1
|
Wang F, Jia C, Gao T, Guo X, Zhang X. Characterization of Complete Mitochondrial Genome and Phylogeny of Three Echeneidae Species. Animals (Basel) 2025; 15:81. [PMID: 39795024 PMCID: PMC11718899 DOI: 10.3390/ani15010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/15/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Species of the family Echeneidae are renowned for their capacity to adhere to various hosts using a sucking disc. This study aimed to examine the mitochondrial genome characteristics of three fish species (Echeneis naucrates, Remora albescens, and Remora remora) within the family Echeneidae and determine their phylogenetic relationships. The findings revealed that the mitochondrial genome lengths of the three species were 16,611 bp, 16,648 bp, and 16,623 bp, respectively, containing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a D-loop region. Most PCGs utilized ATG as the initiation codon, while only cox I used the GTG as the initiation codon. Additionally, seven genes employed incomplete termination codons (T and TA). The majority of PCGs in the three species displayed negative AT-skew and GC-skew values, with the GC-skew amplitude being greater than the AT-skew. The Ka/Ks ratios of the 13 PCGs did not exceed 1, demonstrating these species had been subjected to purification selection. Furthermore, only tRNA-Ser (GCT) lacked the D arm, while other tRNAs exhibited a typical cloverleaf secondary structure. Bayesian inference (BI) and maximum likelihood (ML) methods were utilized to construct a phylogenetic tree of the three species based on the 13 PCGs. Remora remora was identified as a distinct group, while R. osteochir and R. brachyptera were classified as sister taxa. This study contributes to the mitochondrial genome database of the family Echeneidae and provides a solid foundation for further systematic classification research in this fish group.
Collapse
Affiliation(s)
- Fenglin Wang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (F.W.); (T.G.); (X.G.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chenghao Jia
- School of Ecology and Environment, Hainan University, Haikou 570228, China;
| | - Tianxiang Gao
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (F.W.); (T.G.); (X.G.)
| | - Xingle Guo
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (F.W.); (T.G.); (X.G.)
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (F.W.); (T.G.); (X.G.)
| |
Collapse
|
2
|
Qin Q, Chen L, Zhang F, Xu J, Zeng Y. Characterization of the Complete Mitochondrial Genome of Schizothorax kozlovi (Cypriniformes, Cyprinidae, Schizothorax) and Insights into the Phylogenetic Relationships of Schizothorax. Animals (Basel) 2024; 14:721. [PMID: 38473106 PMCID: PMC10931320 DOI: 10.3390/ani14050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Schizothorax kozlovi is an endemic and vulnerable fish species found in the upper Yangtze River in China. Over the past few years, the population resources of S. kozlovi have been nearly completely depleted owing to multiple contributing threats. While the complete mitochondrial genomes serve as important molecular markers for phylogenetic and genetic studies, the mitochondrial genome of S. kozlovi has still received little attention. In this study, we analyzed the characterization of the mitochondrial genome of S. kozlovi and investigated the phylogenetic relationships of Schizothorax. The complete mitochondrial genome of S. kozlovi was 16,585 bp in length, which contained thirty-seven genes (thirteen protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), twenty-two transfer RNA genes (tRNAs)) and two non-coding regions for the origin of light strand (OL) and the control region (CR). There were nine overlapping regions and seventeen intergenic spacers regions in the mitochondrial genome. The genome also showed a bias towards A + T content (55.01%) and had a positive AT-skew (0.08) and a negative GC-skew (-0.20). All the PCGs employed the ATG or GTG as the start codon and TAA, TAG, or single T as the stop codon. Additionally, all of the tRNAs displayed a typical cloverleaf secondary structure, except trnS1 which lacked the D arm. The phylogenetic analysis, based on the maximum likelihood (ML) and Bayesian inference (BI) methods, revealed that the topologies of the phylogenetic tree divided the Schizothorax into four clades and did not support the classification of Schizothorax based on morphology. The phylogenetic status of S. kozlovi was closely related to that of S. chongi. The present study provides valuable genomic information for S. kozlovi and new insights in phylogenetic relationships of Schizothorax. These data could also offer fundamental references and guidelines for the management and conservation of S. kozlovi and other species of Schizothorax.
