This article highlights recent advances in understanding the architectures of the T4P and T2S systems, and the organization of their inner and outer membrane components. As structural data accumulates, it is becoming increasingly apparent that even components with little-to-no sequence similarity have similar folds, further supporting the idea that both systems function by a similar mechanism.
Collapse
Affiliation(s)
- Melissa Ayers
- Department of Biochemistry & Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
24
|
The peptidoglycan-binding protein FimV promotes assembly of the Pseudomonas aeruginosa type IV pilus secretin. J Bacteriol 2010; 193:540-50. [PMID: 21097635 DOI: 10.1128/jb.01048-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa inner membrane protein FimV is among several proteins of unknown function required for type IV pilus-mediated twitching motility, arising from extension and retraction of pili from their site of assembly in the inner membrane. The pili transit the periplasm and peptidoglycan (PG) layer, ultimately exiting the cell through the PilQ secretin. Although fimV mutants are nonmotile, they are susceptible to killing by pilus-specific bacteriophage, a hallmark of retractable surface pili. Here we show that levels of recoverable surface pili were markedly decreased in fimV pilT retraction-deficient mutants compared with levels in the pilT control, demonstrating that FimV acts at the level of pilus assembly. Levels of inner membrane assembly subcomplex proteins PilM/N/O/P were decreased in fimV mutants, but supplementation of these components in trans did not restore pilus assembly or motility. Loss of FimV dramatically reduced the levels of the PilQ secretin multimer through which pili exit the cell, in part due to decreased levels of PilQ monomers, while PilF pilotin levels were unchanged. Expression of pilQ in trans in the wild type or fimV mutants increased total PilQ monomer levels but did not alter secretin multimer levels or motility. PG pulldown assays showed that the N terminus of FimV bound PG in a LysM motif-dependent manner, and a mutant with an in-frame chromosomal deletion of the LysM motif had reduced motility, secretin levels, and surface piliation. Together, our data show that FimV's role in pilus assembly is to promote secretin formation and that this function depends upon its PG-binding domain.
Collapse
|
25
|
Richard AL, Withey JH, Beyhan S, Yildiz F, DiRita VJ. The Vibrio cholerae virulence regulatory cascade controls glucose uptake through activation of TarA, a small regulatory RNA. Mol Microbiol 2010; 78:1171-81. [PMID: 21091503 DOI: 10.1111/j.1365-2958.2010.07397.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vibrio cholerae causes the severe diarrhoeal disease cholera. A cascade of regulators controls expression of virulence determinants in V. cholerae at both transcriptional and post-transcriptional levels. ToxT is the direct transcription activator of the major virulence genes in V. cholerae. Here we describe TarA, a highly conserved, small regulatory RNA, whose transcription is activated by ToxT from toxboxes present upstream of the ToxT-activated gene tcpI. TarA regulates ptsG, encoding a major glucose transporter in V. cholerae. Cells overexpressing TarA exhibit decreased steady-state levels of ptsG mRNA and grow poorly in glucose-minimal media. A mutant lacking the ubiquitous regulatory protein Hfq expresses diminished TarA levels, indicating that TarA likely interacts with Hfq to regulate gene expression. RNAhybrid analysis of TarA and the putative ptsG mRNA leader suggests potential productive base-pairing between these two RNA molecules. A V. cholerae mutant lacking TarA is compromised for infant mouse colonization in competition with wild type, suggesting a role in the in vivo fitness of V. cholerae. Although somewhat functionally analogous to SgrS of Escherichia coli, TarA does not encode a regulatory peptide, and its expression is activated by the virulence gene pathway in V. cholerae and not by glycolytic intermediates.
Collapse
Affiliation(s)
- Aimee L Richard
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
26
|
An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J Mol Biol 2010; 396:1211-26. [PMID: 20060836 DOI: 10.1016/j.jmb.2009.12.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/03/2009] [Accepted: 12/29/2009] [Indexed: 12/21/2022]
Abstract
Disulfide bond forming (Dsb) proteins ensure correct folding and disulfide bond formation of secreted proteins. Previously, we showed that Mycobacterium tuberculosis DsbE (Mtb DsbE, Rv2878c) aids in vitro oxidative folding of proteins. Here, we present structural, biochemical, and gene expression analyses of another putative Mtb secreted disulfide bond isomerase protein homologous to Mtb DsbE, Mtb DsbF (Rv1677). The X-ray crystal structure of Mtb DsbF reveals a conserved thioredoxin fold although the active-site cysteines may be modeled in both oxidized and reduced forms, in contrast to the solely reduced form in Mtb DsbE. Furthermore, the shorter loop region in Mtb DsbF results in a more solvent-exposed active site. Biochemical analyses show that, similar to Mtb DsbE, Mtb DsbF can oxidatively refold reduced, unfolded hirudin and has a comparable pK(a) for the active-site solvent-exposed cysteine. However, contrary to Mtb DsbE, the Mtb DsbF redox potential is more oxidizing and its reduced state is more stable. From computational genomics analysis of the M. tuberculosis genome, we identified a potential Mtb DsbF interaction partner, Rv1676, a predicted peroxiredoxin. Complex formation is supported by protein coexpression studies and inferred by gene expression profiles, whereby Mtb DsbF and Rv1676 are upregulated under similar environments. Additionally, comparison of Mtb DsbF and Mtb DsbE gene expression data indicates anticorrelated gene expression patterns, suggesting that these two proteins and their functionally linked partners constitute analogous pathways that may function under different conditions.
