1
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG, Murray NE. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 2014; 42:3-19. [PMID: 24141096 PMCID: PMC3874209 DOI: 10.1093/nar/gkt990] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 11/16/2022] Open
Abstract
In the early 1950's, 'host-controlled variation in bacterial viruses' was reported as a non-hereditary phenomenon: one cycle of viral growth on certain bacterial hosts affected the ability of progeny virus to grow on other hosts by either restricting or enlarging their host range. Unlike mutation, this change was reversible, and one cycle of growth in the previous host returned the virus to its original form. These simple observations heralded the discovery of the endonuclease and methyltransferase activities of what are now termed Type I, II, III and IV DNA restriction-modification systems. The Type II restriction enzymes (e.g. EcoRI) gave rise to recombinant DNA technology that has transformed molecular biology and medicine. This review traces the discovery of restriction enzymes and their continuing impact on molecular biology and medicine.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - David T. F. Dryden
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, Leiden, the Netherlands, EaStChemSchool of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK and New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | |
Collapse
|
2
|
Maharjan R, McKenzie C, Yeung A, Ferenci T. The basis of antagonistic pleiotropy in hfq mutations that have opposite effects on fitness at slow and fast growth rates. Heredity (Edinb) 2012; 110:10-8. [PMID: 23169561 DOI: 10.1038/hdy.2012.46] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations beneficial in one environment may cause costs in different environments, resulting in antagonistic pleiotropy. Here, we describe a novel form of antagonistic pleiotropy that operates even within the same environment, where benefits and deleterious effects exhibit themselves at different growth rates. The fitness of hfq mutations in Escherichia coli affecting the RNA chaperone involved in small-RNA regulation is remarkably sensitive to growth rate. E. coli populations evolving in chemostats under nutrient limitation acquired beneficial mutations in hfq during slow growth (0.1 h(-1)) but not in populations growing sixfold faster. Four identified hfq alleles from parallel populations were beneficial at 0.1 h(-1) and deleterious at 0.6 h(-1). The hfq mutations were beneficial, deleterious or neutral at an intermediate growth rate (0.5 h(-1)) and one changed from beneficial to deleterious within a 36 min difference in doubling time. The benefit of hfq mutations was due to the greater transport of limiting nutrient, which diminished at higher growth rates. The deleterious effects of hfq mutations at 0.6 h(-1) were less clear, with decreased viability a contributing factor. The results demonstrate distinct pleiotropy characteristics in the alleles of the same gene, probably because the altered residues in Hfq affected the regulation of expression of different genes in distinct ways. In addition, these results point to a source of variation in experimental measurement of the selective advantage of a mutation; estimates of fitness need to consider variation in growth rate impacting on the magnitude of the benefit of mutations and on their fitness distributions.
Collapse
Affiliation(s)
- R Maharjan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
3
|
Jovanovic M, James EH, Burrows PC, Rego FGM, Buck M, Schumacher J. Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for Pseudomonas syringae pathogenicity. Nat Commun 2011; 2:177. [PMID: 21285955 PMCID: PMC3105312 DOI: 10.1038/ncomms1177] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/05/2011] [Indexed: 11/26/2022] Open
Abstract
The bacterial AAA+ enhancer-binding proteins (EBPs) HrpR and HrpS (HrpRS) of Pseudomonas syringae (Ps) activate σ54-dependent transcription at the hrpL promoter; triggering type-three secretion system-mediated pathogenicity. In contrast with singly acting EBPs, the evolution of the strictly co-operative HrpRS pair raises questions of potential benefits and mechanistic differences this transcription control system offers. Here, we show distinct properties of HrpR and HrpS variants, indicating functional specialization of these non-redundant, tandemly arranged paralogues. Activities of HrpR, HrpS and their control proteins HrpV and HrpG from Ps pv. tomato DC3000 in vitro establish that HrpRS forms a transcriptionally active hetero-hexamer, that there is a direct negative regulatory role for HrpV through specific binding to HrpS and that HrpG suppresses HrpV. The distinct HrpR and HrpS functionalities suggest how partial paralogue degeneration has potentially led to a novel control mechanism for EBPs and indicate subunit-specific roles for EBPs in σ54-RNA polymerase activation. HrpR and HrpS enhancer-binding proteins of Pseudomonas syringae activate σ54-dependent transcription of the HrpL promoter and are required for type-three secretion pathogenicity. Here, the authors demonstrate that, despite being co-regulated, HrpR and HrpS each have distinct functions for activating σ54.