Collapse
Affiliation(s)
- Qiang Qin
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (F.Z.); (J.X.)
| | - Lin Chen
- Powerchina Chengdu Engineering Corporation Limited, Chengdu 611130, China;
| | - Fubin Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (F.Z.); (J.X.)
| | - Jianghaoyue Xu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; (F.Z.); (J.X.)
| | - Yu Zeng
- College of Life Science, China West Normal University, Nanchong 637009, China
| |
Collapse
|
3
|
Luo H, Li H, Huang A, Ni Q, Yao Y, Xu H, Zeng B, Li Y, Wei Z, Yu G, Zhang M. The Complete Mitochondrial Genome of Platysternon megacephalum peguense and Molecular Phylogenetic Analysis. Genes (Basel) 2019; 10:E487. [PMID: 31252631 PMCID: PMC6678547 DOI: 10.3390/genes10070487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Platysternon megacephalum is the only living representative species of Platysternidae and only three subspecies remain: P. m. megalorcephalum, P. m. shiui, and P. m. peguense. However, previous reports implied that P. m. peguense has distinct morphological and molecular features. The characterization of the mitogenome has been accepted as an efficient means of phylogenetic and evolutionary analysis. Hence, this study first determined the complete mitogenome of P. m. peguense with the aim to identify the structure and variability of the P. m. peguense mitogenome through comparative analysis. Furthermore, the phylogenetic relationship of the three subspecies was tested. Based on different tRNA gene loss and degeneration of these three subspecies, their rearrangement pathways have been inferred. Phylogenetic analysis showed that P. m. peguense is a sister group to (P. m. megalorcephalum and P. m. shiui). Furthermore, the divergence time estimation of these three subspecies coincided with the uplift of the Tibetan Plateau. This study shows that the genetic distances between P. m. peguense and the other two subspecies are comparable to interspecific genetic distances, for example within Mauremys. In general, this study provides new and meaningful insights into the evolution of the three Platysternidae subspecies.
Collapse
Affiliation(s)
- Hongdi Luo
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haijun Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - An Huang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Qingyong Ni
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongfang Yao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Bo Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ying Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhimin Wei
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, Hebei, China
| | - Guohua Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, Guangxi, China.
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin 541004, Guangxi, China.
| | - Mingwang Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
4
|
Affiliation(s)
- J. Whitfield Gibbons
- University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken, SC 29802, USA
| | - Jeffrey E. Lovich
- US Geological Survey, Southwest Biological Science Center, 2255 North Gemini Drive MS-9394, Flagstaff, AZ 86001-1600, USA
| |
Collapse
|
5
|
Kundu S, Kumar V, Tyagi K, Chakraborty R, Singha D, Rahaman I, Pakrashi A, Chandra K. Complete mitochondrial genome of Black Soft-shell Turtle (Nilssonia nigricans) and comparative analysis with other Trionychidae. Sci Rep 2018; 8:17378. [PMID: 30478342 PMCID: PMC6255766 DOI: 10.1038/s41598-018-35822-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022] Open
Abstract
The characterization of mitochondrial genome has been evidenced as an efficient field of study for phylogenetic and evolutionary analysis in vertebrates including turtles. The aim of this study was to distinguish the structure and variability of the Trionychidae species mitogenomes through comparative analysis. The complete mitogenome (16796 bp) of an endangered freshwater turtle, Nilssonia nigricans was sequenced and annotated. The mitogenome encoded for 37 genes and a major non-coding control region (CR). The mitogenome was A + T biased (62.16%) and included six overlapping and 19 intergenic spacer regions. The Relative synonymous codon usage (RSCU) value was consistent among all the Trionychidae species; with the exception of significant reduction of Serine (TCG) frequency in N. nigricans, N. formosa, and R. swinhoei. In N. nigricans, most of the transfer RNAs (tRNAs) were folded into classic clover-leaf secondary structures with Watson-Crick base pairing except for trnS1 (GCT). The comparative analysis revealed that most of the tRNAs were structurally different, except for trnE (TTC), trnQ (TTG), and trnM (CAT). The structural features of tRNAs resulted ≥ 10 mismatched or wobble base pairings in 12 tRNAs, which reflects the nucleotide composition in both H- and L-strands. The mitogenome of N. nigricans also revealed two unique tandem repeats (ATTAT)8, and (TATTA)20 in the CR. Further, the conserved motif 5'-GACATA-3' and stable stem-loop structure was detected in the CRs of all Trionychidae species, which play an significant role in regulating transcription and replication in the mitochondrial genome. Further, the comparative analysis of Ka/Ks indicated negative selection in most of the protein coding genes (PCGs). The constructed Maximum Likelihood (ML) phylogeny using all PCGs showed clustering of N. nigricans with N. formosa. The resulting phylogeny illustrated the similar topology as described previously and consistent with the taxonomic classification. However, more sampling from different taxonomic groups of Testudines and studies on their mitogenomics are desirable for better understanding of the phylogenetic and evolutionary relationships.
Collapse
Affiliation(s)
- Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India.