Collapse
|
27
|
Ayers M, Sampaleanu LM, Tammam S, Koo J, Harvey H, Howell PL, Burrows LL. PilM/N/O/P proteins form an inner membrane complex that affects the stability of the Pseudomonas aeruginosa type IV pilus secretin. J Mol Biol 2009; 394:128-42. [PMID: 19857645 DOI: 10.1016/j.jmb.2009.09.034] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 01/16/2023]
Abstract
The highly conserved pilM/N/O/P/Q gene cluster is among the core set of genes required for cell surface expression of type IV pili and associated twitching motility. With the exception of the outer membrane secretin, a multimer of PilQ subunits, the specific functions of the products encoded by this gene cluster are poorly characterized. Orthologous proteins in the related bacterial type II secretion system have been shown to interact to form an inner membrane complex required for protein secretion. In this study, we provide evidence that the PilM/N/O/P proteins form a functionally equivalent type IVa pilus complex. Using Pseudomonas aeruginosa as model organism, we found that all four proteins, including the nominally cytoplasmic PilM, colocalized to the inner membrane. Stability studies via Western blot analyses revealed that loss of one component has a negative impact on the levels of other members of the putative complex. Furthermore, complementation studies revealed that the stoichiometry of the components is important for the correct formation of a stable complex in vivo. We provide evidence that an intact inner membrane complex is required for optimal formation of the outer membrane complex of the type IVa pilus system in P. aeruginosa, as PilQ stability is negatively affected in its absence. Finally, we show that, in the absence of the pilin subunit, the levels of membrane-bound components of the inner membrane complex are negatively regulated by the PilR/S two-component system, suggesting a role for PilR/S in sensing the piliation status of the cell.
Collapse
Affiliation(s)
- M Ayers
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | | | |
Collapse
|
28
|
Oxygen-limiting conditions enrich for fimbriate cells of uropathogenic Proteus mirabilis and Escherichia coli. J Bacteriol 2008; 191:1382-92. [PMID: 19114498 DOI: 10.1128/jb.01550-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
MR/P fimbriae of uropathogenic Proteus mirabilis undergo invertible element-mediated phase variation whereby an individual bacterium switches between expressing fimbriae (phase ON) and not expressing fimbriae (phase OFF). Under different conditions, the percentage of fimbriate bacteria within a population varies and could be dictated by either selection (growth advantage of one phase) or signaling (preferentially converting one phase to the other in response to external signals). Expression of MR/P fimbriae increases in a cell-density dependent manner in vitro and in vivo. However, rather than the increased cell density itself, this increase in fimbrial expression is due to an enrichment of fimbriate bacteria under oxygen limitation resulting from increased cell density. Our data also indicate that the persistence of MR/P fimbriate bacteria under oxygen-limiting conditions is a result of both selection (of MR/P fimbrial phase variants) and signaling (via modulation of expression of the MrpI recombinase). Furthermore, the mrpJ transcriptional regulator encoded within the mrp operon contributes to phase switching. Type 1 fimbriae of Escherichia coli, which are likewise subject to phase variation via an invertible element, also increase in expression during reduced oxygenation. These findings provide evidence to support a mechanism for persistence of fimbriate bacteria under oxygen limitation, which is relevant to disease progression within the oxygen-restricted urinary tract.
Collapse
|
29
|
Anaerobic growth promotes synthesis of colonization factors encoded at the Vibrio pathogenicity island in Vibrio cholerae El Tor. Res Microbiol 2008; 160:48-56. [PMID: 19015025 DOI: 10.1016/j.resmic.2008.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 09/24/2008] [Accepted: 10/02/2008] [Indexed: 12/30/2022]
Abstract
Pathogenesis of the facultative anaerobe Vibrio cholerae takes place at the gut under low oxygen concentrations. To identify proteins which change their expression level in response to oxygen availability, proteomes of V. cholerae El Tor C7258 grown in aerobiosis, microaerobiosis and anaerobiosis were compared by two-dimensional electrophoresis. Twenty-six differentially expressed proteins were identified which are involved in several processes including iron acquisition, alanine metabolism, purine synthesis, energy metabolism and stress response. Moreover, two proteins implicated in exopolysaccharide synthesis and biofilm formation were produced at higher levels under microaerobiosis and anaerobiosis, which suggests a role of oxygen deprivation in biofilm development in V. cholerae. In addition, six proteins encoded at the Vibrio pathogenicity island attained the highest expression levels under anaerobiosis, and five of them are required for colonization: three correspond to toxin-coregulated pilus biogenesis components, one to soluble colonization factor TcpF and one to accessory colonization factor A. Thus, anaerobiosis promotes synthesis of colonization factors in V. cholerae El Tor, suggesting that it may be a key in vivo signal for early stages of the pathogenic process of V. cholerae.
Collapse
|
30
|
Abstract
Vibrio cholerae is a gram-negative bacterium that is the causative agent of cholera. This disease consists of enormous fluid loss through stools, which can be fatal. Cholera epidemics appear in explosive outbreaks that have occurred repeatedly throughout history. The virulence factors toxin coregulated pilus (TCP) and cholera toxin (CT) are essential for colonization of the host and enterotoxicity, respectively. These virulence factors are under the control of ToxT, an AraC/XylS family protein that activates transcription of the genes encoding TCP and CT. ToxT is under the control of a virulence regulatory cascade known as the ToxR regulon, which responds to environmental stimuli to ensure maximal virulence-factor induction within the human intestine. An understanding of this intricate signaling pathway is essential for the development of methods to treat and prevent this devastating disease.
