1
|
Kawabe Y, Du Q, Narita TB, Bell C, Schilde C, Kin K, Schaap P. Emerging roles for diguanylate cyclase during the evolution of soma in dictyostelia. BMC Ecol Evol 2023; 23:60. [PMID: 37803310 PMCID: PMC10559540 DOI: 10.1186/s12862-023-02169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Cyclic di-guanylate (c-di-GMP), synthesized by diguanylate cyclase, is a major second messenger in prokaryotes, where it triggers biofilm formation. The dictyostelid social amoebas acquired diguanylate cyclase (dgcA) by horizontal gene transfer. Dictyostelium discoideum (Ddis) in taxon group 4 uses c-di-GMP as a secreted signal to induce differentiation of stalk cells, the ancestral somatic cell type that supports the propagating spores. We here investigated how this role for c-di-GMP evolved in Dictyostelia by exploring dgcA function in the group 2 species Polysphondylium pallidum (Ppal) and in Polysphondylium violaceum (Pvio), which resides in a small sister clade to group 4. RESULTS Similar to Ddis, dgcA is upregulated after aggregation in Ppal and Pvio and predominantly expressed in the anterior region and stalks of emerging fruiting bodies. DgcA null mutants in Ppal and Pvio made fruiting bodies with very long and thin stalks and only few spores and showed delayed aggregation and larger aggregates, respectively. Ddis dgcA- cells cannot form stalks at all, but showed no aggregation defects. The long, thin stalks of Ppal and Pvio dgcA- mutants were also observed in acaA- mutants in these species. AcaA encodes adenylate cyclase A, which mediates the effects of c-di-GMP on stalk induction in Ddis. Other factors that promote stalk formation in Ddis are DIF-1, produced by the polyketide synthase StlB, low ammonia, facilitated by the ammonia transporter AmtC, and high oxygen, detected by the oxygen sensor PhyA (prolyl 4-hydroxylase). We deleted the single stlB, amtC and phyA genes in Pvio wild-type and dgcA- cells. Neither of these interventions affected stalk formation in Pvio wild-type and not or very mildly exacerbated the long thin stalk phenotype of Pvio dgcA- cells. CONCLUSIONS The study reveals a novel role for c-di-GMP in aggregation, while the reduced spore number in Pvio and Ppal dgcA- is likely an indirect effect, due to depletion of the cell pool by the extended stalk formation. The results indicate that in addition to c-di-GMP, Dictyostelia ancestrally used an as yet unknown factor for induction of stalk formation. The activation of AcaA by c-di-GMP is likely conserved throughout Dictyostelia.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Qingyou Du
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Takaaki B Narita
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, 275-0016, Japan
| | - Craig Bell
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- West of Scotland Innovation Hub, NHS Greater Glasgow and Clyde, Queen Elizabeth University Hospital, Glasgow, G514LB, UK
| | - Christina Schilde
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, DD14HN, UK
| | - Koryu Kin
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
| | - Pauline Schaap
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK.
| |
Collapse
|
2
|
Du Q, Schaap P. Autophagy of the somatic stalk cells likely nurses the propagating spores of Dictyostelid social amoebas. OPEN RESEARCH EUROPE 2022; 2:104. [PMID: 36860212 PMCID: PMC7614253 DOI: 10.12688/openreseurope.14947.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
Background: Autophagy (self-feeding) assists survival of starving cells by partial self-digestion, while dormancy as cysts, spores or seeds enables long-term survival. Starving Dictyostelium amoebas construct multicellular fruiting bodies with spores and stalk cells, with many Dictyostelia still able to encyst individually like their single-celled ancestors. While autophagy mostly occurs in the somatic stalk cells, autophagy gene knock-outs in Dictyostelium discoideum ( D. discoideum) formed no spores and lacked cAMP induction of prespore gene expression. Methods: To investigate whether autophagy also prevents encystation, we knocked-out autophagy genes atg5 and atg7 in the dictyostelid Polysphondylium pallidum, which forms both spores and cysts. We measured spore and cyst differentiation and viability in the knock-out as well as stalk and spore gene expression and its regulation by cAMP. We tested a hypothesis that spores require materials derived from autophagy in stalk cells. Sporulation requires secreted cAMP acting on receptors and intracellular cAMP acting on PKA. We compared the morphology and viability of spores developed in fruiting bodies with spores induced from single cells by stimulation with cAMP and 8Br-cAMP, a membrane-permeant PKA agonist. Results: Loss of autophagy in P. pallidum reduced but did not prevent encystation. Stalk cells still differentiated but stalks were disorganised. However, no spores were formed at all and cAMP-induced prespore gene expression was lost. D. discoideum spores induced in vitro by cAMP and 8Br-cAMP were smaller and rounder than spores formed multicellularly and while they were not lysed by detergent they germinated not (strain Ax2) or poorly (strain NC4), unlike spores formed in fruiting bodies. Conclusions: The stringent requirement of sporulation on both multicellularity and autophagy, which occurs mostly in stalk cells, suggests that stalk cells nurse the spores through autophagy. This highlights autophagy as a major cause for somatic cell evolution in early multicellularity.
