1
|
Huang W, Chen J, Liu X, Liu X, Duan S, Chen L, Liu X, Lan J, Zou Y, Guo D, Zhou J. MIER3 induces epithelial-mesenchymal transition and promotes breast cancer cell aggressiveness via forming a co-repressor complex with HDAC1/HDAC2/Snail. Exp Cell Res 2021; 406:112722. [PMID: 34242623 DOI: 10.1016/j.yexcr.2021.112722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/16/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is one of the most frequently diagnosed cancers and the leading cause of cancer death in women. MIER3 (Mesoderm induction early response 1, family member3) is considered as a potential oncogene for breast cancer. However, the role of MIER3 in breast cancer remain largely unknown. The expression of MIER3 was detected and the relationship between its expression and clinicopathological characteristics was also analyzed. The effect of MIER3 on proliferation and migration of breast cancer cells was detected in vitro and in vivo. Western blot, IF, and Co-IP were employed to detect the relationship between MIER3, HDAC1, HDAC2, and Snail. ChIP assay was performed to determine the binding of MIER3/HDAC1/HDAC2/Snail complex to the promoter of E-cadherin. In this study, we found that MIER3 was upregulated in breast cancer tissue and closely associated with poor prognosis of patients. MIER3 could promote the proliferation, migration, and epithelial-mesenchymal transition (EMT) of breast cancer cells. Further studies showed that MIER3 interacted with HDAC1/HDAC2 and Snail to form a repressive complex which could bind to E-cadherin promoter and was related to its deacetylation. Our study concluded that MIER3 was involved in forming a co-repressor complex with HDAC1/HDAC2/Snail to promote EMT by silencing E-cadherin.
Collapse
Affiliation(s)
- Wenqing Huang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianxiong Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xunhua Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuming Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Duan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lixia Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoting Liu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiawen Lan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zou
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, 523808, China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Ugalde-Morales E, Li J, Humphreys K, Ludvigsson JF, Yang H, Hall P, Czene K. Common shared genetic variation behind decreased risk of breast cancer in celiac disease. Sci Rep 2017; 7:5942. [PMID: 28725034 PMCID: PMC5517429 DOI: 10.1038/s41598-017-06287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
There is epidemiologic evidence showing that women with celiac disease have reduced risk of later developing breast cancer, however, the etiology of this association is unclear. Here, we assess the extent of genetic overlap between the two diseases. Through analyses of summary statistics on densely genotyped immunogenic regions, we show a significant genetic correlation (r = −0.17, s.e. 0.05, P < 0.001) and overlap (Ppermuted < 0.001) between celiac disease and breast cancer. Using individual-level genotype data from a Swedish cohort, we find higher genetic susceptibility to celiac disease summarized by polygenic risk scores to be associated with lower breast cancer risk (ORper-SD, 0.94, 95% CI 0.91 to 0.98). Common single nucleotide polymorphisms between the two diseases, with low P-values (PCD < 1.00E-05, PBC ≤ 0.05), mapped onto genes enriched for immunoregulatory and apoptotic processes. Our results suggest that the link between breast cancer and celiac disease is due to a shared polygenic variation of immune related regions, uncovering pathways which might be important for their development.