Collapse
Affiliation(s)
- Brandon M Childers
- Department of Microbiology & Immunology, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
31
|
Tripathi SA, Taylor RK. Membrane association and multimerization of TcpT, the cognate ATPase ortholog of the Vibrio cholerae toxin-coregulated-pilus biogenesis apparatus. J Bacteriol 2007; 189:4401-9. [PMID: 17434972 PMCID: PMC1913367 DOI: 10.1128/jb.00008-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The toxin-coregulated pilus (TCP) is one of the major virulence factors of Vibrio cholerae. Biogenesis of this type 4 pilus (Tfp) requires a number of structural components encoded by the tcp operon. TcpT, the cognate putative ATPase, is required for TCP biogenesis and all TCP-mediated functions. We studied the stability and localization of TcpT in cells containing in-frame deletions in each of the tcp genes. TcpT was detectable in each of the biogenesis mutants except the DeltatcpT strain. TcpT was localized to the inner membrane (IM) in a TcpR-dependent manner. TcpR is a predicted bitopic inner membrane protein of the TCP biogenesis apparatus. Using metal affinity pull-down experiments, we demonstrated interaction between TcpT and TcpR. Using Escherichia coli as a heterologous system, we investigated direct interaction between TcpR and TcpT. We report that TcpR is sufficient for TcpT IM localization per se; however, stable IM localization of TcpT requires an additional V. cholerae-specific factor(s). A LexA-based two-hybrid system was utilized to define interaction domains of the two proteins. We demonstrate a strong interaction between the cytoplasmic domain of TcpR and the N-terminal 100 amino acid residues of TcpT. We also demonstrated the ability of the C-terminal domain of TcpT to multimerize.
Collapse
Affiliation(s)
- Shital A Tripathi
- Department of Microbiology and Immunology, Dartmouth Medical School, HB7550, Hanover, NH 03755, USA
| | | |
Collapse
|
32
|
Wilson GA, Feil EJ, Lilley AK, Field D. Large-scale comparative genomic ranking of taxonomically restricted genes (TRGs) in bacterial and archaeal genomes. PLoS One 2007; 2:e324. [PMID: 17389915 PMCID: PMC1824705 DOI: 10.1371/journal.pone.0000324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/18/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lineage-specific, or taxonomically restricted genes (TRGs), especially those that are species and strain-specific, are of special interest because they are expected to play a role in defining exclusive ecological adaptations to particular niches. Despite this, they are relatively poorly studied and little understood, in large part because many are still orphans or only have homologues in very closely related isolates. This lack of homology confounds attempts to establish the likelihood that a hypothetical gene is expressed and, if so, to determine the putative function of the protein. METHODOLOGY/PRINCIPAL FINDINGS We have developed "QIPP" ("Quality Index for Predicted Proteins"), an index that scores the "quality" of a protein based on non-homology-based criteria. QIPP can be used to assign a value between zero and one to any protein based on comparing its features to other proteins in a given genome. We have used QIPP to rank the predicted proteins in the proteomes of Bacteria and Archaea. This ranking reveals that there is a large amount of variation in QIPP scores, and identifies many high-scoring orphans as potentially "authentic" (expressed) orphans. There are significant differences in the distributions of QIPP scores between orphan and non-orphan genes for many genomes and a trend for less well-conserved genes to have lower QIPP scores. CONCLUSIONS The implication of this work is that QIPP scores can be used to further annotate predicted proteins with information that is independent of homology. Such information can be used to prioritize candidates for further analysis. Data generated for this study can be found in the OrphanMine at http://www.genomics.ceh.ac.uk/orphan_mine.
Collapse
Affiliation(s)
- Gareth A Wilson
- Centre for Ecology and Hydrology (CEH) Oxford, Oxford, United Kindgom.
| | | | | | | |
Collapse
|
33
|
de Bentzmann S, Aurouze M, Ball G, Filloux A. FppA, a novel Pseudomonas aeruginosa prepilin peptidase involved in assembly of type IVb pili. J Bacteriol 2006; 188:4851-60. [PMID: 16788194 PMCID: PMC1483019 DOI: 10.1128/jb.00345-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Whereas molecular mechanisms of type IVa pilus assembly have been well documented for Pseudomonas aeruginosa and involve the PilD prepilin peptidase, no type IVb pili have been described in this microorganism. One subclass of type IVb prepilins has been identified as the Flp prepilin subfamily. Long and bundled Flp pili involved in tight adherence have been identified in Actinobacillus actinomycetemcomitans, for which assembly was due to a dedicated machinery encoded by the tad-rcp locus. A similar flp-tad-rcp locus containing flp, tad, and rcp gene homologues was identified in the P. aeruginosa genome. The function of these genes has been investigated, which revealed their involvement in the formation of extracellular Flp appendages. We also identified a gene (designated by open reading frame PA4295) outside the flp-tad-rcp locus, that we named fppA, encoding a novel prepilin peptidase. This is the second enzyme of this kind found in P. aeruginosa; however, it appears to be truncated and is similar to the C-terminal domain of the previously characterized PilD peptidase. In this study, we show that FppA is responsible for the maturation of the Flp prepilin and belongs to the aspartic acid protease family. We also demonstrate that FppA is required for the assembly of cell surface appendages that we called Flp pili. Finally, we observed an Flp-dependent bacterial aggregation process on the epithelial cell surface and an increased biofilm phenotype linked to Flp pilus assembly.