Collapse
Affiliation(s)
- Qingyou Du
- School of Life Sciences, University of Dundee, Dundee, Angus, DD15EH, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, Angus, DD15EH, UK
| |
Collapse
|
3
|
Kawabe Y, Schaap P. Adenylate cyclase A amplification and functional diversification during Polyspondylium pallidum development. EvoDevo 2022; 13:18. [PMID: 36261860 PMCID: PMC9583560 DOI: 10.1186/s13227-022-00203-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background In Dictyostelium discoideum (Ddis), adenylate cyclase A (ACA) critically generates the cAMP oscillations that coordinate aggregation and morphogenesis. Unlike group 4 species like Ddis, other groups do not use extracellular cAMP to aggregate. However, deletion of cAMP receptors (cARs) or extracellular phosphodiesterase (PdsA) in Polyspondylium pallidum (Ppal, group 2) blocks fruiting body formation, suggesting that cAMP oscillations ancestrally control post-aggregative morphogenesis. In group 2, the acaA gene underwent several duplications. We deleted the three Ppal aca genes to identify roles for either gene and tested whether Ppal shows transient cAMP-induced cAMP accumulation, which underpins oscillatory cAMP signalling. Results In contrast to Ddis, pre-aggregative Ppal cells did not produce a pulse of cAMP upon stimulation with the cAR agonist 2′H-cAMP, but acquired this ability after aggregation. Deletion of Ppal aca1, aca2 and aca3 yielded different phenotypes. aca1ˉ cells showed relatively thin stalks, aca2ˉ showed delayed secondary sorogen formation and aca3ˉ formed less aggregation centers. The aca1ˉaca2ˉ and aca1ˉaca3ˉ mutants combined individual defects, while aca2ˉaca3ˉ and aca1ˉaca3ˉaca2ˉ additionally showed > 24 h delay in aggregation, with only few aggregates with fragmenting streams being formed. The fragments developed into small fruiting bodies with stalk and spore cells. Aggregation was restored in aca2ˉaca3ˉ and aca1ˉaca3ˉaca2ˉ by 2.5 mM 8Br-cAMP, a membrane-permeant activator of cAMP-dependent protein kinase (PKA). Like Ddis, Ppal sorogens also express the adenylate cyclases ACR and ACG. We found that prior to aggregation, Ddis acaˉ/ACG cells produced a pulse of cAMP upon stimulation with 2′H-cAMP, indicating that cAMP oscillations may not be dependent on ACA alone. Conclusions The three Ppal replicates of acaA perform different roles in stalk morphogenesis, secondary branch formation and aggregation, but act together to enable development by activating PKA. While even an aca1ˉaca3ˉaca2ˉ mutant still forms (some) fruiting bodies, suggesting little need for ACA-induced cAMP oscillations in this process, we found that ACG also mediated transient cAMP-induced cAMP accumulation. It, therefore, remains likely that post-aggregative Ppal morphogenesis is organized by cAMP oscillations, favouring a previously proposed model, where cAR-regulated cAMP hydrolysis rather than its synthesis dominates oscillatory behaviour. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-022-00203-7.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, DD15EH, UK.