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Rajasree Chakraborty
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Devkant Singha
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Iftikar Rahaman
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Avas Pakrashi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata, 700 053, West Bengal, India
| |
Collapse
|
6
|
Zhang X, Unmack PJ, Kuchling G, Wang Y, Georges A. Resolution of the enigmatic phylogenetic relationship of the critically endangered Western Swamp Tortoise Pseudemydura umbrina (Pleurodira: Chelidae) using a complete mitochondrial genome. Mol Phylogenet Evol 2017; 115:58-61. [PMID: 28754240 DOI: 10.1016/j.ympev.2017.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Abstract
Pseudemydura umbrina is one of the most endangered turtle species in the world, and the imperative for its conservation is its distinctive morphology and relict status among the Chelidae. We use Illumina sequencing to obtain the complete mitogenome for resolving its uncertain phylogenetic position. A novel nuclear paralogue confounded the assembly, and resolution of the authentic mitogenome required further Sanger sequencing. The P. umbrina mitogenome is 16,414bp comprising 37 genes organized in a conserved pattern for other vertebrates. The nuclear paralogue is 547bp, 97.8% identity to the corresponding mitochondrial sequence. Particular features of the mitogenome include an nd3 174+1A frameshift, loss of DHC loop in tRNASer (AGN), and a light-strand replication initiation site in Wancy region that extends into an adjacent tRNA gene. Phylogenetic analysis showed that P. umbrina is the monotypic sister lineage to the remaining Australasian Chelidae, a lineage probably dating back to the Cretaceous.
Collapse
Affiliation(s)
- Xiuwen Zhang
- Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
| | - Peter J Unmack
- Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
| | - Gerald Kuchling
- School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Yinan Wang
- Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, ACT 2601, Australia.
| |
Collapse
|
7
|
Han C, Li Q, Xu J, Li X, Huang J. Characterization of Clarias gariepinus mitochondrial genome sequence and a comparative analysis with other catfishes. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Li W, Zhang XC, Zhao J, Shi Y, Zhu XP. Complete mitochondrial genome of Cuora trifasciata (Chinese three-striped box turtle), and a comparative analysis with other box turtles. Gene 2014; 555:169-77. [PMID: 25445281 DOI: 10.1016/j.gene.2014.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/22/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
Abstract
Cuora trifasciata has become one of the most critically endangered species in the world. The complete mitochondrial genome of C. trifasciata (Chinese three-striped box turtle) was determined in this study. Its mitochondrial genome is a 16,575-bp-long circular molecule that consists of 37 genes that are typically found in other vertebrates. And the basic characteristics of the C. trifasciata mitochondrial genome were also determined. Moreover, a comparison of C. trifasciata with Cuora cyclornata, Cuora pani and Cuora aurocapitata indicated that the four mitogenomics differed in length, codons, overlaps, 13 protein-coding genes (PCGs), ND3, rRNA genes, control region, and other aspects. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 12 protein-coding genes of the genus Cuora indicated the phylogenetic position of C. trifasciata within Cuora. The phylogenetic analysis also showed that C. trifasciata from Vietnam and China formed separate monophyletic clades with different Cuora species. The results of nucleotide base compositions, protein-coding genes and phylogenetic analysis showed that C. trifasciata from these two countries may represent different Cuora species.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xin-Cheng Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Jian Zhao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yan Shi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Xin-Ping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China.
| |
Collapse
|
9
|
The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus). Gene 2014; 534:113-8. [DOI: 10.1016/j.gene.2013.09.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/23/2022]
|
10
|
Soto-Calderón ID, Lee EJ, Jensen-Seaman MI, Anthony NM. Factors affecting the relative abundance of nuclear copies of mitochondrial DNA (numts) in hominoids. J Mol Evol 2012; 75:102-11. [PMID: 23053193 DOI: 10.1007/s00239-012-9519-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Although nuclear copies of mitochondrial DNA (numts) can originate from any portion of the mitochondrial genome, evidence from humans suggests that more variable parts of the mitochondrial genome, such as the mitochondrial control region (MCR), are under-represented in the nucleus. This apparent deficit might arise from the erosion of sequence identity in numts originating from rapidly evolving mitochondrial sequences. However, the extent to which mitochondrial sequence properties impacts the number of numts detected in genomic surveys has not been evaluated. In order to address this question, we: (1) conducted exhaustive BLAST searches of MCR numts in three hominoid genomes; (2) assessed numt prevalence across the four MCR sub-domains (HV1, CCD, HV2, and MCR(F)); (3) estimated their insertion rates in great apes (Hominoidea); and (4) examined the relationship between mitochondrial DNA variability and numt prevalence in sequences originating from MCR and coding regions of the mitochondrial genome. Results indicate a marked deficit of numts from HV2 and MCR(F) MCR sub-domains in all three species. These MCR sub-domains exhibited the highest proportion of variable sites and the lowest number of detected numts per mitochondrial site. Variation in MCR insertion rate between lineages was also observed with a pronounced burst in recent integrations within chimpanzees and orangutans. A deficit of numts from HV2/MCR(F) was observed regardless of age, whereas HV1 is under-represented only in older numts (>25 million years). Finally, more variable mitochondrial genes also exhibit a lower identity with nuclear copies and because of this, appear to be under-represented in human numt databases.