Collapse
Affiliation(s)
- Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-IBSM-UPR9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
34
|
Dudley EG, Abe C, Ghigo JM, Latour-Lambert P, Hormazabal JC, Nataro JP. An IncI1 plasmid contributes to the adherence of the atypical enteroaggregative Escherichia coli strain C1096 to cultured cells and abiotic surfaces. Infect Immun 2006; 74:2102-14. [PMID: 16552039 PMCID: PMC1418932 DOI: 10.1128/iai.74.4.2102-2114.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is defined by a characteristic "stacked-brick" aggregative adherence (AA) pattern to cultured cells. In well-studied EAEC prototype strains (called typical EAEC strains), the AA phenotype requires aggregative adherence fimbriae (AAFs). However, previous studies suggest that known AAF alleles are not found in all EAEC strains. To define mechanisms contributing to adherence in an atypical strain, we studied EAEC strain C1096. An E. coli K12 derivative carrying two plasmids, designated pSERB1 and pSERB2, from C1096 adhered to cell lines and exhibited an AA pattern. Nucleotide sequence analysis of pSERB1 indicated that it is related to plasmids of the IncI1 incompatibility group. These plasmids encode genes involved in pilus-mediated conjugal transfer, as well as pilL-V, which encodes a second pilus of the type IV family. Insertional inactivation of the gene predicted to encode the major type IV pilin subunit (pilS) reduced conjugal transfer of the plasmid by 4 orders of magnitude. Adherence of the mutant strain to polystyrene and to HT29 cells was reduced by approximately 21% and 75%, respectively. In a continuous-flow microfermentor, the pilS inactivation reduced mature biofilm formation on a glass slide by approximately 50%. In addition, the simultaneous presence of both pSERB1 and pSERB2 plasmids promoted pilS-independent biofilm formation. We conclude that the IncI1 plasmid of EAEC C1096 encodes a type IV pilus that contributes to plasmid conjugation, epithelial cell adherence, and adherence to abiotic surfaces. We also observe that AA can be mediated by factors distinct from AAF adhesins.
Collapse
Affiliation(s)
- Edward G Dudley
- Center for Vaccine Development, University of Maryland, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gubala AJ. Multiplex real-time PCR detection of Vibrio cholerae. J Microbiol Methods 2005; 65:278-93. [PMID: 16153727 DOI: 10.1016/j.mimet.2005.07.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/29/2005] [Accepted: 07/29/2005] [Indexed: 11/17/2022]
Abstract
Cholera is an important enteric disease, which is endemic to different regions of the world and has historically been the cause of severe pandemics. Vibrio cholerae is a natural inhabitant of the aquatic environment and the toxigenic strains are causative agents of potentially life-threatening diarrhoea. A multiplex, real-time detection assay was developed targeting four genes characteristic of potentially toxigenic strains of V. cholerae, encoding: repeat in toxin (rtxA), extracellular secretory protein (epsM), mannose-sensitive pili (mshA) and the toxin coregulated pilus (tcpA). The assay was developed on the Cepheid Smart Cycler using SYBR Green I for detection and the products were differentiated based on melting temperature (Tm) analysis. Validation of the assay was achieved by testing against a range of Vibrio and non-Vibrio species. The detection limit of the assay was determined to be 10(3) CFU using cells from pure culture. This assay was also successful at detecting V. cholerae directly from spiked environmental water samples in the order of 10(4) CFU, except from sea water which inhibited the assay. The incorporation of a simple DNA purification step prior to the addition to the PCR increased the sensitivity 10 fold to 10(3) CFU. This multiplex real-time PCR assay allows for a more reliable, rapid detection and identification of V. cholerae which is considerably faster than current conventional detection assays.
Collapse
Affiliation(s)
- Aneta J Gubala
- Chemical Biological Radiological and Nuclear Defence Centre, Defence Science and Technology Organisation, Melbourne, Australia.
| |
Collapse
|
36
|
Bose N, Taylor RK. Identification of a TcpC-TcpQ outer membrane complex involved in the biogenesis of the toxin-coregulated pilus of Vibrio cholerae. J Bacteriol 2005; 187:2225-32. [PMID: 15774863 PMCID: PMC1065220 DOI: 10.1128/jb.187.7.2225-2232.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a tcpQ mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation studies revealed that the protein is not localized to the periplasm but is associated predominantly with the outer membrane fraction. An analysis of the amount of TcpQ present in the series of tcp mutants demonstrated the inverse of the TcpC result (absence of TcpQ in a tcpC deletion strain). Complementation of the tcpQ deletion restored TcpC levels and TCP formation, and similarly, complementation of tcpC restored TcpQ. Metal affinity pull-down experiments performed using His-tagged TcpC or TcpQ demonstrated a direct interaction between TcpC and TcpQ. In the presence of TcpQ, TcpC was found to form a high-molecular-weight complex that is stable in 2% sodium dodecyl sulfate and at temperatures below 65 degrees C, a characteristic of secretin complexes. Fractionation studies in which TcpC was overexpressed in the absence of TcpQ showed that TcpQ is also required for proper localization of TcpC to the outer membrane.
