1
|
Interconnected Set of Enzymes Provide Lysine Biosynthetic Intermediates and Ornithine Derivatives as Key Precursors for the Biosynthesis of Bioactive Secondary Metabolites. Antibiotics (Basel) 2023; 12:antibiotics12010159. [PMID: 36671360 PMCID: PMC9854754 DOI: 10.3390/antibiotics12010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Bacteria, filamentous fungi, and plants synthesize thousands of secondary metabolites with important biological and pharmacological activities. The biosynthesis of these metabolites is performed by networks of complex enzymes such as non-ribosomal peptide synthetases, polyketide synthases, and terpenoid biosynthetic enzymes. The efficient production of these metabolites is dependent upon the supply of precursors that arise from primary metabolism. In the last decades, an impressive array of biosynthetic enzymes that provide specific precursors and intermediates leading to secondary metabolites biosynthesis has been reported. Suitable knowledge of the elaborated pathways that synthesize these precursors or intermediates is essential for advancing chemical biology and the production of natural or semisynthetic biological products. Two of the more prolific routes that provide key precursors in the biosynthesis of antitumor, immunosuppressant, antifungal, or antibacterial compounds are the lysine and ornithine pathways, which are involved in the biosynthesis of β-lactams and other non-ribosomal peptides, and bacterial and fungal siderophores. Detailed analysis of the molecular genetics and biochemistry of the enzyme system shows that they are formed by closely related components. Particularly the focus of this study is on molecular genetics and the enzymatic steps that lead to the formation of intermediates of the lysine pathway, such as α-aminoadipic acid, saccharopine, pipecolic acid, and related compounds, and of ornithine-derived molecules, such as N5-Acetyl-N5-Hydroxyornithine and N5-anhydromevalonyl-N5-hydroxyornithine, which are precursors of siderophores. We provide evidence that shows interesting functional relationships between the genes encoding the enzymes that synthesize these products. This information will contribute to a better understanding of the possibilities of advancing the industrial applications of synthetic biology.
Collapse
|
2
|
Sastoque A, Triana S, Ehemann K, Suarez L, Restrepo S, Wösten H, de Cock H, Fernández-Niño M, González Barrios AF, Celis Ramírez AM. New Therapeutic Candidates for the Treatment of Malassezia pachydermatis -Associated Infections. Sci Rep 2020; 10:4860. [PMID: 32184419 PMCID: PMC7078309 DOI: 10.1038/s41598-020-61729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 11/26/2022] Open
Abstract
The opportunistic pathogen Malassezia pachydermatis causes bloodstream infections in preterm infants or individuals with immunodeficiency disorders and has been associated with a broad spectrum of diseases in animals such as seborrheic dermatitis, external otitis and fungemia. The current approaches to treat these infections are failing as a consequence of their adverse effects, changes in susceptibility and antifungal resistance. Thus, the identification of novel therapeutic targets against M. pachydermatis infections are highly relevant. Here, Gene Essentiality Analysis and Flux Variability Analysis was applied to a previously reported M. pachydermatis metabolic network to identify enzymes that, when absent, negatively affect biomass production. Three novel therapeutic targets (i.e., homoserine dehydrogenase (MpHSD), homocitrate synthase (MpHCS) and saccharopine dehydrogenase (MpSDH)) were identified that are absent in humans. Notably, L-lysine was shown to be an inhibitor of the enzymatic activity of MpHCS and MpSDH at concentrations of 1 mM and 75 mM, respectively, while L-threonine (1 mM) inhibited MpHSD. Interestingly, L- lysine was also shown to inhibit M. pachydermatis growth during in vitro assays with reference strains and canine isolates, while it had a negligible cytotoxic activity on HEKa cells. Together, our findings form the bases for the development of novel treatments against M. pachydermatis infections.
Collapse
Affiliation(s)
- Angie Sastoque
- Instituto de Biotecnología (IBUN), Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 11001, Colombia
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Sergio Triana
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Kevin Ehemann
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Lina Suarez
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Silvia Restrepo
- Laboratorio de Micología y Fitopatología (LAMFU), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Han Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Hans de Cock
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Miguel Fernández-Niño
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Bogotá, 111711, Colombia.