Collapse
Affiliation(s)
- I D Soto-Calderón
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA.
| | | | | | | |
Collapse
|
11
|
Weak divergence among African, Malagasy and Seychellois hinged terrapins (Pelusios castanoides, P. subniger) and evidence for human-mediated oversea dispersal. ORG DIVERS EVOL 2012. [DOI: 10.1007/s13127-012-0113-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
The complete mitochondrial genome sequences of Chelodina rugosa and Chelus fimbriata (Pleurodira: Chelidae): implications of a common absence of initiation sites (OL) in pleurodiran turtles. Mol Biol Rep 2011; 39:2097-107. [DOI: 10.1007/s11033-011-0957-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
13
|
Fritz U, Branch WR, Hofmeyr MD, Maran J, Prokop H, Schleicher A, Š iroký P, Stuckas H, Vargas‐Ramírez M, Vences M, Hundsdörfer AK. Molecular phylogeny of African hinged and helmeted terrapins (Testudines: Pelomedusidae:PelusiosandPelomedusa). ZOOL SCR 2010. [DOI: 10.1111/j.1463-6409.2010.00464.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Comparison research and phylogenetic implications of mitochondrial control regions in four soft-shelled turtles of Trionychia (Reptilia, Testudinata). Genes Genomics 2010. [DOI: 10.1007/s13258-010-0015-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Vargas-Ramírez M, Vences M, Branch WR, Daniels SR, Glaw F, Hofmeyr MD, Kuchling G, Maran J, Papenfuss TJ, Široký P, Vieites DR, Fritz U. Deep genealogical lineages in the widely distributed African helmeted terrapin: Evidence from mitochondrial and nuclear DNA (Testudines: Pelomedusidae: Pelomedusa subrufa). Mol Phylogenet Evol 2010; 56:428-40. [DOI: 10.1016/j.ympev.2010.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/11/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
|
16
|
Zhang Y, Nie L, Huang Y, Pu Y, Zhang L. The mitochondrial DNA control region comparison studies of four hinged turtles and its phylogentic significance of the genusCuora sensu lato (Testudinata: Geoemydidae). Genes Genomics 2009. [DOI: 10.1007/bf03191253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Dermauw W, Van Leeuwen T, Vanholme B, Tirry L. The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods. BMC Genomics 2009; 10:107. [PMID: 19284646 PMCID: PMC2680895 DOI: 10.1186/1471-2164-10-107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. RESULTS The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. CONCLUSION Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.
Collapse
MESH Headings
- Animals
- Base Composition
- Base Sequence
- Codon/genetics
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Dermatophagoides pteronyssinus/classification
- Dermatophagoides pteronyssinus/genetics
- Gene Order
- Genes, Mitochondrial/genetics
- Genome, Mitochondrial
- Mitochondrial Proteins/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Restriction Mapping
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Bartel Vanholme
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
- VIB Department of Plant Systems Biology, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Luc Tirry
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| |
Collapse
|
18
|
Lee JCI, Tsai LC, Liao SP, Linacre A, Hsieh HM. Species identification using the cytochrome b gene of commercial turtle shells. Forensic Sci Int Genet 2008; 3:67-73. [PMID: 19215874 DOI: 10.1016/j.fsigen.2008.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/09/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
Turtle shells and their gelled products are familiar in some countries as foods, tonics and medicines. These shells may come from endangered and protected species, requiring the identification of the species present to enforce national and international legislation. We report on the design of five combinations of primer pairs for the identification of turtle shells and shell fragments used as ornaments, food products and medicines. The types of samples used are those encountered frequently and will typically contain highly degraded DNA. The success rate for species identification using the test described is dependent upon the choice of primer sets used and the length of the expected amplification product. Gelled products were simulated by the process of decoction for up to 12 h, after which all the turtle species could be identified from the liquid samples. This study establishes a method for the identification of commercial turtle shells and illustrates a simulated case using gelled products.