Collapse
Affiliation(s)
- Niranjan Bose
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
37
|
Xu XF, Tan YW, Lam L, Hackett J, Zhang M, Mok YK. NMR Structure of a Type IVb Pilin from Salmonella typhi and Its Assembly into Pilus. J Biol Chem 2004; 279:31599-605. [PMID: 15159389 DOI: 10.1074/jbc.m404727200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of the N-terminal-truncated Type IVb structural pilin (t-PilS) from Salmonella typhi was determined by NMR. Although topologically similar to the recently determined x-ray structure of pilin from Vibrio cholerae toxin-coregulated pilus, the only Type IVb pilin with known structure, t-PilS contains many distinct structural features. The protein contains an extra pair of beta-strands in the N-terminal alphabeta loop that align with the major beta-strands to form a continuous 7-stranded antiparallel beta-sheet. The C-terminal disulfide-bonded region of t-PilS is only half the length of that of toxin-coregulated pilus pilin. A model of S. typhi pilus has been proposed and mutagenesis studies suggested that residues on both the alphabeta loop and the C-terminal disulfide-bonded region of PilS might be involved in binding specificity of the pilus. This model structure reveals an exposed surface between adjacent subunits of PilS that could be a potential binding site for the cystic fibrosis transmembrane conductance regulator.
Collapse
Affiliation(s)
- Xing-Fu Xu
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Intestinal infection with Vibrio cholerae results in the loss of large volumes of watery stool, leading to severe and rapidly progressing dehydration and shock. Without adequate and appropriate rehydration therapy, severe cholera kills about half of affected individuals. Cholera toxin, a potent stimulator of adenylate cyclase, causes the intestine to secrete watery fluid rich in sodium, bicarbonate, and potassium, in volumes far exceeding the intestinal absorptive capacity. Cholera has spread from the Indian subcontinent where it is endemic to involve nearly the whole world seven times during the past 185 years. V cholerae serogroup O1, biotype El Tor, has moved from Asia to cause pandemic disease in Africa and South America during the past 35 years. A new serogroup, O139, appeared in south Asia in 1992, has become endemic there, and threatens to start the next pandemic. Research on case management of cholera led to the development of rehydration therapy for dehydrating diarrhoea in general, including the proper use of intravenous and oral rehydration solutions. Appropriate case management has reduced deaths from diarrhoeal disease by an estimated 3 million per year compared with 20 years ago. Vaccination was thought to have no role for cholera, but new oral vaccines are showing great promise.
Collapse
Affiliation(s)
- David A Sack
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh.
| | | | | | | |
Collapse
|
39
|
Goulding CW, Apostol MI, Gleiter S, Parseghian A, Bardwell J, Gennaro M, Eisenberg D. Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. J Biol Chem 2003; 279:3516-24. [PMID: 14597624 DOI: 10.1074/jbc.m311833200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium tuberculosis, a Gram-positive bacterium, encodes a secreted Dsb-like protein annotated as Mtb DsbE (Rv2878c, also known as MPT53). Because Dsb proteins in Escherichia coli and other bacteria seem to catalyze proper folding during protein secretion and because folding of secreted proteins is thought to be coupled to disulfide oxidoreduction, the function of Mtb DsbE may be to ensure that secreted proteins are in their correctly folded states. We have determined the crystal structure of Mtb DsbE to 1.1 A resolution, which reveals a thioredoxin-like domain with a typical CXXC active site. These cysteines are in their reduced state. Biochemical characterization of Mtb DsbE reveals that this disulfide oxidoreductase is an oxidant, unlike Gram-negative bacteria DsbE proteins, which have been shown to be weak reductants. In addition, the pK(a) value of the active site, solvent-exposed cysteine is approximately 2 pH units lower than that of Gram-negative DsbE homologs. Finally, the reduced form of Mtb DsbE is more stable than the oxidized form, and Mtb DsbE is able to oxidatively fold hirudin. Structural and biochemical analysis implies that Mtb DsbE functions differently from Gram-negative DsbE homologs, and we discuss its possible functional role in the bacterium.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/physiology
- Bacterial Proteins/chemistry
- Bacterial Proteins/physiology
- Binding Sites
- Catalysis
- Crystallography, X-Ray
- Cysteine/chemistry
- Cytoplasm/metabolism
- Databases, Genetic
- Dimerization
- Disulfides/chemistry
- Dose-Response Relationship, Drug
- Escherichia coli/metabolism
- Gram-Negative Bacteria/metabolism
- Gram-Positive Bacteria/metabolism
- Hirudins/chemistry
- Hydrogen-Ion Concentration
- Kinetics
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Mycobacterium tuberculosis/metabolism
- Oxidation-Reduction
- Oxidoreductases/chemistry
- Oxygen/metabolism
- Plasmids/metabolism
- Protein Conformation
- Protein Folding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Sulfhydryl Compounds
- Thermodynamics
- X-Ray Diffraction
Collapse
Affiliation(s)
- Celia W Goulding
- Howard Hughes Medical Institute and UCLA-Department of Energy Institute of Genomics and Proteomics, Los Angeles, California 90095-1570
| | | | | | | | | | | | | |
Collapse
|
40
|
Collyn F, Marceau M, Simonet M. Yersinia pseudotuberculosis harbors a type IV pilus gene cluster that contributes to pathogenicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 529:89-95. [PMID: 12756734 DOI: 10.1007/0-306-48416-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- François Collyn