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, 111711, Colombia.
| |
Collapse
|
3
|
Chen Y, Zuo R, Zhu Q, Sun Y, Li M, Dong Y, Ru Y, Zhang H, Zheng X, Zhang Z. MoLys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 2014; 67:51-7. [DOI: 10.1016/j.fgb.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/16/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
|
4
|
A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum. Appl Microbiol Biotechnol 2012; 97:795-808. [DOI: 10.1007/s00253-012-4256-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
5
|
Weber SS, Bovenberg RAL, Driessen AJM. Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum. Biotechnol J 2011; 7:225-36. [PMID: 22057844 DOI: 10.1002/biot.201100065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/12/2011] [Accepted: 08/24/2011] [Indexed: 11/08/2022]
Abstract
Industrial production of β-lactam antibiotics by the filamentous fungus Penicillium chrysogenum is based on successive classical strain improvement cycles. This review summarizes our current knowledge on the results of this classical strain improvement process, and discusses avenues to improve β-lactam biosynthesis and to exploit P. chrysogenum as an industrial host for the production of other antibiotics and peptide products. Genomic and transcriptional analysis of strain lineages has led to the identification of several important alterations in high-yielding strains, including the amplification of the penicillin biosynthetic gene cluster, elevated transcription of genes involved in biosynthesis of penicillin and amino acid precursors, and genes encoding microbody proliferation factors. In recent years, successful metabolic engineering and synthetic biology approaches have resulted in the redirection of the penicillin pathway towards the production of cephalosporins. This sets a new direction in industrial antibiotics productions towards more sustainable methods for the fermentative production of unnatural antibiotics and related compounds.
Collapse
Affiliation(s)
- Stefan S Weber
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Center for Genomics of Industrial Fermentation, AG Groningen, The Netherlands
| | | | | |
Collapse
|
6
|
Evaluation of lysine biosynthesis as an antifungal drug target: biochemical characterization of Aspergillus fumigatus homocitrate synthase and virulence studies. EUKARYOTIC CELL 2010; 9:878-93. [PMID: 20363898 DOI: 10.1128/ec.00020-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aspergillus fumigatus is the main cause of severe invasive aspergillosis. To combat this life-threatening infection, only limited numbers of antifungals are available. The fungal alpha-aminoadipate pathway, which is essential for lysine biosynthesis, has been suggested as a potential antifungal drug target. Here we reanalyzed the role of this pathway for establishment of invasive aspergillosis in murine models. We selected the first pathway-specific enzyme, homocitrate synthase (HcsA), for biochemical characterization and for study of its role in virulence. A. fumigatus HcsA was specific for the substrates acetyl-coenzyme A (acetyl-CoA) and alpha-ketoglutarate, and its activity was independent of any metal ions. In contrast to the case for other homocitrate synthases, enzymatic activity was hardly affected by lysine and gene expression increased under conditions of lysine supplementation. An hcsA deletion mutant was lysine auxotrophic and unable to germinate on unhydrolyzed proteins given as a sole nutrient source. However, the addition of partially purified A. fumigatus proteases restored growth, confirming the importance of free lysine to complement auxotrophy. In contrast to lysine-auxotrophic mutants from other fungal species, the mutant grew on blood and serum, indicating the existence of high-affinity lysine uptake systems. In agreement, although the virulence of the mutant was strongly attenuated in murine models of bronchopulmonary aspergillosis, virulence was partially restored by lysine supplementation via the drinking water. Additionally, in contrast to the case for attenuated pulmonary infections, the mutant retained full virulence when injected intravenously. Therefore, we concluded that inhibition of fungal lysine biosynthesis, at least for disseminating invasive aspergillosis, does not appear to provide a suitable target for new antifungals.
