1
|
Lakshmi SA, Shafreen RB, Balaji K, Ibrahim KS, Shiburaj S, Gayathri V, Pandian SK. Cloning, expression, homology modelling and molecular dynamics simulation of four domain-containing α-amylase from Streptomyces griseus. J Biomol Struct Dyn 2020; 39:2152-2163. [PMID: 32193988 DOI: 10.1080/07391102.2020.1745282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the present study, α-amylase from Streptomyces griseus TBG19NRA1 was amplified, cloned and successfully expressed in E. coli BL21/DE3. Sequence analysis of S. griseus α-amylase (SGAmy) revealed the presence of four domains (A, B, C and E). Alpha-amylases with E domain (also known as carbohydrate binding module 20 (CBM20)) are capable of degrading raw starch and this property holds great potential for application in starch processing industries. Though α-amylase is a well-studied and characterized enzyme, there is no experimental structure available for this four domain-containing α-amylases. To gain more insight about SGAmy structure and function, homology modelling was performed using a multi-template method. The template α-amylase from Pseudoalteromonas haloplanktis (PDB ID 1AQH) and E domain of Cyclodextrin glucanotransferase from Bacillus circulans (PDB ID 1CGY) was found to have significant similarity with the complete target sequence of SGAmy. Therefore, homology model for SGAmy was generated from the crystal structure of 1AQH and 1CGY and the resulting structure was subjected to 10 ns molecular dynamics (MD) simulation. Remarkably, CBM20 domain of SGAmy showed greater flexibility in MD simulation than other three domains. This observation is highly rational as this part of SGAmy is strongly implicated in substrate (raw starch) binding. Thus, conformational plasticity at CBM20 is functionally beneficial.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Kannan Balaji
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kalibulla Syed Ibrahim
- PG and Research Department of Botany, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Sugathan Shiburaj
- Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala, India
| | - Valsala Gayathri
- Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala, India
| | | |
Collapse
|
2
|
Mehta D, Satyanarayana T. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications. Front Microbiol 2016; 7:1129. [PMID: 27516755 PMCID: PMC4963412 DOI: 10.3389/fmicb.2016.01129] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications.
Collapse
Affiliation(s)
- Deepika Mehta
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
3
|
Amplification, Sequencing and Cloning of Iranian Native Bacillus subtilis Alpha-amylase Gene in Saccharomyces cerevisiae. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.7371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Rodríguez S, Santamaría RI, Fernández-Abalos JM, Díaz M. Identification of the sequences involved in the glucose-repressed transcription of the Streptomyces halstedii JM8 xysA promoter. Gene 2005; 351:1-9. [PMID: 15850758 DOI: 10.1016/j.gene.2005.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 02/03/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
The expression of xysA, a gene encoding for an endoxylanase from Streptomyces halstedii JM8, is repressed by glucose. In order to define the regions involved in its regulation, several deletions were made in the 475 bp xysA promoter and were studied using the melC operon from S. glaucescens as a reporter. Four of the deleted versions obtained were seen to be derepressed when driving melC or its own xysA gene expression in Streptomyces lividans. Quantitative assays revealed that the activity of xylanase produced under the control of these four deleted promoters was higher than the original one in the presence of glucose. Three regions - RI, R16 and R21 - involved in glucose repression were defined in this analysis: RI is a palindromic sequence that is highly conserved among xylanase gene promoters from Actinomycetes (-213 GAAAxxTTTCxGAAA -197) and, R16 and R21 define two new seven-pair conserved motifs, respectively (-113 5'-CCTTCCC-3' -106 in R16 and -76 5'-CGAACGG-3' -69 in R21) located in the untranslated mRNA. Gel shift assays demonstrated the existence of proteins that bind specifically to these regions.
Collapse
Affiliation(s)
- Sonia Rodríguez
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | |
Collapse
|
5
|
Janecek S, Svensson B, MacGregor EA. Relation between domain evolution, specificity, and taxonomy of the alpha-amylase family members containing a C-terminal starch-binding domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:635-45. [PMID: 12581203 DOI: 10.1046/j.1432-1033.2003.03404.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The alpha-amylase family (glycoside hydrolase family 13; GH 13) contains enzymes with approximately 30 specificities. Six types of enzyme from the family can possess a C-terminal starch-binding domain (SBD): alpha-amylase, maltotetraohydrolase, maltopentaohydrolase, maltogenic alpha-amylase, acarviose transferase, and cyclodextrin glucanotransferase (CGTase). Such enzymes are multidomain proteins and those that contain an SBD consist of four or five domains, the former enzymes being mainly hydrolases and the latter mainly transglycosidases. The individual domains are labelled A [the catalytic (beta/alpha)8-barrel], B, C, D and E (SBD), but D is lacking from the four-domain enzymes. Evolutionary trees were constructed for domains A, B, C and E and compared with the 'complete-sequence tree'. The trees for domains A and B and the complete-sequence tree were very similar and contain two main groups of enzymes, an amylase group and a CGTase group. The tree for domain C changed substantially, the separation between the amylase and CGTase groups being shortened, and a new border line being suggested to include the Klebsiella and Nostoc CGTases (both four-domain proteins) with the four-domain amylases. In the 'SBD tree' the border between hydrolases (mainly alpha-amylases) and transglycosidases (principally CGTases) was not readily defined, because maltogenic alpha-amylase, acarviose transferase, and the archaeal CGTase clustered together at a distance from the main CGTase cluster. Moreover the four-domain CGTases were rooted in the amylase group, reflecting sequence relationships for the SBD. It appears that with respect to the SBD, evolution in GH 13 shows a transition in the segment of the proteins C-terminal to the catalytic (beta/alpha)8-barrel(domain A).