Collapse
Affiliation(s)
- James Chun-I Lee
- Department of Forensic Medicine, College of Medicine, National Taiwan University, No.1 Jen-Ai Road Section 1, Taipei 10051, Taiwan, ROC
| | | | | | | | | |
Collapse
|
19
|
Zhang L, Nie L, Cao C, Zhan Y. The complete mitochondrial genome of the Keeled box turtle Pyxidea mouhotii and phylogenetic analysis of major turtle groups. J Genet Genomics 2008; 35:33-40. [DOI: 10.1016/s1673-8527(08)60005-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 11/28/2022]
|
20
|
Zhang L, Nie LW, Zhang Y, Rui JL, Zhang YY. Complete sequence and organization of the mitochondrial genome of Cyclemys atripons (Testudines, Geoemydidae). Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000400027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Jungt SO, Lee YM, Kartavtsev Y, Park IS, Kim DS, Lee JS. The complete mitochondrial genome of the Korean soft-shelled turtle Pelodiscus sinensis (Testudines, Trionychidae). ACTA ACUST UNITED AC 2007; 17:471-83. [PMID: 17381049 DOI: 10.1080/10425170600760091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We isolated Korean soft-shelled turtle, Pelodiscus sinensis, mitochondrial DNA by long-polymerase chain reaction (long-PCR) with conserved primers and sequenced this mitochondrial genome (mitogenome) with primer walking using flanking sequences. The P. sinensis mitochondrial DNA has 17,042 bp and its structural organization is conserved compared to those of other reptiles and mammals. To unveil the phylogenetic relationship of the turtles, we used the NJ, MP, and ML analysis methods after inferring those sequences from the mitochondrial 16S rRNA gene. We also compared two P. sinensis variants from Korea and China using the mitochondrial genome. In this study, we report the basic characteristics of the P. sinensis mitochondrial genome, including structural organization and base composition of the rRNAs, tRNAs and protein-coding genes, as well as characteristics of tRNAs. These features are applicable for the study of phylogenetic relationships in turtles.
Collapse
Affiliation(s)
- Sang-Oun Jungt
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Peng Z, Ludwig A, Wang D, Diogo R, Wei Q, He S. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes). Mol Phylogenet Evol 2007; 42:854-62. [PMID: 17158071 DOI: 10.1016/j.ympev.2006.09.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 09/11/2006] [Accepted: 09/18/2006] [Indexed: 11/28/2022]
Affiliation(s)
- Zuogang Peng
- Laboratory of Fish Phylogenetics and Biogeography, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
23
|
Yue GH, Liew WC, Orban L. The complete mitochondrial genome of a basal teleost, the Asian arowana (Scleropages formosus, Osteoglossidae). BMC Genomics 2006; 7:242. [PMID: 16989663 PMCID: PMC1592092 DOI: 10.1186/1471-2164-7-242] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 09/21/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial DNA-derived sequences have become popular markers for evolutionary studies, as their comparison may yield significant insights into the evolution of both the organisms and their genomes. From the more than 24,000 teleost species, only 254 complete mtDNA sequences are available (GenBank status on 06 Sep 2006). In this paper, we report the complete mitochondrial genome sequence of Asian arowana, a basal bonytongue fish species, which belongs to the order of Osteoglossiformes. RESULTS The complete mitochondrial genomic sequence (mtDNA) of Asian arowana (Scleropages formosus) was determined by using shotgun sequencing method. The length of Asian arowana mtDNA is ca. 16,650 bp (its variation is due to polymorphic repeats in the control region), containing 13 protein-coding genes, 22 tRNA and 2 rRNA genes. Twelve of the thirteen protein coding genes were found to be encoded by the heavy strand in the order typically observed for vertebrate mitochondrial genomes, whereas only nad6 was located on the light strand. An interesting feature of Asian arowana mitogenome is that two different repeat arrays were identified in the control region: a 37 bp tandem repeat at the 5' end and an AT-type dinucleotide microsatellite at the 3' end. Both repeats show polymorphism among the six individuals tested; moreover the former one is present in the mitochondrial genomes of several other teleost groups. The TACAT motif described earlier only from mammals and lungfish was found in the tandem repeat of several osteoglossid and eel species. Phylogenetic analysis of fish species representing Actinopterygii and Sarcopterygii taxa has shown that the Asian arowana is located near the baseline of the teleost tree, confirming its status among the ancestral teleost lineages. CONCLUSION The mitogenome of Asian arowana is very similar to the typical vertebrate mitochondrial genome in terms of gene arrangements, codon usage and base composition. However its control region contains two different types of repeat units at both ends, an interesting feature that to our knowledge has never been reported before for other vertebrate mitochondrial control regions. Phylogenetic analysis using the complete mtDNA sequence of Asian arowana confirmed that it belongs to an ancestral teleost lineage.