Collapse
Affiliation(s)
- Emilio Ugalde-Morales
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Haomin Yang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Differential HDAC1 and 2 Recruitment by Members of the MIER Family. PLoS One 2017; 12:e0169338. [PMID: 28046085 PMCID: PMC5207708 DOI: 10.1371/journal.pone.0169338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/15/2016] [Indexed: 01/06/2023] Open
Abstract
The mier family consists of three related genes encoding ELM2-SANT containing proteins. MIER1 has been well characterized and is known to function in transcriptional repression through its ability to recruit HDAC1 and 2. Little is known about MIER2 or MIER3 function and no study characterizing these two proteins has been published. In this report, we investigate MIER2 and MIER3 localization and function. Confocal analysis revealed that, while MIER2 and MIER3 are mainly nuclear proteins, a substantial proportion (32%) of MIER2 is localized in the cytoplasm. Co-immunoprecipitation experiments demonstrated that the MIER proteins do not dimerize; that MIER2, but not MIER3, can recruit HDACs; and that recruitment is cell line-dependent. MIER2 was associated with HDAC1 and HDAC2 in HEK293 cells, but only with HDAC1 in MCF7 and HeLa cells. Little or no MIER3 co-immunoprecipitated with either HDAC1 or 2 in any of the three cell lines tested. By contrast, HDAC1 and 2 were readily detected in MIER1α complexes in all three cell lines. Histone deacetylase assays confirmed that MIER2, but not MIER3 complexes, have associated deacetylase activity, leading to the conclusion that MIER3 does not function in HDAC recruitment in these cell lines. In contrast to what has been reported for other ELM2-SANT associated HDACs, addition of D-myo-inositol-1,4,5,6-tetrakisphosphate led to only a small increase in MIER1α associated deacetylase activity and no effect on that associated with MIER2. Deletion analysis revealed that HDAC recruitment occurs through the ELM2 domain. Finally, using site-directed mutagenesis, we show that, like MIER1, 228W in the ELM2 domain is a critical residue for HDAC recruitment by MIER2.
Collapse
|
4
|
Abstract
Among the genes that were found to be abundantly overexpressed in highly metastatic rat cell lines compared to poorly metastatic cell lines, we identified a completely novel complementary DNA (cDNA) without any homologous or related genes in the database in 1994. The full-length cDNA of this rat gene was cloned, sequenced, and named metastasis-associated gene 1 (mta1), and eventually, its human cDNA counterpart, MTA1, was also cloned and sequenced by our group. MTA1 has now been identified as one of the members of a gene family (MTA gene family) and the products of the MTA genes, the MTA proteins, are transcriptional co-regulators that function in histone deacetylation and nucleosome remodeling and have been found in nuclear histone remodeling complexes. Furthermore, MTA1 along with its protein product MTA1 has been repeatedly and independently reported to be overexpressed in a vast range of human cancers and cancer cell lines compared to non-cancerous tissues and cell lines. The expression levels of MTA1 correlate well with the malignant properties of human cancers, strongly suggesting that MTA1 and possibly other MTA proteins (and their genes) could be a new class of molecular targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yasushi Toh
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan,
| | | |
Collapse
|
5
|
Li S, Paterno GD, Gillespie LL. Nuclear localization of the transcriptional regulator MIER1α requires interaction with HDAC1/2 in breast cancer cells. PLoS One 2013; 8:e84046. [PMID: 24376786 PMCID: PMC3869823 DOI: 10.1371/journal.pone.0084046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
MIER1α is a transcriptional regulator that functions in gene repression through its ability to interact with various chromatin modifiers and transcription factors. We have also shown that MIER1α interacts with ERα and inhibits estrogen-stimulated growth. While MIER1α is localized in the nucleus of MCF7 cells, previous studies have shown that it does not contain a nuclear localization signal. In this report, we investigate the mechanism involved in transporting MIER1α into the nucleus. We explored the possibility that MIER1α is transported into the nucleus through a ‘piggyback’ mechanism. One obvious choice is via interaction with ERα, however we demonstrate that nuclear targeting of MIER1α does not require ERα. Knockdown of ERα reduced protein expression to 22% of control, but did not alter the percentage of cells with nuclear MIER1α (98% nuclear with scrambled shRNA vs. 95% with ERα shRNA). Further evidence was obtained using two stable transfectants derived from the ER-negative MDA231 cell line: MC2 (ERα+) and VC5 (ERα-). Confocal analysis showed no difference in MIER1α localization (86% nuclear in MC2 vs. 89% in VC5). These data demonstrate that ERα is not involved in nuclear localization of MIER1α. To identify the critical MIER1α sequence, we performed a deletion analysis and determined that the ELM2 domain was necessary and sufficient for nuclear localization. This domain binds HDAC1 & 2, therefore we investigated their role. Confocal analysis of an MIER1α containing an ELM2 point mutation previously shown to abolish HDAC binding revealed that this mutation results in almost complete loss of nuclear targeting: 10% nuclear vs. 97% with WT-MIER1α. Moreover, double knockdown of HDAC1 and 2 caused a reduction in percent nuclear from 86% to 44%. The results of this study demonstrate that nuclear targeting of MIER1α requires an intact ELM2 domain and is dependent on interaction with HDAC1/2.