Collapse
Affiliation(s)
- Milija Jovanovic
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
4
|
Wang L, Spira B, Zhou Z, Feng L, Maharjan RP, Li X, Li F, McKenzie C, Reeves PR, Ferenci T. Divergence involving global regulatory gene mutations in an Escherichia coli population evolving under phosphate limitation. Genome Biol Evol 2010; 2:478-87. [PMID: 20639316 PMCID: PMC2997555 DOI: 10.1093/gbe/evq035] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many of the important changes in evolution are regulatory in nature. Sequenced bacterial genomes point to flexibility in regulatory circuits but we do not know how regulation is remodeled in evolving bacteria. Here, we study the regulatory changes that emerge in populations evolving under controlled conditions during experimental evolution of Escherichia coli in a phosphate-limited chemostat culture. Genomes were sequenced from five clones with different combinations of phenotypic properties that coexisted in a population after 37 days. Each of the distinct isolates contained a different mutation in 1 of 3 highly pleiotropic regulatory genes (hfq, spoT, or rpoS). The mutations resulted in dissimilar proteomic changes, consistent with the documented effects of hfq, spoT, and rpoS mutations. The different mutations do share a common benefit, however, in that the mutations each redirect cellular resources away from stress responses that are redundant in a constant selection environment. The hfq mutation lowers several individual stress responses as well the small RNA–dependent activation of rpoS translation and hence general stress resistance. The spoT mutation reduces ppGpp levels, decreasing the stringent response as well as rpoS expression. The mutations in and upstream of rpoS resulted in partial or complete loss of general stress resistance. Our observations suggest that the degeneracy at the core of bacterial stress regulation provides alternative solutions to a common evolutionary challenge. These results can explain phenotypic divergence in a constant environment and also how evolutionary jumps and adaptive radiations involve altered gene regulation.
Collapse
Affiliation(s)
- Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, P. R. China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia
| | - Zhemin Zhou
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochip, Tianjin Economic-Technological Development Area, Tianjin, P. R. China
| | - Lu Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, P. R. China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Ram P. Maharjan
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia
| | - Xiaomin Li
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochip, Tianjin Economic-Technological Development Area, Tianjin, P. R. China
| | - Fangfang Li
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin Economic-Technological Development Area, Tianjin, P. R. China
- Tianjin Research Center for Functional Genomics and Biochip, Tianjin Economic-Technological Development Area, Tianjin, P. R. China
| | - Christopher McKenzie
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia
| | - Peter R. Reeves
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia
| | - Thomas Ferenci
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales, Australia
- Corresponding author: E-mail:
| |
Collapse
|
5
|
|
6
|
DeVito JA. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res 2007; 36:e4. [PMID: 18084036 PMCID: PMC2248734 DOI: 10.1093/nar/gkm1084] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work describes the novel use of tolC as a selectable/counter-selectable marker for the facile modification of DNA in Escherichia coli. Expression of TolC (an outer membrane protein) confers relative resistance to toxic small molecules, while its absence renders the cell tolerant to colicin E1. These features, coupled with the lambdaredgam recombination system, allow for selection of tolC insertions/deletions anywhere on the E. coli chromosome or on plasmid DNA. This methodology obviates the need for minimal growth media, specialized wash protocols and the lengthy incubation times required by other published recombineering methods. As a rigorous test of the TolC selection system, six out of seven 23S rRNA genes were consecutively and seamlessly removed from the E. coli chromosome without affecting expression of neighboring genes within the complex rrn operons. The resulting plasmid-free strain retains one 23S rRNA gene (rrlC) in its natural location on the chromosome and is the first mutant of its kind. These new rRNA mutants will be useful in the study of rRNA gene regulation and ribosome function. Given its high efficiency, low background and facility in rich media, tolC selection is a broadly applicable method for the modification of DNA by recombineering.