Collapse
|
7
|
Teves F, Lamas-Maceiras M, García-Estrada C, Casqueiro J, Naranjo L, Ullán RV, Scervino JM, Wu X, Velasco-Conde T, Martín JF. Transcriptional upregulation of four genes of the lysine biosynthetic pathway by homocitrate accumulation in Penicillium chrysogenum: homocitrate as a sensor of lysine-pathway distress. MICROBIOLOGY-SGM 2009; 155:3881-3892. [PMID: 19696106 DOI: 10.1099/mic.0.031005-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The lysine biosynthetic pathway has to supply large amounts of alpha-aminoadipic acid for penicillin biosynthesis in Penicillium chrysogenum. In this study, we have characterized the P. chrysogenum L2 mutant, a lysine auxotroph that shows highly increased expression of several lysine biosynthesis genes (lys1, lys2, lys3, lys7). The L2 mutant was found to be deficient in homoaconitase activity since it was complemented by the Aspergillus nidulans lysF gene. We have cloned a gene (named lys3) that complements the L2 mutation by transformation with a P. chrysogenum genomic library, constructed in an autonomous replicating plasmid. The lys3-encoded protein showed high identity to homoaconitases. In addition, we cloned the mutant lys3 allele from the L2 strain that showed a G(1534) to A(1534) point mutation resulting in a Gly(495) to Asp(495) substitution. This mutation is located in a highly conserved region adjacent to two of the three cysteine residues that act as ligands to bind the iron-sulfur cluster required for homoaconitase activity. The L2 mutant accumulates homocitrate. Deletion of the lys1 gene (homocitrate synthase) in the L2 strain prevented homocitrate accumulation and reverted expression levels of the four lysine biosynthesis genes tested to those of the parental prototrophic strain. Homocitrate accumulation seems to act as a sensor of lysine-pathway distress, triggering overexpression of four of the lysine biosynthesis genes.
Collapse
Affiliation(s)
- Franco Teves
- Área de Microbiología, Departamento de Biología Molecular, Facultad de CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Mónica Lamas-Maceiras
- Área de Microbiología, Departamento de Biología Molecular, Facultad de CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Carlos García-Estrada
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | - Javier Casqueiro
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain.,Área de Microbiología, Departamento de Biología Molecular, Facultad de CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Leopoldo Naranjo
- Área de Microbiología, Departamento de Biología Molecular, Facultad de CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Ricardo V Ullán
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | - José-Martín Scervino
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | - Xiaobin Wu
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | - Tania Velasco-Conde
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain
| | - Juan F Martín
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av. Real, 1, 24006 León, Spain.,Área de Microbiología, Departamento de Biología Molecular, Facultad de CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| |
Collapse
|
8
|
Abstract
Penicillins and cephalosporins are β‐lactam antibiotics widely used in human medicine. The biosynthesis of these compounds starts by the condensation of the amino acids l‐α‐aminoadipic acid, l‐cysteine and l‐valine to form the tripeptide δ‐l‐α‐aminoadipyl‐l‐cysteinyl‐d‐valine catalysed by the non‐ribosomal peptide ‘ACV synthetase’. Subsequently, this tripeptide is cyclized to isopenicillin N that in Penicillium is converted to hydrophobic penicillins, e.g. benzylpenicillin. In Acremonium and in streptomycetes, isopenicillin N is later isomerized to penicillin N and finally converted to cephalosporin. Expression of genes of the penicillin (pcbAB, pcbC, pendDE) and cephalosporin clusters (pcbAB, pcbC, cefD1, cefD2, cefEF, cefG) is controlled by pleitropic regulators including LaeA, a methylase involved in heterochromatin rearrangement. The enzymes catalysing the last two steps of penicillin biosynthesis (phenylacetyl‐CoA ligase and isopenicillin N acyltransferase) are located in microbodies, as shown by immunoelectron microscopy and microbodies proteome analyses. Similarly, the Acremonium two‐component CefD1–CefD2 epimerization system is also located in microbodies. This compartmentalization implies intracellular transport of isopenicillin N (in the penicillin pathway) or isopenicillin N and penicillin N in the cephalosporin route. Two transporters of the MFS family cefT and cefM are involved in transport of intermediates and/or secretion of cephalosporins. However, there is no known transporter of benzylpenicillin despite its large production in industrial strains.