Collapse
Affiliation(s)
- Shengnan Li
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Gary D. Paterno
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Laura L. Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
- * E-mail:
| |
Collapse
|
6
|
McCarthy PL, Paterno GD, Gillespie LL. Protein expression pattern of human MIER1 alpha, a novel estrogen receptor binding protein. J Mol Histol 2013; 44:469-79. [PMID: 23277184 DOI: 10.1007/s10735-012-9478-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
MIER1 is a transcriptional regulator that exists as several isoforms. Of particular interest is the MIER1α isoform, which contains in its unique C-terminus an LXXLL motif for interaction with nuclear hormone receptors. Indeed, MIER1α has been shown to interact with ERα and inhibit estrogen-stimulated growth of breast carcinoma cells. Moreover, the subcellular localization of MIER1α changes dramatically, from nuclear to cytoplasmic, during progression to invasive breast carcinoma. While human MIER1 RNA and protein expression pattern data have been posted on several websites, none of these studies use probes or antibodies that distinguish between the α and β isoforms. We report here the first immunohistochemical study of the MIER1α protein expression pattern in human tissues. Our analysis revealed intense staining of specific cell types within virtually every endocrine and reproductive tissue except for the thyroid gland. In particular, we detected intense staining of ovarian follicles and germinal epithelium, ductal epithelial cells of the breast, pancreatic islet cells, all areas of the anterior pituitary and all zones of the adrenal cortex; moderate staining of germ cells and Leydig cells within the testis, patches of chromaffin cells in the adrenal medulla and weak staining of the fibromuscular stroma within the prostate. Immunoreactivity was limited to the cytoplasm in all positive cells except for oocytes and germinal epithelial cells in which the nucleus was also stained and in ductal epithelial cells of the breast in which staining was exclusively nuclear. In general, non-endocrine tissues were negative, however a few exceptions were noted. These included hepatocytes, myocardial fibers and neurons in all regions of the brain examined, with the exception of the thalamus. Neuronal staining was restricted to the cell bodies and dendrites, as most axons were negative. These data suggest that human MIER1α functions specifically in endocrine tissues and in a limited number of non-endocrine organs.
Collapse
Affiliation(s)
- Patti L McCarthy
- Terry Fox Cancer Research Labs, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | | | | |
Collapse
|
7
|
Differential splicing alters subcellular localization of the alpha but not beta isoform of the MIER1 transcriptional regulator in breast cancer cells. PLoS One 2012; 7:e32499. [PMID: 22384264 PMCID: PMC3286477 DOI: 10.1371/journal.pone.0032499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/27/2012] [Indexed: 12/17/2022] Open
Abstract
MIER1 was originally identified in a screen for novel fibroblast growth factor activated early response genes. The mier1 gene gives rise to multiple transcripts encoding protein isoforms that differ in their amino (N-) and carboxy (C-) termini. Much of the work to date has focused on the two C-terminal variants, MIER1α and β, both of which have been shown to function as transcriptional repressors. Our previous work revealed a dramatic shift in MIER1α subcellular localization from nuclear in normal breast tissue to cytoplasmic in invasive breast carcinoma, suggesting that loss of nuclear MIER1α may play a role in breast cancer development. In the present study, we investigated whether alternative splicing to include a cassette exon and produce an N–terminal variant of MIER1α affects its subcellular localization in MCF7 breast carcinoma cells. We demonstrate that this cassette exon, exon 3A, encodes a consensus leucine-rich nuclear export signal (NES). Inclusion of this exon in MIER1α to produce the MIER1-3Aα isoform altered its subcellular distribution in MCF7 cells from 81% nuclear to 2% nuclear and this change in localization was abrogated by mutation of critical leucines within the NES. Treatment with leptomycin B (LMB), an inhibitor of the nuclear export receptor CRM1, resulted in a significant increase in the percentage of cells with nuclear MIER1-3Aα, from 4% to 53%, demonstrating that cytoplasmic localization of this isoform was due to CRM1-dependent nuclear export. Inclusion of exon 3A in MIER1β to produce the N-terminal variant MIER1-3Aβ however had little effect on the nuclear targeting of this isoform. Our results demonstrate that alternative splicing to include exon 3A specifically affects the localization pattern of the α isoform.