Collapse
Affiliation(s)
- Gen Hua Yue
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, 1 Research Link, NUS, Singapore 117604, Singapore
| | - Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore
| | - Laszlo Orban
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, The National University of Singapore, Singapore
| |
Collapse
|
24
|
Goricki S, Trontelj P. Structure and evolution of the mitochondrial control region and flanking sequences in the European cave salamander Proteus anguinus. Gene 2006; 378:31-41. [PMID: 16764998 DOI: 10.1016/j.gene.2006.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/18/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
The European cave salamander Proteus anguinus Laurenti 1768 is one of the best-known subterranean animals, yet its evolutionary history and systematic relationships remain enigmatic. This is the first comprehensive study on molecular evolution within the taxon, using an mtDNA segment containing the control region (CR) and adjacent sequences. Two to seven tandem repeats of 24-32 bp were found in the intergenic spacer region (VNTR1), and three, four or six repeats, 59-77 bp each, in the 3' end of the CR (VNTR2). Different molecular mechanisms account for VNTR2 formation in different lineages of Proteus. The overall CR variation was lower than that of the spacer region, the 3' end of the cytb gene, or the tRNA genes. Individual genes and the concatenated non-repetitive sequences produced similar, well resolved maximum likelihood, Bayesian inference and parsimony trees. The numbers of repeat elements as well as the genealogy of the VNTR2 repeat units were mostly inconsistent with the groupings of the non-repetitive sequences. Different degrees of repeat array homogenization were detected in all major groups. Orthology was established for the first and the second VNTR2 elements of some populations. These two copies may therefore be used for analyses at the population level. The pattern of CR sequence variation points to strong genetic isolation of hydrographically separated populations. Genetic separation of the major groups of populations is incongruent with the current division into subspecies.
Collapse
Affiliation(s)
- Spela Goricki
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
25
|
Zhou K, Li H, Han D, Bauer AM, Feng J. The complete mitochondrial genome of Gekko gecko (Reptilia: Gekkonidae) and support for the monophyly of Sauria including Amphisbaenia. Mol Phylogenet Evol 2006; 40:887-92. [PMID: 16750399 DOI: 10.1016/j.ympev.2006.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 04/01/2006] [Accepted: 04/04/2006] [Indexed: 11/22/2022]
Affiliation(s)
- Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210097, China.
| | | | | | | | | |
Collapse
|
26
|
Hsieh HM, Huang LH, Tsai LC, Liu CL, Kuo YC, Hsiao CT, Linacre A, Lee JCI. Species identification of Kachuga tecta using the cytochrome b gene. J Forensic Sci 2006; 51:52-6. [PMID: 16423223 DOI: 10.1111/j.1556-4029.2005.00004.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A DNA technique has been established for the identification to species level of tortoises. The test on the shell of the animal was used to identify samples from the species Kachuga tecta. A total of 100 tortoise shell specimens collected from the National Council of Agriculture (COA), Taiwan, were used in this study. Primer pairs were designed to amplify partial DNA fragments of cytochrome b within the mitochondrial genome. The DNA data showed that among the 100 samples, there were four distinct haplotype DNA sequences, within which there were a total of 90 variable sites. Between haplotypes I and II, there was only 1 nucleotide difference at position 228. Between haplotypes I and III, 65 nucleotide differences were observed; haplotypes I and IV, 62 nucleotide differences; and haplotypes III and IV, 56 nucleotide differences were observed. There were 66 and 63 nucleotide differences between haplotypes II and III and haplotypes II and IV respectively. All four haplotypes were compared with the DNA sequences held at the GenBank and EMBL databases. The most similar species were K. tecta (haplotype I and II), Morenia ocellata (haplotype III) and Geoclemys hamiltonii (haplotype IV), and their respective mtDNA similarities were 99.5%, 99.3%, 89.9% and 99.5%. However, as haplotype III was only 89.9% homologous with M. ocellata, it would seem that this haplotype shows only a limited relationship with a similar species registered currently in these databases. The method established by this study is an additional method for the identification of samples protected under Convention International Trade in Endangered Species (CITES) and will improve the work for the preservation of the endangered species.