Collapse
Affiliation(s)
- Joseph A DeVito
- Discovery Biology, Rib-X Pharmaceuticals Inc., New Haven, CT 06511, USA.
| |
Collapse
|
7
|
Han SJ, Jeong J, Demayo FJ, Xu J, Tsai SY, Tsai MJ, O'Malley BW. Dynamic cell type specificity of SRC-1 coactivator in modulating uterine progesterone receptor function in mice. Mol Cell Biol 2005; 25:8150-65. [PMID: 16135805 PMCID: PMC1234322 DOI: 10.1128/mcb.25.18.8150-8165.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/27/2005] [Accepted: 06/29/2005] [Indexed: 11/20/2022] Open
Abstract
Regulation of gene transcription by the progesterone receptor (PR) in cooperation with coactivator/corepressor complexes coordinates crucial processes in female reproduction. To investigate functional relationships between PR and steroid receptor coactivators (SRCs) in distinct cell types of uterine tissue during gene transcription, we generated a new transgenic mouse model utilizing a Progesterone Receptor Activity Indicator (PRAI) system that could monitor PR activity in vivo. The PRAI system consists of a modified PR bacterial artificial chromosome (BAC) clone in which the DNA binding domain of the PR was replaced with the yeast Gal4 DNA binding domain. A humanized green fluorescent protein (hrGFP) reporter controlled by the Upstream Activating Sequences for the Gal4 gene (UAS(G)) was inserted in tandem with the modified PR gene. Expression of hrGFP in the uterus demonstrated that the PRAI animal model faithfully replicated PR signaling under various endocrine states. Bigenic PRAI-SRC-1(-/-) mice revealed that SRC-1 modulates PR activity in the uterus in a cell-specific fashion and is involved in PR gene activation in stroma and myometrium of the uterus in response to estrogen and progesterone. In contrast, SRC-1 was involved in the down-regulation of PR target gene expression in the luminal and glandular epithelial compartments of the uterus after chronic progesterone treatment. Finally, we dissected the means by which SRC-1 dynamically regulates PR activity in each uterine cell compartment and demonstrated that it involves the differential ability of SRC-1 to modulate expression levels of distinct coactivators, corepressors, and PR in a cell-specific fashion.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Sawitzke JA, Li Y, Sergueev K, Youngren B, Brendler T, Jones K, Austin S. Transcriptional interference by a complex formed at the centromere-like partition site of plasmid P1. J Bacteriol 2002; 184:2447-54. [PMID: 11948158 PMCID: PMC134995 DOI: 10.1128/jb.184.9.2447-2454.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The partition site, parS, promotes accurate segregation of the replicated P1 plasmid to daughter cells when the P1-encoded ParA and ParB proteins are supplied. The parS site was inserted into the Escherichia coli chromosome between the promoter and the structural gene for beta-galactosidase, lacZ. There was little interference with lacZ expression when ParA and ParB were supplied in trans. However, when a mutant ParA protein, ParAM314I, was supplied along with ParB, expression of lacZ was shut down. ParAM314I, ParB, and parS appear to form a nucleoprotein complex that blocks transcription. Mutations in parA and parB that relieved the parAM314I-dependent block were found. In addition, new mutations which impose the block were selected. Five of the latter mapped to parA and one to parB; all had a propagation-defective phenotype (Par(PD)) similar to that of parAM314I. Thus, whereas a null par mutant P1 plasmid segregates its DNA randomly, these mutants prevent even random distribution of the plasmid. We propose that ParA protein normally interacts transiently with the ParB-parS complex for partition to proceed but that the mutations block ParA dissociation. This "permanent" ParA-ParB-parS complex acts as a transcription block. Consistent with this hypothesis, we found that three of the seven blocking mutations lie within regions of ParA and ParB that are known to interact with each other. When the transcription block is imposed, regional silencing of nearby genes occurs. However, the requirement for ParA and a mutant parA or parB allele distinguishes the transcription block from the regional ParB-dependent gene silencing previously described.