Collapse
|
8
|
McCarthy PL, Mercer FC, Savicky MWJ, Carter BA, Paterno GD, Gillespie LL. Changes in subcellular localisation of MI-ER1 alpha, a novel oestrogen receptor-alpha interacting protein, is associated with breast cancer progression. Br J Cancer 2008; 99:639-46. [PMID: 18665173 PMCID: PMC2527822 DOI: 10.1038/sj.bjc.6604518] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The oestrogen receptor-α (ERα) plays a key role in breast development and tumorigenesis and inhibiting its activity remains a prime strategy in the treatment of ERα-positive breast cancers. Thus, elucidation of the molecular mechanisms responsible for regulating ERα activity may facilitate the design of new, more effective breast cancer therapies. The MI-ER1α is a novel transcriptional repressor that contains an LXXLL motif for interaction with nuclear hormone receptors. We investigated the ability of MI-ER1α to bind to ERα in HEK293 and MCF-7 breast carcinoma cells, using co-immunoprecipitation assays. In both cell lines, MI-ER1α interacted with ERα in the presence and absence of oestrogen, but the interaction was stronger in the absence of ligand. Functional analysis revealed that overexpression of MI-ER1α in T47D breast carcinoma cells results in inhibition of oestrogen-stimulated anchorage-independent growth, suggesting that MI-ER1α may play a role in regulating breast carcinoma cell proliferation in vivo. To explore this further, we performed an immunohistochemical analysis of normal breast tissue and breast carcinoma; a total of 110 cases were examined in whole tissue sections and 771 cases were analysed in tissue microarrays. No consistent difference in the MI-ER1α expression level between normal breast tissue and breast carcinoma was discernible. However, there was a dramatic shift in the subcellular localisation: nuclear MI-ER1α was detectable in 75% of normal breast samples and in 77% of hyperplasia, but in breast carcinoma, only 51% of DCIS, 25% of ILC and 4% of IDC contained nuclear staining. This shift from nuclear to cytoplasmic localisation of MI-ER1α during breast cancer progression suggests that loss of nuclear MI-ER1α might contribute to the development of invasive breast carcinoma.