Collapse
Affiliation(s)
- Juan F Martín
- Institute of Biotechnology of León, Science Park, Avda. Real 1, 24006 León, Spain.
| | | | | |
Collapse
|
9
|
Gifford TD, Cooper CR. Karyotype determination and gene mapping in two clinical isolates ofPenicillium marneffei. Med Mycol 2009; 47:286-95. [DOI: 10.1080/13693780802291437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Demain AL, Vaishnav P. Involvement of nitrogen-containing compounds in beta-lactam biosynthesis and its control. Crit Rev Biotechnol 2006; 26:67-82. [PMID: 16809098 DOI: 10.1080/07388550600671466] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biosynthesis of beta-lactam antibiotics by fungi and actinomycetes is markedly affected by compounds containing nitrogen. The different processes employed by the spectrum of microbes capable of making these valuable compounds are affected differently by particular compounds. Ammonium ions, except at very low concentrations, exert negative effects via nitrogen metabolite repression, sometimes involving the nitrogen regulatory gene nre. Certain amino acids are precursors or inducers, whereas others are involved in repression and, in certain cases, as inhibitors of biosynthetic enzymes and of enzymes supplying precursors. The most important amino acids from the viewpoint of regulation are lysine, methionine, glutamate and valine. Surprisingly, diamines such as diaminopropane, putrescine and cadaverine induce cephamycin production by actinomycetes. In addition to penicillins and cephalosporins made by fungi and cephamycins made by actinomycetes, other beta-lactams are made by actinomycetes and unicellular bacteria. These include clavams (e.g., clavulanic acid), carbapenems (e.g., thienamycin), nocardicins and monobactams. Here also, amino acids are precursors and inhibitors, but only little is known about regulation. In the case of the simplest carbapenem made by unicellular bacteria, i.e., 1-carba-2-em-3-carboxylic acid, quorum sensors containing homoserine lactone are inducers.
Collapse
Affiliation(s)
- Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA.
| | | |
Collapse
|
11
|
Tavassoli A, Duffy JES, Young DW. Synthesis of trimethyl (2S,3R)- and (2R,3R)-[2-2H1]-homocitrates and dimethyl (2S,3R)- and (2R,3R)-[2-2H1]-homocitrate lactones-an assay for the stereochemical outcome of the reaction catalysed both by homocitrate synthase and by the Nif-V protein. Org Biomol Chem 2006; 4:569-80. [PMID: 16446817 DOI: 10.1039/b515937g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trimethyl (3R)-homocitrate 17, trimethyl (2S,3R)-[2-2H1]-homocitrate 17a and (2R,3R)-[2-2H1]-homocitrate 17b, as well as dimethyl (3R)-homocitrate lactone 18, (2S,3R)-[2-2H1]-homocitric lactone 18a and (2R,3R)-[2-2H1]-homocitric lactone 18b have been synthesised. D-quinic acid 12 was used as the source of the (3R)-centre in the unlabelled target compounds 17 and 18. (2)-Shikimic acid 19 and the (2)-[2-2H]-shikimic acid derivative 32 respectively were used in the synthesis of the labelled compounds. In the latter syntheses, Sharpless directed epoxidation of the olefin in the 5-deoxy ester diols 23 and 35 ensured a reaction from the same face as the allylic and homoallylic alcohols, and the reduction of the protected epoxides 25 and 37 ensured that the label was introduced in a stereoselective manner. The 1H NMR spectra of the labelled products present an assay for the stereochemistry of the biological reactions catalysed by homocitrate synthase and by the protein from the nifV gene.
Collapse
Affiliation(s)
- Ali Tavassoli
- Department of Chemistry, University of Sussex, Falmer, Brighton, UKBN1 9QJ
| | | | | |
Collapse
|
12
|
Valmaseda EMMD, Campoy S, Naranjo L, Casqueiro J, Martín JF. Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an omega-aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the omega-aminotransferase. Mol Genet Genomics 2005; 274:272-82. [PMID: 16049680 DOI: 10.1007/s00438-005-0018-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
The biosynthesis and catabolism of lysine in Penicillium chrysogenum is of great interest because these pathways provide 2-aminoadipic acid, a precursor of the tripeptide delta-L-2-aminoadipyl-L-cysteinyl-D-valine that is an intermediate in penicillin biosynthesis. In vivo conversion of labelled L-lysine into two different intermediates was demonstrated by HPLC analysis of the intracellular amino acid pool. L-lysine is catabolized to 2-aminoadipic acid by an omega-aminotransferase and to saccharopine by a lysine-2-ketoglutarate reductase. In lysine-containing medium both activities were expressed at high levels, but the omega-aminotransferase activity, in particular, decreased sharply when ammonium was used as the nitrogen source. The omega-aminotransferase was partially purified, and found to accept L-lysine, L-ornithine and, to a lesser extent, N-acetyl-L-lysine as amino-group donors. 2-Ketoglutarate, 2-ketoadipate and, to a lesser extent, pyruvate served as amino group acceptors. This pattern suggests that this enzyme, previously designated as a lysine-6-aminotransferase, is actually an omega-aminotransferase. When 2-ketoadipate is used as substrate, the reaction product is 2-aminoadipic acid, which contributes to the pool of this intermediate available for penicillin biosynthesis. The N-terminal end of the purified 45-kDa omega-aminotransferase was sequenced and was found to be similar to the corresponding segment of the OAT1 protein of Emericella (Aspergillus) nidulans. This information was used to clone the gene encoding this enzyme.