| |
Collapse
|
4
|
Kawabe Y, Du Q, Schilde C, Schaap P. Evolution of multicellularity in Dictyostelia. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:359-369. [PMID: 31840775 PMCID: PMC6978153 DOI: 10.1387/ijdb.190108ps] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The well-orchestrated multicellular life cycle of Dictyostelium discoideum has fascinated biologists for over a century. Self-organisation of its amoebas into aggregates, migrating slugs and fruiting structures by pulsatile cAMP signalling and their ability to follow separate differentiation pathways in well-regulated proportions continue to be topics under investigation. A striking aspect of D. discoideum development is the recurrent use of cAMP as chemoattractant, differentiation inducing signal and second messenger for other signals that control the developmental programme. D. discoideum is one of >150 species of Dictyostelia and aggregative life styles similar to those of Dictyostelia evolved many times in eukaryotes. Here we review experimental studies investigating how phenotypic complexity and cAMP signalling co-evolved in Dictyostelia. In addition, we summarize comparative genomic studies of multicellular Dictyostelia and unicellular Amoebozoa aimed to identify evolutionary conservation and change in all genes known to be essential for D. discoideum development.
Collapse
|
5
|
Narita TB, Kawabe Y, Kin K, Gibbs RA, Kuspa A, Muzny DM, Richards S, Strassmann JE, Sucgang R, Worley KC, Schaap P. Loss of the Polyketide Synthase StlB Results in Stalk Cell Overproduction in Polysphondylium violaceum. Genome Biol Evol 2020; 12:674-683. [PMID: 32386295 PMCID: PMC7259674 DOI: 10.1093/gbe/evaa079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Major phenotypic innovations in social amoeba evolution occurred at the transition between the Polysphondylia and group 4 Dictyostelia, which comprise the model organism Dictyostelium discoideum, such as the formation of a new structure, the basal disk. Basal disk differentiation and robust stalk formation require the morphogen DIF-1, synthesized by the polyketide synthase StlB, the des-methyl-DIF-1 methyltransferase DmtA, and the chlorinase ChlA, which are conserved throughout Dictyostelia. To understand how the basal disk and other innovations evolved in group 4, we sequenced and annotated the Polysphondylium violaceum (Pvio) genome, performed cell type-specific transcriptomics to identify cell-type marker genes, and developed transformation and gene knock-out procedures for Pvio. We used the novel methods to delete the Pvio stlB gene. The Pvio stlB- mutants formed misshapen curly sorogens with thick and irregular stalks. As fruiting body formation continued, the upper stalks became more regular, but structures contained 40% less spores. The stlB- sorogens overexpressed a stalk gene and underexpressed a (pre)spore gene. Normal fruiting body formation and sporulation were restored in Pvio stlB- by including DIF-1 in the supporting agar. These data indicate that, although conserved, stlB and its product(s) acquired both a novel role in the group 4 Dictyostelia and a role opposite to that in its sister group.
Collapse
Affiliation(s)
- Takaaki B Narita
- School of Life Sciences, University of Dundee, United Kingdom,Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, Japan
| | | | - Koryu Kin
- School of Life Sciences, University of Dundee, United Kingdom
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Adam Kuspa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas,The Welch Foundation, Houston, TX
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephen Richards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas,Genome Sequencing Center, University of California Davis, Davis, CA
| | | | - Richard Sucgang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, United Kingdom,Corresponding author: E-mail:
| |
Collapse
|
6
|
Kawabe Y, Morio T, Tanaka Y, Schaap P. Glycogen synthase kinase 3 promotes multicellular development over unicellular encystation in encysting Dictyostelia. EvoDevo 2018; 9:12. [PMID: 29760875 PMCID: PMC5941370 DOI: 10.1186/s13227-018-0101-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glycogen synthase kinase 3 (GSK3) regulates many cell fate decisions in animal development. In multicellular structures of the group 4 dictyostelid Dictyostelium discoideum, GSK3 promotes spore over stalk-like differentiation. We investigated whether, similar to other sporulation-inducing genes such as cAMP-dependent protein kinase (PKA), this role of GSK3 is derived from an ancestral role in encystation of unicellular amoebas. RESULTS We deleted GSK3 in Polysphondylium pallidum, a group 2 dictyostelid which has retained encystation as an alternative survival strategy. Loss of GSK3 inhibited cytokinesis of cells in suspension, as also occurs in D. discoideum, but did not affect spore or stalk differentiation in P. pallidum. However, gsk3- amoebas entered into encystation under conditions that in wild type favour aggregation and fruiting body formation. The gsk3- cells were hypersensitive to osmolytes, which are known to promote encystation, and to cyst-inducing factors that are secreted during starvation. GSK3 was not itself regulated by these factors, but inhibited their effects. CONCLUSIONS Our data show that GSK3 has a deeply conserved role in controlling cytokinesis, but not spore differentiation in Dictyostelia. Instead, in P. pallidum, one of many Dictyostelia that like their solitary ancestors can still encyst to survive starvation, GSK3 promotes multicellular development into fruiting bodies over unicellular encystment.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- 0000 0004 0397 2876grid.8241.fSchool of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee, DD15EH UK ,0000 0001 2369 4728grid.20515.33Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Takahiro Morio