Collapse
Affiliation(s)
- P L McCarthy
- Division of BioMedical Sciences, Faculty of Medicine, Terry Fox Cancer Research Laboratories, Memorial University of Newfoundland, St John's, NL A1B 3V6, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Thorne LB, McCarthy PL, Paterno GD, Gillespie LL. Protein expression of the transcriptional regulator MI-ER1 alpha in adult mouse tissues. J Mol Histol 2007; 39:15-24. [PMID: 17622490 DOI: 10.1007/s10735-007-9116-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 06/19/2007] [Indexed: 11/29/2022]
Abstract
MI-ER1 is a novel transcriptional regulator that plays a critical role in embryonic development and is differentially expressed in breast carcinoma. The MI-ER1 protein sequence is highly conserved among species, with 95% identity between mouse and humans and 72% between Xenopus and mouse. There are two major protein isoforms, MI-ER1alpha and MI-ER1beta, which differ in the sequence of their C-terminus. MI-ER1alpha is of particular interest because it contains a consensus LXXLL nuclear receptor interaction motif and the current study was undertaken to determine the expression pattern of MI-ER1alpha protein in adult mouse tissues. Immunohistochemical analysis of paraffin-embedded tissue using an MI-ER1alpha-specific antibody revealed that the majority of mouse adult tissues examined showed very weak or no immunoreactivity; these included tissues of the lung, liver, intestine, uterus, spleen, lymph node, bladder as well as skeletal muscle. Interestingly, a subset of endocrine tissues displayed intense staining for MI-ER1alpha. Specifically, the islets of Langerhans, the zona glomerulosa and medulla of the adrenal gland, the ovary and the hypothalamus were intensely stained. In addition, both anterior and posterior pituitary showed moderate immunoreactivity, as did the parafollicular cells of the thyroid gland and Leydig cells and spermatids in the testes. Negative endocrine tissues included follicular cells of the thyroid gland and the X zone of the adrenal cortex. A few non-endocrine tissues displayed moderate immunoreactivity; these included all tubules and collecting ducts in the kidney, myocardial and endocardial layers of the heart, the hippocampal formation, pyramidal neurons in the cortex and the ductal epithelium of the mammary gland. In all cases, MI-ER1alpha immunoreactivity was cytoplasmic. This study represents the first immunohistochemical analysis of MI-ER1alpha expression in mammals and our data suggest that this transcriptional regulator plays a role in specific endocrine pathways.
Collapse
Affiliation(s)
- Leanne B Thorne
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada A1B 3V6
| | | | | | | |
Collapse
|
10
|
He QY, Zhou Y, Wong E, Ehlen TG, Auersperg N, Chiu JF, Wong AST. Proteomic analysis of a preneoplastic phenotype in ovarian surface epithelial cells derived from prophylactic oophorectomies. Gynecol Oncol 2005; 98:68-76. [PMID: 15913737 DOI: 10.1016/j.ygyno.2005.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/24/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To study the pattern of protein expression associated with a predisposition to develop ovarian cancer. METHODS Prophylactic oophorectomy is used to prevent ovarian carcinoma in high-risk populations who have a strong family history of breast/ovarian cancer. In ovarian specimens of these women, the ovarian surface epithelium (OSE), which is tissue of origin of epithelial ovarian cancer, often shows altered morphology, growth patterns and differentiation features that are believed to be preneoplastic. This study has used a proteomic approach, based on two-dimensional gel electrophoresis and mass spectrometry, to compare the protein profiles of OSE from women with a history of familial ovarian cancer (FH-OSE), i.e., at least two first-degree relatives with such cancer and/or testing positive for BRCA1 mutations, to those without such history (NFH-OSE). RESULTS Of >1500 protein spots, there were 8 proteins whose levels were significantly altered in FH-OSE. Three were known ovarian tumor associated proteins, others were novel changes. A number of the alterations seen were accompanied with protein modifications and have not been previously reported. There was a predominance of sequences related to the stress response pathway. Differential expression of selected genes was confirmed by Western blotting and real-time reverse transcription polymerase chain reaction. CONCLUSIONS Our findings define the OSE phenotype of women at a high risk of developing ovarian cancer. Protein alterations seen in these tissues may represent an early, irreversible, non-mutational step in ovarian epithelial neoplastic progression and may be potential early and sensitive markers for the evaluation of cancer risk.