Collapse
Affiliation(s)
- E M Martín de Valmaseda
- Area de Microbiología, Fac. CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana, s/n, Spain
| | | | | | | | | |
Collapse
|
13
|
Tavassoli A, Duffy JE, Young DW. Synthesis of trimethyl (2S,3R)- and (2R,3R)-[2-2H1]-homocitrates and the corresponding dimethyl ester lactones—towards elucidating the stereochemistry of the reaction catalysed by homocitrate synthase and by the Nif-V protein. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.01.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Wulandari AP, Miyazaki J, Kobashi N, Nishiyama M, Hoshino T, Yamane H. Characterization of bacterial homocitrate synthase involved in lysine biosynthesis. FEBS Lett 2002; 522:35-40. [PMID: 12095615 DOI: 10.1016/s0014-5793(02)02877-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In Thermus thermophilus homocitrate synthase (HCS) catalyzes the initial reaction of lysine biosynthesis through alpha-aminoadipic acid, synthesis of homocitrate from 2-oxoglutarate and acetyl-CoA. HCS is strongly inhibited by lysine, indicating that the biosynthesis is regulated by the endproduct at the initial reaction in the pathway. HCS also catalyzes the reaction using oxaloacetate in place of 2-oxoglutarate as a substrate, similar to citrate synthase in the tricarboxylic acid cycle. Several other properties of Thermus HCS and an evolutionary relationship of the biosynthetic pathway in the bacterium to other metabolic pathways are also described.
Collapse
Affiliation(s)
- Asri Peni Wulandari
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Naranjo L, Martin de Valmaseda E, Bañuelos O, Lopez P, Riaño J, Casqueiro J, Martin JF. Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. J Bacteriol 2001; 183:7165-72. [PMID: 11717275 PMCID: PMC95565 DOI: 10.1128/jb.183.24.7165-7172.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pipecolic acid is a component of several secondary metabolites in plants and fungi. This compound is useful as a precursor of nonribosomal peptides with novel pharmacological activities. In Penicillium chrysogenum pipecolic acid is converted into lysine and complements the lysine requirement of three different lysine auxotrophs with mutations in the lys1, lys2, or lys3 genes allowing a slow growth of these auxotrophs. We have isolated two P. chrysogenum mutants, named 7.2 and 10.25, that are unable to convert pipecolic acid into lysine. These mutants lacked, respectively, the pipecolate oxidase that converts pipecolic acid into piperideine-6-carboxylic acid and the saccharopine reductase that catalyzes the transformation of piperideine-6-carboxylic acid into saccharopine. The 10.25 mutant was unable to grow in Czapek medium supplemented with alpha-aminoadipic acid. A DNA fragment complementing the 10.25 mutation has been cloned; sequence analysis of the cloned gene (named lys7) revealed that it encoded a protein with high similarity to the saccharopine reductase from Neurospora crassa, Magnaporthe grisea, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Complementation of the 10.25 mutant with the cloned gene restored saccharopine reductase activity, confirming that lys7 encodes a functional saccharopine reductase. Our data suggest that in P. chrysogenum the conversion of pipecolic acid into lysine proceeds through the transformation of pipecolic acid into piperideine-6-carboxylic acid, saccharopine, and lysine by the consecutive action of pipecolate oxidase, saccharopine reductase, and saccharopine dehydrogenase.
Collapse
Affiliation(s)
- L Naranjo
- Area of Microbiology, Faculty of Biology and Environmental Sciences, University of León, León, Spain
| | | | | | | | | | | | | |
Collapse
|