- Equipe Mixte Inserm (E9919)-Université (JE2225)-Institut Pasteur de Lille, Institut de Biologie de Lille, 59021, Lille, France
| | | | | |
Collapse
|
41
|
Kirn TJ, Bose N, Taylor RK. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 2003; 49:81-92. [PMID: 12823812 DOI: 10.1046/j.1365-2958.2003.03546.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colonization of the human small intestine by Vibrio cholerae requires the type 4 toxin co-regulated pilus (TCP). Genes encoding the structure and biogenesis functions of TCP are organized within an operon located on the Vibrio Pathogenicity Island (VPI). In an effort to elucidate the functions of proteins involved in TCP biogenesis, in frame deletions of all of the genes within the tcp operon coding for putative pilus biogenesis proteins have been constructed and the resulting mutants characterized with respect to the assembly and function of TCP. As a result of this analysis, we have identified the product of one of these genes, tcpF, as a novel secreted colonization factor. Chromosomal deletion of tcpF yields a mutant that retains in vitro phenotypes associated with the assembly of functional TCP yet is severely attenuated for colonization of the infant mouse intestine. Furthermore, we have determined that the mechanism by which TcpF is translocated across the bacterial outer membrane requires the TCP biogenesis machinery and is independent of the type II extracellular protein secretion (EPS) system. These results suggest a dual role for the TCP biogenesis apparatus in V. cholerae pathogenesis and a novel mechanism of intestinal colonization mediated by a soluble factor.
Collapse
Affiliation(s)
- Thomas J Kirn
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, NH 03755, USA
| | | | | |
Collapse
|
42
|
Morris C, Yip CMC, Tsui ISM, Wong DKH, Hackett J. The shufflon of Salmonella enterica serovar Typhi regulates type IVB pilus-mediated bacterial self-association. Infect Immun 2003; 71:1141-6. [PMID: 12595425 PMCID: PMC148829 DOI: 10.1128/iai.71.3.1141-1146.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, it was shown that type IVB pili encoded by the Salmonella enterica serovar Typhi pil operon are used to facilitate bacterial entry into human intestinal epithelial cells in vitro and that such entry is inhibited by purified prepilin (pre-PilS) protein (X.-L. Zhang, I. S. M. Tsui, C. M. C. Yip, A. W. Y. Fung, D. K.-H. Wong, X. Dai, Y. Yang, J. Hackett, and C. Morris, Infect. Immun. 68:3067-3073, 2000). The pil operon concludes with a simple shufflon, and a recombinase gene product (Rci) inverts DNA in the C-terminal region of the pilV gene to allow synthesis of two distinct PilV proteins, PilV1 and PilV2, which are presumptive minor pilus proteins. We show here that the type IVB pili mediate bacterial self-association, but only when the PilV1 and PilV2 proteins are not expressed. This may be achieved in wild-type serovar Typhi by rapid DNA inversion activity of the shufflon. We show that the inversion activity inhibits the expression of genes inserted between the 19-bp inverted repeats used for Rci-mediated recombination and that the activity of Rci increases when DNA is supercoiled. The data suggest that serovar Typhi self-associates under conditions (such as low oxygen tension in the gut) that favor DNA supercoiling. These results explain (i) the function of the serovar Typhi shufflon and (ii) why there are only two possible shufflon states, in contrast to the many possible states of other shufflon systems. The data further indicate that a very early step in serovar Typhi pathogenesis may be type IVB pilus-mediated self-association of bacteria in the anaerobic human small intestine prior to invasion of the human gut epithelium. The suggested type IVB pilus-dependent step in typhoid fever pathogenesis may partially explain the enhanced invasiveness of serovar Typhi for humans.
Collapse
Affiliation(s)
- Christina Morris
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | | | | | | | | |
Collapse
|
43
|
Srimanote P, Paton AW, Paton JC. Characterization of a novel type IV pilus locus encoded on the large plasmid of locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun 2002; 70:3094-100. [PMID: 12011003 PMCID: PMC128018 DOI: 10.1128/iai.70.6.3094-3100.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The majority of Shiga-toxigenic Escherichia coli (STEC) strains isolated from humans with gastrointestinal disease carry large (approximately 90-kb) plasmids. We have been analyzing the megaplasmid (designated pO113) from an O113:H21 STEC strain (98NK2). This strain lacks the locus for enterocyte effacement (LEE) and yet was responsible for an outbreak of hemolytic uremic syndrome. In the present study, we demonstrate that pO113 carries a novel type IV pilus biosynthesis locus (pil) related to those of the IncI plasmids R721, R64, and ColIb9. The pO113 pil locus consists of 11 closely linked genes (pilL through pilV) with an additional separately transcribed upstream gene (pilI). It directs the expression of long thin pili on the 98NK2 surface and the hemagglutination of guinea pig erythrocytes. We also demonstrate that pO113 can be transferred by conjugation. However, the type IV pilus encoded by pO113 does not appear to be involved in the adherence of 98NK2 to HEp-2 or Hct-8 cells in vitro. Homologues of the pO113 pil locus were present in several other LEE-negative STEC strains but not in LEE-positive STEC strains belonging to serogroup O26, O111, or O157.