Collapse
Affiliation(s)
- Qing-Yu He
- Department of Chemistry, University of Hong Kong, Hong Kong; Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
11
|
Spurrell DR, Oldford SA, Frost T, Larsen B, Codner D, Edgecombe A, Drover S. Discordant expression of HLA class II-associated co-chaperones and HLA-DRB alleles in cultured fibroblast-like synoviocytes. Hum Immunol 2004; 65:1516-29. [PMID: 15603880 DOI: 10.1016/j.humimm.2004.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 09/03/2004] [Accepted: 09/09/2004] [Indexed: 11/18/2022]
Abstract
Human leukocyte antigen (HLA)-DR-positive synovial fibroblasts are frequently observed in rheumatoid arthritis (RA) and may be implicated in the autoimmune reaction because RA is associated with certain HLA-DRB1* alleles. The question of whether components of the class II antigen presentation pathway and specific DRB alleles are efficiently expressed by synovial fibroblasts is germane to this hypothesis. To address this, cultured fibroblast-like synoviocytes (cFLS) were analyzed for constitutive and interferon (IFN)-gamma-induced expression of specific DRB alleles and class II-associated cochaperones. IFN-gamma induction of invariant chain, DM, and DR molecules was observed in all cFLS, but expression of specific DR allotypes was variable. Interestingly, DM-modulated epitopes on RA-associated DR molecules were either absent or delayed, despite strong DM expression and a paucity of major histocompatibility complex/class II-associated invariant chain peptide complexes. Altered expression of specific peptide-dependent epitopes on RA-associated HLA-DR molecules suggests differences in antigen presentation by cFLS, which may have implications for the immunopathogenesis of RA.
Collapse
Affiliation(s)
- David R Spurrell
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Ding Z, Gillespie LL, Mercer FC, Paterno GD. The SANT Domain of Human MI-ER1 Interacts with Sp1 to Interfere with GC Box Recognition and Repress Transcription from Its Own Promoter. J Biol Chem 2004; 279:28009-16. [PMID: 15117948 DOI: 10.1074/jbc.m403793200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight into the regulation of hmi-er1 expression, we cloned a human genomic DNA fragment containing one of the two hmi-er1 promoters and consisting of 1460 bp upstream of the translation initiation codon of hMI-ER1. Computer-assisted sequence analysis revealed that the hmi-er1 promoter region contains a CpG island but lacks an identifiable TATA element, initiator sequence and downstream promoter element. This genomic DNA was able to direct transcription of a luciferase reporter gene in a variety of human cell lines, and the minimal promoter was shown to be located within-68/+144 bp. Several putative Sp1 binding sites were identified, and we show that Sp1 can bind to the hmi-er1 minimal promoter and increase transcription, suggesting that the level of hmi-er1 expression may depend on the availability of Sp1 protein. Functional analysis revealed that hMI-ER1 represses Sp1-activated transcription from the minimal promoter by a histone deacetylase-independent mechanism. Chromatin immunoprecipitation analysis demonstrated that both Sp1 and hMI-ER1 are associated with the chromatin of the hmi-er1 promoter and that overexpression of hMI-ER1 in cell lines that allow Tet-On-inducible expression resulted in loss of detectable Sp1 from the endogenous hmi-er1 promoter. The mechanism by which this occurs does not involve binding of hMI-ER1 to cis-acting elements. Instead, we show that hMI-ER1 physically associates with Sp1 and that endogenous complexes containing the two proteins could be detected in vivo. Furthermore, hMI-ER1 specifically interferes with binding of Sp1 to the hmi-er1 minimal promoter as well as to an Sp1 consensus oligonucleotide. Deletion analysis revealed that this interaction occurs through a region containing the SANT domain of hMI-ER1. Together, these data reveal a functional role for the SANT domain in the action of co-repressor regulatory factors and suggest that the association of hMI-ER1 with Sp1 represents a novel mechanism for the negative regulation of Sp1 target promoters.