- 0000 0001 2369 4728grid.20515.33Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Yoshimasa Tanaka
- 0000 0001 2369 4728grid.20515.33Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Pauline Schaap
- 0000 0004 0397 2876grid.8241.fSchool of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee, DD15EH UK
| |
Collapse
|
7
|
A conserved signalling pathway for amoebozoan encystation that was co-opted for multicellular development. Sci Rep 2015; 5:9644. [PMID: 25881075 PMCID: PMC4399386 DOI: 10.1038/srep09644] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/04/2015] [Indexed: 11/08/2022] Open
Abstract
The evolution of multicellularity required novel mechanisms for intercellular communication, but their origin is unclear. Dictyostelium cells exchange signals to position specialized cell types in multicellular spore-bearing structures. These signals activate complex pathways that converge on activation of cAMP-dependent protein kinase (PKA). Genes controlling PKA were detected in the Dictyostelid unicellular ancestors, which like most protists form dormant cysts when experiencing environmental stress. We deleted PKA and the adenylate cyclases AcrA and AcgA, which synthesize cAMP for PKA activation, in the intermediate species Polysphondylium, which can develop into either cysts or into multicellular structures. Loss of PKA prevented multicellular development, but also completely blocked encystation. Loss of AcrA and AcgA, both essential for sporulation in Dictyostelium, did not affect Polysphondylium sporulation, but prevented encystation. We conclude that multicellular cAMP signalling was co-opted from PKA regulation of protist encystation with progressive refunctionalization of pathway components.
Collapse
|
8
|
Evolutionary reconstruction of pattern formation in 98 Dictyostelium species reveals that cell-type specialization by lateral inhibition is a derived trait. EvoDevo 2014; 5:34. [PMID: 25904998 PMCID: PMC4406040 DOI: 10.1186/2041-9139-5-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background Multicellularity provides organisms with opportunities for cell-type specialization, but requires novel mechanisms to position correct proportions of different cell types throughout the organism. Dictyostelid social amoebas display an early form of multicellularity, where amoebas aggregate to form fruiting bodies, which contain only spores or up to four additional cell-types. These cell types will form the stalk and support structures for the stalk and spore head. Phylogenetic inference subdivides Dictyostelia into four major groups, with the model organism D. discoideum residing in group 4. In D. discoideum differentiation of its five cell types is dominated by lateral inhibition-type mechanisms that trigger scattered cell differentiation, with tissue patterns being formed by cell sorting. Results To reconstruct the evolution of pattern formation in Dictyostelia, we used cell-type specific antibodies and promoter-reporter fusion constructs to investigate pattern formation in 98 species that represent all groupings. Our results indicate that in all early diverging Dictyostelia and most members of groups 1–3, cells differentiate into maximally two cell types, prestalk and prespore cells, with pattern formation being dominated by position-dependent transdifferentiation of prespore cells into prestalk cells. In clade 2A, prestalk and stalk cell differentiation are lost and the prespore cells construct an acellular stalk. Group 4 species set aside correct proportions of prestalk and prespore cells early in development, and differentiate into up to three more supporting cell types. Conclusions Our experiments show that positional transdifferentiation is the ancestral mode of pattern formation in Dictyostelia. The early specification of a prestalk population equal to the number of stalk cells is a derived trait that emerged in group 4 and a few late diverging species in the other groups. Group 4 spore masses are larger than those of other groups and the differentiation of supporting cell types by lateral inhibition may have facilitated this increase in size. The signal DIF-1, which is secreted by prespore cells, triggers differentiation of supporting cell types. The synthesis and degradation of DIF-1 were shown to be restricted to group 4. This suggests that the emergence of DIF-1 signalling caused increased cell-type specialization in this group. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-5-34) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Du Q, Schaap P. The social amoeba Polysphondylium pallidum loses encystation and sporulation, but can still erect fruiting bodies in the absence of cellulose. Protist 2014; 165:569-79. [PMID: 25113829 PMCID: PMC4210663 DOI: 10.1016/j.protis.2014.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 11/24/2022]
Abstract