Collapse
Affiliation(s)
- Stefan Janecek
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | |
Collapse
|
6
|
Hodgson DA. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 2001; 42:47-238. [PMID: 10907551 DOI: 10.1016/s0065-2911(00)42003-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Streptomycetes are Gram-positive bacteria with a unique capacity for the production of a multitude of varied and complex secondary metabolites. They also have a complex life cycle including differentiation into at least three distinct cell types. Whilst much attention has been paid to the pathways and regulation of secondary metabolism, less has been paid to the pathways and the regulation of primary metabolism, which supplies the precursors. With the imminent completion of the total genome sequence of Streptomyces coelicolor A3(2), we need to understand the pathways of primary metabolism if we are to understand the role of newly discovered genes. This review is written as a contribution to supplying these wants. Streptomycetes inhabit soil, which, because of the high numbers of microbial competitors, is an oligotrophic environment. Soil nutrient levels reflect the fact that plant-derived material is the main nutrient input; i.e. it is carbon-rich and nitrogen- and phosphate-poor. Control of streptomycete primary metabolism reflects the nutrient availability. The variety and multiplicity of carbohydrate catabolic pathways reflects the variety and multiplicity of carbohydrates in the soil. This multiplicity of pathways has led to investment by streptomycetes in pathway-specific and global regulatory networks such as glucose repression. The mechanism of glucose repression is clearly different from that in other bacteria. Streptomycetes feed by secreting complexes of extracellular enzymes that break down plant cell walls to release nutrients. The induction of these enzyme complexes is often coordinated by inducers that bear no structural relation to the substrate or product of any particular enzyme in the complex; e.g. a product of xylan breakdown may induce cellulase production. Control of amino acid catabolism reflects the relative absence of nitrogen catabolites in soil. The cognate amino acid induces about half of the catabolic pathways and half are constitutive. There are reduced instances of global carbon and nitrogen catabolite control of amino acid catabolism, which again presumably reflects the relative rarity of the catabolites. There are few examples of feedback repression of amino acid biosynthesis. Again this is taken as a reflection of the oligotrophic nature of the streptomycete ecological niche. As amino acids are not present in the environment, streptomycetes have rarely invested in feedback repression. Exceptions to this generalization are the arginine and branched-chain amino acid pathways and some parts of the aromatic amino acid pathways which have regulatory systems similar to Escherichia coli and Bacillus subtilis and other copiotrophic bacteria.
Collapse
Affiliation(s)
- D A Hodgson
- Department of Biological Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Mellouli L, Guerineau M, Bejar S, Virolle MJ. Regulation of the expression of amy TO1 encoding a thermostable alpha-amylase from Streptomyces sp. TO1, in its original host and in Streptomyces lividans TK24. FEMS Microbiol Lett 1999; 181:31-9. [PMID: 10564786 DOI: 10.1111/j.1574-6968.1999.tb08823.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In its original host, the thermophilic Streptomyces strain sp. TO1, the amy TO1 gene was expressed during growth but only in the presence of starch in the growth medium. When cloned in Streptomyces lividans, on a low copy number replicative plasmid, amy TO1 expression was detectable in fructose-, mannitol- and galactose-grown cultures but not in glucose- or glycerol-grown cultures. This basal expression could be further induced by maltotriose. In a mutant strain of S. lividans disrupted for the LacI-like negative transcriptional regulator (NTR) Reg1, and when the symmetry of the dyadic symmetry element located in the promoter region of amy TO1 was altered, the basal levels of amy TO1 expression were significantly higher than those of the wild-type strain, and the maltotriose inducibility was abolished. These results suggest that, in S. lividans, amy TO1 expression is under the control of the NTR Reg1 due to its interaction with the dyadic symmetry element.
Collapse
Affiliation(s)
- L Mellouli
- Centre de Biotechnologie de Sfax, B.P. 'K', 3038, Sfax, Tunisia
| | | | | | | |
Collapse
|
8
|
Nguyen J. The regulatory protein Reg1 ofStreptomyces lividansbinds the promoter region of several genes repressed by glucose. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13601.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Yin XH, Gerbaud C, Francou FX, Guérineau M, Virolle MJ. amlC, another amylolytic gene maps close to the amlB locus in Streptomyces lividans TK24. Gene 1998; 215:171-80. [PMID: 9666116 DOI: 10.1016/s0378-1119(98)00265-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The region located upstream of the alpha-amylase gene (amlB) of Streptomyces lividans TK24 (Yin et al., 1997) contains a 2978-bp-long ORF divergent from amlB, and designated amlC. amlC Encodes a 993amino acid (aa) protein with a calculated molecular weight of 107.054kDa. On the basis of sequence similarity as well as enzymatic activity, AmlC is likely to belong to the 1, 4-alpha-D-glucan glucanohydrolase family. amlC is transcribed as a unique 3kb leaderless monocistronic mRNA. Primer extension experiments allowed the identification of promoter sequences that do not resemble the typical eubacterial promoter sequences. amlC was successfully disrupted and was mapped at approx. 700kb from a chromosomal end of S. lividans TK24, 100kb on the right of the amplifiable unit AUD1 (Volff et al., 1996). Nevertheless, amlC disruption seemed to be accompanied by extensive rearrangements of the 2500-kb DraI-II fragment of the chromosome.
Collapse
Affiliation(s)
- X H Yin
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, CNRS URA D2225 Bâtiment 400, Université Paris-Sud, F-91405, Orsay, Cedex, France
| | | | | | | | | |
Collapse
|