Collapse
Affiliation(s)
- Potjanee Srimanote
- Department of Molecular Biosciences, Adelaide University, Adelaide, South Australia 5005, Australia
| | | | | |
Collapse
|
44
|
Boyd EF, Waldor MK. Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1655-1666. [PMID: 12055286 DOI: 10.1099/00221287-148-6-1655] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The toxin-coregulated pilus (TCP) is a critical determinant of the pathogenicity of Vibrio cholerae. This bundle-forming pilus is an essential intestinal colonization factor and also serves as a receptor for CTXphi, the filamentous phage that encodes cholera toxin (CT). TCP is a polymer of repeating subunits of the major pilin protein TcpA and tcpA is found within the Vibrio pathogenicity island (VPI). In this study genetic variation at the tcpA locus in toxigenic isolates of V. cholerae was investigated and three novel TcpA sequences from V. cholerae strains V46, V52 and V54, belonging to serogroups O141, O37 and O8, respectively, were identified. These novel tcpA alleles grouped into three distinct clonal lineages. The polymorphisms in TcpA were predominantly located in the carboxyl region of TcpA in surface-exposed regions of TCP fibres. Comparison of the genetic diversity among V. cholerae isolates at the tcpA locus with that of aldA, another locus within the VPI, and mdh, a chromosomal locus, revealed that tcpA sequences are far more diverse than these other loci. Most likely, this diversity is a reflection of diversifying selection in adaptation to the host immune response or to CTXphi susceptibility. An assessment of the functional properties of the variant tcpA sequences in the non-O1 V. cholerae strains was carried out by analysing whether these strains could be infected by CTXphi and colonize the suckling mouse. Similar to El Tor strains of V. cholerae O1, in vitro CTXphi infection of these strains required the exogenous expression of toxT, suggesting that in these strains ToxT regulates TCP expression and that these TcpA variants can serve as CTXphi receptors. All the V. cholerae non-O1 serogroup isolates tested were capable of colonizing the suckling mouse small intestine, suggesting that the different TcpA variants could function as colonization factors.
Collapse
Affiliation(s)
- E Fidelma Boyd
- Department of Microbiology, National University of Ireland, University College Cork, Cork, Ireland1
| | - Matthew K Waldor
- Howard Hughes Medical Institute and Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center and Tufts University School of Medicine, 750 Washington Street, Boston, MA 02111, USA2
| |
Collapse
|
45
|
Bose N, Payne SM, Taylor RK. Type 4 pilus biogenesis and type II-mediated protein secretion by Vibrio cholerae occur independently of the TonB-facilitated proton motive force. J Bacteriol 2002; 184:2305-9. [PMID: 11914364 PMCID: PMC134947 DOI: 10.1128/jb.184.8.2305-2309.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Vibrio cholerae, elaboration of toxin-coregulated pilus and protein secretion by the extracellular protein secretion apparatus occurred in the absence of both TonB systems. In contrast, the cognate putative ATPases were required for each process and could not substitute for each other.
Collapse
Affiliation(s)
- Niranjan Bose
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
46
|
Tobe T, Sasakawa C. Species-specific cell adhesion of enteropathogenic Escherichia coli is mediated by type IV bundle-forming pili. Cell Microbiol 2002; 4:29-42. [PMID: 11856171 DOI: 10.1046/j.1462-5822.2002.00167.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a causative agent of diarrhoea in humans. Localized adherence of EPEC onto intestinal mucosa was reproduced in an in vitro adherence assay with cultured human epithelial cells. We found that the efficiency of EPEC adherence to a mouse-derived colonic epithelial cell line, CMT-93, was remarkably lower than its adherence to human-derived intestinal cell lines, such as Intestine-407 or Caco-2. Although EPEC did adhere to some cell lines derived from non-human species, fixing the cells with formalin to inactivate one or more formalin-sensitive factors allowed us to observe species-specific differences in EPEC adherence. In contrast to these results, an EPEC mutant that is defective in bundle-forming pili (BFP) production adhered as efficiently to CMT-93 cells as to Caco-2 cells. Furthermore, Citrobacter rodentium expressing BFP adhered to Caco-2 cells much more efficiently than to CMT-93 cells. Finally, a purified BfpA-His6 fusion protein showed higher affinity for Caco-2 cells than for CMT-93 cells, and inhibited EPEC adherence. Following BFP-mediated adherence, secretion of EspB from adherent bacteria and reorganization of F-actin in the host cells was observed. EPEC adhering to CMT-93 cells induced far less secretion of EspB, or reorganization of F-actin in the host CMT-93 cells, than did EPEC adhering to Caco-2 cells. These results indicated that BFP plays an important role in the cell-type-dependent adherence of EPEC and in the progression to the later steps in EPEC adherence.