Collapse
Affiliation(s)
- Zhihu Ding
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, Newfoundland A1B 3V6, Canada
| | | | | | | |
Collapse
|
13
|
Teplitsky Y, Paterno GD, Gillespie LL. Proline365 is a critical residue for the activity of XMI-ER1 in Xenopus embryonic development. Biochem Biophys Res Commun 2003; 308:679-83. [PMID: 12927772 DOI: 10.1016/s0006-291x(03)01461-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xmi-er1 is an immediate-early gene encoding a transcriptional regulator whose expression is activated by fibroblast growth factor (FGF) during mesoderm induction in Xenopus. In this study, we examined the role of xmi-er1 in embryonic development and mesoderm induction and investigated the importance of various functional domains in the protein sequence. Overexpression of xmi-er1 in embryos resulted in truncations of the anteroposterior axis, with most of the abnormal embryos exhibiting deficiencies in both anterior and posterior structures. Whole mount in situ hybridization for the early mesodermal marker brachyury (Xbra) revealed a dramatic reduction of Xbra expression in xmi-er1-injected embryos, while mesoderm induction assays showed that overexpression of xmi-er1 significantly reduced the percentage of explants induced by FGF-2. Site-directed mutagenesis of several functional domains, including the ELM2 domain, the SANT domain, a putative MEK phosphorylation site, and a proline-rich region showed that only proline 365 in the proline-rich region is required for the effect on embryonic development and mesoderm induction. These data demonstrate that XMI-ER1 is a negative regulator of FGF, perhaps serving to limit the extent of mesoderm formation in vivo, and that this activity is mediated by proline 365.
Collapse
Affiliation(s)
- Yoella Teplitsky
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, NF, Canada A1B 3V6
| | | | | |
Collapse
|
14
|
Paterno GD, Ding Z, Lew YY, Nash GW, Mercer FC, Gillespie LL. Genomic organization of the human mi-er1 gene and characterization of alternatively spliced isoforms: regulated use of a facultative intron determines subcellular localization. Gene 2003; 295:79-88. [PMID: 12242014 DOI: 10.1016/s0378-1119(02)00823-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.
Collapse
Affiliation(s)
- Gary D Paterno
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, Newfoundland A1B 3V6, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Ding Z, Gillespie LL, Paterno GD. Human MI-ER1 alpha and beta function as transcriptional repressors by recruitment of histone deacetylase 1 to their conserved ELM2 domain. Mol Cell Biol 2003; 23:250-8. [PMID: 12482978 PMCID: PMC140656 DOI: 10.1128/mcb.23.1.250-258.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 06/27/2002] [Accepted: 10/02/2002] [Indexed: 11/20/2022] Open
Abstract
mi-er1 (previously called er1) was first isolated from Xenopus laevis embryonic cells as a novel fibroblast growth factor-regulated immediate-early gene. Xmi-er1 was shown to encode a nuclear protein with an N-terminal acidic transcription activation domain. The human orthologue of mi-er1 (hmi-er1) displays 91% similarity to the Xenopus sequence at the amino acid level and was shown to be upregulated in breast carcinoma cell lines and tumors. Alternative splicing at the 3' end of hmi-er1 produces two major isoforms, hMI-ER1alpha and hMI-ER1beta, which contain distinct C-terminal domains. In this study, we investigated the role of hMI-ER1alpha and hMI-ER1beta in the regulation of transcription. Using fusion proteins of hMI-ER1alpha or hMI-ER1beta tethered to the GAL4 DNA binding domain, we show that both isoforms, when recruited to the G5tkCAT minimal promoter, function to repress transcription. We demonstrate that this repressor activity is due to interaction and recruitment of a trichostatin A-sensitive histone deacetylase 1 (HDAC1). Furthermore, deletion analysis revealed that recruitment of HDAC1 to hMI-ER1alpha and hMI-ER1beta occurs through their common ELM2 domain. The ELM2 domain was first described in the Caenorhabditis elegans Egl-27 protein and is present in a number of SANT domain-containing transcription factors. This is the first report of a function for the ELM2 domain, highlighting its role in the regulation of transcription.