Collapse
Affiliation(s)
- Hsing-Mei Hsieh
- Department of Forensic Science, Central Police University, Kwei-San, Taoyuan 33334, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mayer F, Kerth G. Microsatellite evolution in the mitochondrial genome of Bechstein's bat (Myotis bechsteinii). J Mol Evol 2005; 61:408-16. [PMID: 16082564 DOI: 10.1007/s00239-005-0040-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 05/05/2005] [Indexed: 11/28/2022]
Abstract
Being highly polymorphic, microsatellites are widely used genetic markers. They are abundant throughout the nuclear genomes of eukaryotes but rare in the mitochondrial genomes (mtDNA) of animals. We describe a short but highly polymorphic AT microsatellite in the mtDNA control region of Bechstein's bat and discuss the role of mutation, genetic drift, and selection in maintaining its variability. As heteroplasmy and hence mutation rate were positively correlated with repeat number, a simple mutation model cannot explain the observed frequency distribution of AT copy numbers. Because of the unimodal distribution of repeat numbers found in heteroplasmic individuals, single step mutations are likely to be the predominant mechanism of copy number alternations. Above a certain copy number (seven repeats), deletions of single dinucleotide repeats seem to be more common than additions, which results in a decrease in frequency of long alleles. Heteroplasmy was inherited from mothers to their offspring and no evidence of paternal inheritance of mitochondria was found. Genetic differences accumulated with more distant ancestry, which suggests that microsatellites can be useful genetic markers in population genetics.
Collapse
Affiliation(s)
- Frieder Mayer
- Institute of Zoology II, University of Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, D-91058, Germany.
| | | |
Collapse
|
28
|
Lo Brutto S, Azeuleo M, Sarà M. Mitochondrial simple sequence repeats and 12S-rRNA gene reveal two distinct lineages of Crocidura russula (Mammalia, Soricidae). Heredity (Edinb) 2004; 92:527-33. [PMID: 15162115 DOI: 10.1038/sj.hdy.6800448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A short segment (135 bp) of the control region and a partial sequence (394 bp) of the 12S-rRNA gene in the mitochondrial DNA of Crocidura russula were analyzed in order to test a previous hypothesis regarding the presence of a gene flow disruption in northern Africa. This breakpoint would have separated northeast-African C. russula populations from the European (plus the northwest-African) populations. The analysis was carried out on specimens from Tunisia (C. r. cf agilis), Sardinia (C. r. ichnusae), and Pantelleria (C. r. cossyrensis), and on C. r. russula from Spain and Belgium. Two C. russula lineages were identified; they both shared R2 tandem repeated motifs of the same length (12 bp), but not the same primary structure. These simple sequence repeats were present in 12-23 copies in the right domain of the control region. Within the northeast-African populations, a polymorphism of repeat variants, not yet found in Europe, was recorded. A neighbor-join tree, which was built by sequences of the conserved 12S-rRNA gene, separated the two sister groups; it permitted us to date a divergence time of 0.5 Myr. Our data discriminated two different mitochondrial lineages in accordance with the previous morphological and karyological data. Ecoclimatic barriers formed during the Middle Pleistocene broke the range of ancestral species in the Eastern Algeria (Kabile Mountains), leading to two genetically separate and modern lineages. The northeast-African lineage can today be located in Tunisia, Pantelleria, and Sardinia. The northwest-African lineage (Morocco and West Algeria), reaching Spain by anthropogenic introduction, spread over north Europe in modern times. The Palaearctic C. russula species is monophyletic, but a taxonomical revision (ie, to provide a full species rank for the northeast taxa and to put in synonymy some insular taxa) is required.
Collapse
Affiliation(s)
- S Lo Brutto
- Dipartimento di Biologia Animale, Università di Palermo, Via Archirafi 18, Palermo 90123, Italia.
| | | | | |
Collapse
|
29
|
Ray DA, Densmore L. The crocodilian mitochondrial control region: general structure, conserved sequences, and evolutionary implications. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:334-45. [PMID: 12461813 DOI: 10.1002/jez.10198] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We present the first comprehensive analysis of the crocodilian control region. We have analyzed sequences from all three families of Crocodylia (Crocodylidae, Gavialidae, Alligatoridae), incorporating all genera except Paleosuchus and Melanosuchus. Within the control region of other vertebrates, several sequence motifs and their order appear to be conserved. Herein, we compare aligned crocodilian D-loop sequences to homologous sequences from other vertebrates ranging from fish to birds. Among other findings, we have discovered that while domain I tends to be shorter than the same region in mammals and birds, it contains sequences similar in structure to both the goose-hairpin and termination associated sequences (TAS). Domain II is highly conservative with regard to size among the taxa examined and contains several of the conserved sequence boxes characterized in other vertebrates. Domain III contains several interesting sequence motifs including tandemly repeated sequences, a long poly-A region in the Crocodylidae, and possible bidirection promoter sequences.