Collapse
Affiliation(s)
- Toru Tobe
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Minatoku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
47
|
Taniguchi T, Akeda Y, Haba A, Yasuda Y, Yamamoto K, Honda T, Tochikubo K. Gene cluster for assembly of pilus colonization factor antigen III of enterotoxigenic Escherichia coli. Infect Immun 2001; 69:5864-73. [PMID: 11500465 PMCID: PMC98705 DOI: 10.1128/iai.69.9.5864-5873.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of pilus colonization factor antigen III (CFA/III) of enterotoxigenic Escherichia coli (ETEC) requires the processing of CFA/III major pilin (CofA) by a prepilin peptidase (CofP), similar to other type IV pilus formation systems. CofA is produced initially as a 26.5-kDa preform pilin (prepilin) and then processed to a 20.5-kDa mature pilin by CofP which is predicted to be localized in the inner membrane. In the present experiment, we determined the nucleotide sequence of the whole region for CFA/III formation and identified a cluster of 14 genes, including cofA and cofP. Several proteins encoded by cof genes were similar to previously described proteins, such as the toxin-coregulated pili of Vibrio cholerae and the bundle-forming pili of enteropathogenic E. coli. The G+C content of the cof gene cluster was 37%, which was significantly lower than the average for the E. coli genome (50%). The introduction of a recombinant plasmid containing the cof gene cluster into the E. coli K-12 strain conferred CFA/III biogenesis and the ability of adhesion to the human colon carcinoma cell line Caco-2. This is the first report of a complete nucleotide sequence of the type IV pili found in human ETEC, and our results provide a useful model for studying the molecular mechanism of CFA/III biogenesis and the role of CFA/III in ETEC infection.
Collapse
Affiliation(s)
- T Taniguchi
- Department of Microbiology, Nagoya City University Medical School, Nagoya, Aichi 467-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Karaolis DK, Lan R, Kaper JB, Reeves PR. Comparison of Vibrio cholerae pathogenicity islands in sixth and seventh pandemic strains. Infect Immun 2001; 69:1947-52. [PMID: 11179381 PMCID: PMC98110 DOI: 10.1128/iai.69.3.1947-1952.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemic Vibrio cholerae strains possess a large cluster of essential virulence genes on the chromosome called the Vibrio pathogenicity island (VPI). The VPI contains the tcp gene cluster encoding the type IV pilus toxin-coregulated pilus colonization factor which can act as the cholera toxin bacteriophage (CTXPhi) receptor. The VPI also contains genes that regulate virulence factor expression. We have fully sequenced and compared the VPI of the seventh-pandemic (El Tor biotype) strain N16961 and the sixth-pandemic (classical biotype) strain 395 and found that the N16961 VPI is 41,272 bp and encodes 29 predicted proteins, whereas the 395 VPI is 41,290 bp. In addition to various nucleotide and amino acid polymorphisms, there were several proteins whose predicted size differed greatly between the strains as a result of frameshift mutations. We hypothesize that these VPI sequence differences provide preliminary evidence to help explain the differences in virulence factor expression between epidemic strains (i.e., the biotypes) of V. cholerae.
Collapse
Affiliation(s)
- D K Karaolis
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Coevolution between bacteria and their plant or animal hosts determines characteristics of the interaction, the bacterial virulence genes involved, and the regulatory systems controlling expression of virulence genes. The long-standing association between Salmonellae and their animal hosts has resulted in the acquisition by Salmonella subspecies of a variety of virulence genes and the evolution of complex regulatory networks. The particular repertoire of virulence genes acquired by different Salmonella enterica subspecies and the regulatory systems that control them dictate subspecies-specific infection characteristics. Although the association between Vibrio cholerae and humans appears to be more recent, to reflect a simpler pathogenic strategy, and to involve fewer virulence genes than that of Salmonellae, complex virulence-regulatory networks have nonetheless evolved. In contrast, there is no evidence for acquisition of virulence genes by horizontal gene transfer in bordetellae, and their virulence regulon is less complex in overall structure than those of salmonellae and Vibrio cholerae. In Bordetellae, subspecies-specific differences in pathogenic strategy appear to result from differential gene expression within and across Bordetella subspecies.
Collapse
Affiliation(s)
- P A Cotter
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, California 90095-1747, USA.
| | | |
Collapse
|
50
|
Zhang XL, Tsui IS, Yip CM, Fung AW, Wong DK, Dai X, Yang Y, Hackett J, Morris C. Salmonella enterica serovar typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun 2000; 68:3067-73. [PMID: 10816445 PMCID: PMC97533 DOI: 10.1128/iai.68.6.3067-3073.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA sequencing upstream of the Salmonella enterica serovar Typhi pilV and rci genes previously identified in the ca. 118-kb major pathogenicity island (X.-L. Zhang, C. Morris, and J. Hackett, Gene 202:139-146, 1997) identified a further 10 pil genes apparently forming a pil operon. The product of the pilS gene, prePilS protein (a putative type IVB structural prepilin) was purified, and an anti-prePilS antiserum was raised in mice. Mutants of serovar Typhi either lacking the whole pil operon or with an insertion mutation in the pilS gene were constructed, as was a strain in which the pilN to pilV genes were driven by the tac promoter. The pil(+) strains synthesized type IVB pili, as judged by (i) visualization in the electron microscope of thin pili in culture supernatants of one such strain and (ii) the presence of PilS protein (smaller than the prePilS protein by removal of the leader peptide) on immunoblotting of material pelleted by high-speed centrifugation of either the culture supernatant or sonicates of pil(+) strains. Control pil mutants did not express the PilS protein. A pilS mutant of serovar Typhi entered human intestinal INT407 cells in culture to levels only 5 to 25% of those of the wild-type strain, and serovar Typhi entry was strongly inhibited by soluble prePilS protein (50% inhibition of entry at 1.4 microM prePilS).
Collapse
Affiliation(s)
- X L Zhang
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|