Collapse
Affiliation(s)
- Zhihu Ding
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada A1B 3V6
| | | | | |
Collapse
|
16
|
Post JN, Gillespie LL, Paterno GD. Nuclear localization signals in the Xenopus FGF embryonic early response 1 protein. FEBS Lett 2001; 502:41-5. [PMID: 11478945 DOI: 10.1016/s0014-5793(01)02653-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xenopus early response 1 (XER1) is a fibroblast growth factor-inducible transcription factor whose developmentally regulated nuclear localization is thought to be important in the control of cell differentation during embryonic development [Luchman et al., Mech. Dev. 80 (1999) 111-114]. Analysis of the XER1 amino acid sequence revealed four regions which contain potential nuclear localization sequences (NLSs). Using mutant XER1 proteins and portions of XER1 fused to green fluorescent protein (GFP) transfected into NIH 3T3 cells, we have determined that only one of these, NLS4, located near the carboxy-terminus of XER1, is necessary and sufficient for targeting exclusively to the nucleus. Of the other three predicted NLS sequences, only NLS1, consisting of the sequence (138)RPRRCK(143) was shown to function as a cryptic, weak NLS. NLS4 contains a core region consisting of the sequence (463)RPIKRQRMD(471) which is similar to the core NLS directing the human c-MYC protein to the nucleus. The core sequence is flanked by a predicted cdc2/protein kinase A phosphorylation motif, however mutation of the serine(472) to alanine or aspartic acid had no detectable effect on accumulation of GFP-XER1 fusion proteins in the nucleus, demonstrating that this putative phosphorylation site plays no role in regulating nuclear transport.
Collapse
Affiliation(s)
- J N Post
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Phillip Drive, St. John's, NF, Canada
| | | | | |
Collapse
|
17
|
Paterno GD, Ryan PJ, Kao KR, Gillespie LL. The VT+ and VT- isoforms of the fibroblast growth factor receptor type 1 are differentially expressed in the presumptive mesoderm of Xenopus embryos and differ in their ability to mediate mesoderm formation. J Biol Chem 2000; 275:9581-6. [PMID: 10734108 DOI: 10.1074/jbc.275.13.9581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we cloned a variant form of the type 1 fibroblast growth factor receptor (FGFR1), FGFR-VT-, from Xenopus embryos (Gillespie, L. L., Chen, G., and Paterno, G. D. (1995) J. Biol. Chem. 270, 22758-22763). This isoform differed from the reported FGFR1 sequence (FGFR-VT+) by a 2-amino acid deletion, Val(423)-Thr(424), in the juxtamembrane region. This deletion arises from the use of an alternate 5' splice donor site, and the activity of the VT+ and VT- forms of the FGFR1 was regulated by phosphorylation at this site. We have now investigated the expression pattern and function of these two isoforms in mesoderm formation in Xenopus embryos. Cells within the marginal zone are induced to form mesoderm during blastula stages. RNase protection analysis of blastula stage embryos revealed that the VT+ isoform was expressed throughout the embryo but that the VT- isoform was expressed almost exclusively in the marginal zone. The ratio of VT+:VT- transcripts in the marginal zone indicated that the VT+ form was predominant throughout blastula stages except for a brief interval, coinciding with the start of zygotic transcription, when a dramatic increase in VT- expression levels was detected. This increase could be mimicked in part by treatment of animal cap explants with FGF-2. Overexpression of the VT+ isoform in Xenopus embryos resulted in development of tadpoles with severe reductions in trunk and tail structures, while embryos overexpressing the VT- isoform developed normally. A standard mesoderm induction assay revealed that a 10-fold higher concentration of FGF-2 was required to reach 50% induction in VT+-overexpressing animal cap explants compared with those overexpressing the VT- isoform. Furthermore, little or no expression of the panmesodermal marker Brachyury (Xbra) was detected in VT+-overexpressing embryos, while VT--overexpressing embryos showed normal staining. This demonstrates that VT+ overexpression had a negative effect on mesoderm formation in vivo. These data are consistent with a model in which mesoderm formation in vivo is regulated, at least in part, by the relative expression levels of the VT+ and VT- isoforms.
Collapse
Affiliation(s)
- G D Paterno
- Terry Fox Cancer Research Laboratories, Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3V6, Canada
| | | | | | | |
Collapse
|