Collapse
Affiliation(s)
- David Alfred Ray
- Texas Tech University, Department of Biological Sciences, Lubbock, Texas 79409, USA.
| | | |
Collapse
|
30
|
Janke A, Erpenbeck D, Nilsson M, Arnason U. The mitochondrial genomes of the iguana (Iguana iguana) and the caiman (Caiman crocodylus): implications for amniote phylogeny. Proc Biol Sci 2001; 268:623-31. [PMID: 11297180 PMCID: PMC1088649 DOI: 10.1098/rspb.2000.1402] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complete mitochondrial genomes of two reptiles, the common iguana (Iguana iguana) and the caiman (Caiman crocodylus), were sequenced in order to investigate phylogenetic questions of tetrapod evolution. The addition of the two species allows analysis of reptilian relationships using data sets other than those including only fast-evolving species. The crocodilian mitochondrial genomes seem to have evolved generally at a higher rate than those of other vertebrates. Phylogenetic analyses of 2889 amino-acid sites from 35 mitochondrial genomes supported the bird-crocodile relationship, lending no support to the Haematotherma hypothesis (with birds and mammals representing sister groups). The analyses corroborated the view that turtles are at the base of the bird-crocodile branch. This position of the turtles makes Diapsida paraphyletic. The origin of the squamates was estimated at 294 million years (Myr) ago and that of the turtles at 278 Myr ago. Phylogenetic analysis of mammalian relationships using the additional outgroups corroborated the Marsupionta hypothesis, which joins the monotremes and the marsupials to the exclusion of the eutherians.
Collapse
Affiliation(s)
- A Janke
- Department of Genetics, University of Lund, Sweden.
| | | | | | | |
Collapse
|
31
|
Ritchie PA, Lambert DM. A repeat complex in the mitochondrial control region of Adélie penguins from Antarctica. Genome 2000; 43:613-8. [PMID: 10984172 DOI: 10.1139/g00-018] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have determined the nucleotide sequence of the entire mitochondrial control region (CR) of the Adélie penguin (Pygoscelis adeliae) from Antarctica. Like in most other birds, this CR region is flanked by the gene nad6 and transfer (t)RNA trnE(uuc) at the 5' end and the gene rns and trnF(gaa) at the 3' end. Sequence analysis shows that the Adelie penguin CR contains many elements in common with other CRs including the termination associated sequences (TAS), conserved F, E, D, and C boxes, the conserved sequence block (CSB)-1, as well as the putative light and heavy strand promoters sites (LSP-HSP). We report an extraordinarily long avian control region (1758 bp) which can be attributed to the presence, at the 3' peripheral domain, of five 81-bp repeat sequences, each containing a putative LSP-HSP, followed by 30 tetranucleotide microsatellite repeat sequences consisting of (dC-dA-dA-dA)30. The microsatellite and the 81-bp repeat reside in an area known to be transcribed in other species.
Collapse
Affiliation(s)
- P A Ritchie
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
32
|
Zardoya R, Meyer A. Complete mitochondrial genome suggests diapsid affinities of turtles. Proc Natl Acad Sci U S A 1998; 95:14226-31. [PMID: 9826682 PMCID: PMC24355 DOI: 10.1073/pnas.95.24.14226] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite more than a century of debate, the evolutionary position of turtles (Testudines) relative to other amniotes (reptiles, birds, and mammals) remains uncertain. One of the major impediments to resolving this important evolutionary problem is the highly distinctive and enigmatic morphology of turtles that led to their traditional placement apart from diapsid reptiles as sole descendants of presumably primitive anapsid reptiles. To address this question, the complete (16,787-bp) mitochondrial genome sequence of the African side-necked turtle (Pelomedusa subrufa) was determined. This molecule contains several unusual features: a (TA)n microsatellite in the control region, the absence of an origin of replication for the light strand in the WANCY region of five tRNA genes, an unusually long noncoding region separating the ND5 and ND6 genes, an overlap between ATPase 6 and COIII genes, and the existence of extra nucleotides in ND3 and ND4L putative ORFs. Phylogenetic analyses of the complete mitochondrial genome sequences supported the placement of turtles as the sister group of an alligator and chicken (Archosauria) clade. This result clearly rejects the Haematothermia hypothesis (a sister-group relationship between mammals and birds), as well as rejecting the placement of turtles as the most basal living amniotes. Moreover, evidence from both complete mitochondrial rRNA genes supports a sister-group relationship of turtles to Archosauria to the exclusion of Lepidosauria (tuatara, snakes, and lizards). These results challenge the classic view of turtles as the only survivors of primary anapsid reptiles and imply that turtles might have secondarily lost their skull fenestration.
Collapse
Affiliation(s)
- R Zardoya
- Museo Nacional de Ciencias Naturales, José Gutierrez Abascal, 2, 28006 Madrid, Spain
| | | |
Collapse
|