Amoebas and other freely moving protists differentiate into walled cysts when exposed to stress. As cysts, amoeba pathogens are resistant to biocides, preventing treatment and eradication. Lack of gene modification procedures has left the mechanisms of encystation largely unexplored. Genetically tractable Dictyostelium discoideum amoebas require cellulose synthase for formation of multicellular fructifications with cellulose-rich stalk and spore cells. Amoebas of its distant relative Polysphondylium pallidum (Ppal), can additionally encyst individually in response to stress. Ppal has two cellulose synthase genes, DcsA and DcsB, which we deleted individually and in combination. Dcsa- mutants formed fruiting bodies with normal stalks, but their spore and cyst walls lacked cellulose, which obliterated stress-resistance of spores and rendered cysts entirely non-viable. A dcsa-/dcsb- mutant made no walled spores, stalk cells or cysts, although simple fruiting structures were formed with a droplet of amoeboid cells resting on an sheathed column of decaying cells. DcsB is expressed in prestalk and stalk cells, while DcsA is additionally expressed in spores and cysts. We conclude that cellulose is essential for encystation and that cellulose synthase may be a suitable target for drugs to prevent encystation and render amoeba pathogens susceptible to conventional antibiotics.
Collapse
Affiliation(s)
- Qingyou Du
- College of Life Sciences, University of Dundee, MSI/WTB/JBC complex, Dow Street, Dundee, DD15EH, UK
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, MSI/WTB/JBC complex, Dow Street, Dundee, DD15EH, UK.
| |
Collapse
|
10
|
Du Q, Schilde C, Birgersson E, Chen ZH, McElroy S, Schaap P. The cyclic AMP phosphodiesterase RegA critically regulates encystation in social and pathogenic amoebas. Cell Signal 2013; 26:453-9. [PMID: 24184654 PMCID: PMC3906536 DOI: 10.1016/j.cellsig.2013.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 02/06/2023]
Abstract
Amoebas survive environmental stress by differentiating into encapsulated cysts. As cysts, pathogenic amoebas resist antibiotics, which particularly counteracts treatment of vision-destroying Acanthamoeba keratitis. Limited genetic tractability of amoeba pathogens has left their encystation mechanisms unexplored. The social amoeba Dictyostelium discoideum forms spores in multicellular fruiting bodies to survive starvation, while other dictyostelids, such as Polysphondylium pallidum can additionally encyst as single cells. Sporulation is induced by cAMP acting on PKA, with the cAMP phosphodiesterase RegA critically regulating cAMP levels. We show here that RegA is deeply conserved in social and pathogenic amoebas and that deletion of the RegA gene in P. pallidum causes precocious encystation and prevents cyst germination. We heterologously expressed and characterized Acanthamoeba RegA and performed a compound screen to identify RegA inhibitors. Two effective inhibitors increased cAMP levels and triggered Acanthamoeba encystation. Our results show that RegA critically regulates Amoebozoan encystation and that components of the cAMP signalling pathway could be effective targets for therapeutic intervention with encystation. Amoebas differentiate into dormant encapsulated cysts when exposed to environmental stress Encystation renders pathogenic amoebas resistant to antibiotics and biocides The social amoeba Polysphondylium pallidum is amenable to genetic approaches to resolve encystation mechanisms The cAMP phosphodiesterase RegA and the sensor histidine kinases that regulate RegA activity are deeply conserved RegA regulates encystation in P.pallidum and in the pathogen Acanthamoeba castellani
Collapse
Affiliation(s)
- Qingyou Du
- College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | - Elin Birgersson
- College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | - Zhi-hui Chen
- College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | - Stuart McElroy
- College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| |
Collapse
|
11
|
Drosophila melanogaster p24 trafficking proteins have vital roles in development and reproduction. Mech Dev 2012; 129:177-91. [PMID: 22554671 DOI: 10.1016/j.mod.2012.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 04/02/2012] [Accepted: 04/16/2012] [Indexed: 11/21/2022]
Abstract
p24 proteins comprise a family of type-I transmembrane proteins of ~24kD that are present in yeast and plants as well as metazoans ranging from Drosophila to humans. These proteins are most commonly localized to the endoplasmic reticulum (ER)-Golgi interface and are incorporated in anterograde and retrograde transport vesicles. Little is known about how disruption of p24 signaling affects individual tissue function or whole animals. Drosophila melanogaster express nine p24 genes, grouped into four subfamilies. Based upon our mRNA and protein expression data, Drosophila p24 family members are expressed in a variety of tissues. To identify functions for particular Drosophila p24 proteins, we used RNA interference (RNAi) to reduce p24 expression. Ubiquitous reduction of most p24 genes resulted in complete or partial lethality during development. We found that reducing p24 levels in adults caused defects in female fecundity (egg laying) and also reduced male fertility. We attributed reduced female fecundity to decreased neural p24 expression. These results provide the first genetic analysis of all p24 family members in a multicellular animal and indicate vital roles for Drosophila p24s in development and reproduction, implicating neural expression of p24s in the regulation of female behavior.