Collapse
Affiliation(s)
- James A Sawitzke
- National Cancer Institute-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Gumbiner-Russo LM, Lombardo MJ, Ponder RG, Rosenberg SM. The TGV transgenic vectors for single-copy gene expression from the Escherichia coli chromosome. Gene 2001; 273:97-104. [PMID: 11483365 DOI: 10.1016/s0378-1119(01)00565-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmid-based cloning and expression of genes in Escherichia coli can have several problems: plasmid destabilization; toxicity of gene products; inability to achieve complete repression of gene expression; non-physiological overexpression of the cloned gene; titration of regulatory proteins; and the requirement for antibiotic selection. We describe a simple system for cloning and expression of genes in single copy in the E. coli chromosome, using a non-antibiotic selection for transgene insertion. The transgene is inserted into a vector containing homology to the chromosomal region flanking the attachment site for phage lambda. This vector is then linearized and introduced into a recombination-proficient E. coli strain carrying a temperature-sensitive lambda prophage. Selection for replacement of the prophage with the transgene is performed at high temperature. Once in the chromosome, transgenes can be moved into other lysogenic E. coli strains using standard phage-mediated transduction techniques, selecting against a resident prophage. Additional vector constructs provide an arabinose-inducible promoter (P(BAD)), P(BAD) plus a translation-initiation sequence, and optional chloramphenicol-, tetracycline-, or kanamycin-resistance cassettes. These Transgenic E. coli Vectors (TGV) allow drug-free, single-copy expression of genes from the E. coli chromosome, and are useful for genetic studies of gene function.
Collapse
Affiliation(s)
- L M Gumbiner-Russo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | | | | | |
Collapse
|
10
|
Sektas M, Hasan N, Szybalski W. Expression plasmid with a very tight two-step control: Int/att-mediated gene inversion with respect to the stationary promoter. Gene 2001; 267:213-20. [PMID: 11313148 DOI: 10.1016/s0378-1119(01)00395-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A very tightly controlled expression vector was constructed, which was originally designed as to be able to use any promoter, constitutive or regulated. Moreover, in vector pNH46T1, the repressible P(tac)/P(lac) promoters were used to transcribe genes cloned in the proximal multiple cloning site (MCS), which was flanked by convergent attB and attP sites. The gene of interest was cloned into MCS in the OFF orientation, i.e. facing the promoter(s). In such OFF orientation, the cloned gene could not be expressed, and only its anti-sense mRNA could be produced. Four strong rrnBT1 terminators, in a tandem arrangement and proximal to the N-terminal end of the cloned non-inverted gene, were protecting it from any inadvertent transcription originating in the vector. Moreover, the P(tac)/P(lac) promoters/operators are controlled by the LacI(q)ts and LacI(+) repressor(s) that further reduce the basal gene expression in the uninduced state. When induced, the total vector population is converted to the ON orientation by expression of the Int function that inverts the attB and attP-flanked MCS including the cloned gene. This places the gene under direct control of the P(tac)/P(lac) promoters, and thus results in very high expression. An additional feature is the anti-termination system that consists of the promoter-proximal nutL site and the inducible gene N, whose role in the ON state is to overcome the rrnBT1 terminators and any other adventitiously cloned terminators.
Collapse
Affiliation(s)
- M Sektas
- University of Gdansk, Department of Microbiology, 80-822 Gdansk, ul. Kladki 24, Poland.
| | | | | |
Collapse
|
11
|
Cleaver SH, Wickstrom E. Transposon Tn7 gene insertion into an evolutionarily conserved human homolog of Escherichia coli attTn7. Gene 2000; 254:37-44. [PMID: 10974534 DOI: 10.1016/s0378-1119(00)00283-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Escherichia coli transposon Tn7 can integrate into its target DNA sequence, attTn7 at the 3' end of glmS, with high specificity and efficiency. Remarkably, the insertional recognition sequence in the E. coli genome displays a high degree of identity with the corresponding region at the 3' end of the corresponding human gene for glutamine-fructose-6-phosphate transaminase (GFPT), located at 2p13. It was therefore of interest to determine whether Tn7 could recognize the corresponding human sequence, and transpose at that site. Strains of E. coli DH5alpha were prepared carrying the tnsA-E genes on one plasmid, and attTn7 or the human equivalent on a second recipient plasmid within the alpha-complementation fragment of the lacZ gene. Each strain was transformed with a donor plasmid carrying a gentamycin resistance gene within the Tn7L and Tn7R cassettes. Restriction mapping and sequence analysis of recipient plasmids isolated from white colonies demonstrated that Tn7 inserted the gentamycin resistance gene both into the E. coli attTn7 sequence, and into its human counterpart. No nonspecific insertion was observed in a control plasmid containing only the lacZ fragment. These results provide a basis to investigate whether TnsA-D proteins can mediate gene insertion into comparably conserved sites in eukaryotic chromosomes.
Collapse
Affiliation(s)
- S H Cleaver
- Department of Microbiology and Immunology, Kimmel Cancer Center, and Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
12
|
Boyd D, Weiss DS, Chen JC, Beckwith J. Towards single-copy gene expression systems making gene cloning physiologically relevant: lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system. J Bacteriol 2000; 182:842-7. [PMID: 10633125 PMCID: PMC94354 DOI: 10.1128/jb.182.3.842-847.2000] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a simple system for reversible, stable integration of plasmid-borne genes into the Escherichia coli chromosome. Most ordinary E. coli strains and a variety of pBR322-derived ampicillin-resistant plasmids can be used. A single genetic element, a lambda phage, is the only specialized vector required. The resultant strains have a single copy of the plasmid fragment inserted stably at the lambda attachment site on the chromosome, with nearly the entire lambda genome deleted.
Collapse
Affiliation(s)
- D Boyd
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
13
|
Withey J, Friedman D. Analysis of the role of trans-translation in the requirement of tmRNA for lambdaimmP22 growth in Escherichia coli. J Bacteriol 1999; 181:2148-57. [PMID: 10094693 PMCID: PMC93628 DOI: 10.1128/jb.181.7.2148-2157.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small, stable RNA molecule encoded by ssrA, known as tmRNA or 10Sa RNA, is required for the growth of certain hybrid lambdaimmP22 phages in Escherichia coli. tmRNA has been shown to tag partially synthesized proteins for degradation in vivo by attaching a short peptide sequence, encoded by tmRNA, to the carboxyl termini of these proteins. This tag sequence contains, at its C terminus, an amino acid sequence that is recognized by cellular proteases and leads to degradation of tagged proteins. A model describing this function of tmRNA, the trans-translation model (K. C. Keiler, P. R. Waller, and R. T. Sauer, Science 271:990-993, 1996), proposes that tmRNA acts first as a tRNA and then as a mRNA, resulting in release of the original mRNA template from the ribosome and translocation of the nascent peptide to tmRNA. Previous work from this laboratory suggested that tmRNA may also interact specifically with DNA-binding proteins, modulating their activity. However, more recent results indicate that interactions between tmRNA and DNA-binding proteins are likely nonspecific. In light of this new information, we examine the effects on lambdaimmP22 growth of mutations eliminating activities postulated to be important for two different steps in the trans-translation model, alanine charging of tmRNA and degradation of tagged proteins. This mutational analysis suggests that, while charging of tmRNA with alanine is essential for lambdaimmP22 growth in E. coli, degradation of proteins tagged by tmRNA is required only to achieve optimal levels of phage growth. Based on these results, we propose that trans-translation may have two roles, the primary role being the release of stalled ribosomes from their mRNA template and the secondary role being the tagging of truncated proteins for degradation.
Collapse
Affiliation(s)
- J Withey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|