Collapse
|
12
|
Kawabe Y, Weening KE, Marquay-Markiewicz J, Schaap P. Evolution of self-organisation in Dictyostelia by adaptation of a non-selective phosphodiesterase and a matrix component for regulated cAMP degradation. Development 2012; 139:1336-45. [PMID: 22357931 PMCID: PMC3294436 DOI: 10.1242/dev.077099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2012] [Indexed: 01/21/2023]
Abstract
Dictyostelium discoideum amoebas coordinate aggregation and morphogenesis by secreting cyclic adenosine monophosphate (cAMP) pulses that propagate as waves through fields of cells and multicellular structures. To retrace how this mechanism for self-organisation evolved, we studied the origin of the cAMP phosphodiesterase PdsA and its inhibitor PdiA, which are essential for cAMP wave propagation. D. discoideum and other species that use cAMP to aggregate reside in group 4 of the four major groups of Dictyostelia. We found that groups 1-3 express a non-specific, low affinity orthologue of PdsA, which gained cAMP selectivity and increased 200-fold in affinity in group 4. A low affinity group 3 PdsA only partially restored aggregation of a D. discoideum pdsA-null mutant, but was more effective at restoring fruiting body morphogenesis. Deletion of a group 2 PdsA gene resulted in disruption of fruiting body morphogenesis, but left aggregation unaffected. Together, these results show that groups 1-3 use a low affinity PdsA for morphogenesis that is neither suited nor required for aggregation. PdiA belongs to a family of matrix proteins that are present in all Dictyostelia and consist mainly of cysteine-rich repeats. However, in its current form with several extensively modified repeats, PdiA is only present in group 4. PdiA is essential for initiating spiral cAMP waves, which, by organising large territories, generate the large fruiting structures that characterise group 4. We conclude that efficient cAMP-mediated aggregation in group 4 evolved by recruitment and adaptation of a non-selective phosphodiesterase and a matrix component into a system for regulated cAMP degradation.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| |
Collapse
|
13
|
Chen J, Qi X, Zheng H. Subclass-specific localization and trafficking of Arabidopsis p24 proteins in the ER-Golgi interface. Traffic 2012; 13:400-15. [PMID: 22132757 DOI: 10.1111/j.1600-0854.2011.01317.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
We describe a comprehensive analysis of the subcellular localization and in vivo trafficking of Arabidopsis p24 proteins. In Arabidopsis, there are 11 p24 proteins, which fall into only δ and β subfamilies. Interestingly, the δ subfamily of p24 proteins in Arabidopsis is elaborated spectacularly in evolution, which can be grouped into two subclasses: p24δ1 and p24δ2. We found that, although all p24δ proteins possess classic COPII/COPI binding motifs in their cytosolic C-termini, p24δ1 proteins are localized to the endoplasmic reticulum (ER), p24δ2 proteins are localized to both ER and Golgi. Two p24β proteins reside largely in Golgi. Similar to Atp24 (termed p24δ1c in this study), p24δ2d also cycles between the ER and Golgi. Interestingly, coexpression with p24β1 could retain p24δ2d, but not p24δ1d in Golgi. We revealed that the lumenal coiled-coil domain of p24δ2d is required for its steady-state localization in Golgi, probably through its interaction with p24β1. In p24β1, there is no classic COPII or COPI binding motif in its C-terminus. However, the protein also cycles between the ER and Golgi. We found that a conserved RV motif located at the extreme end of the C-terminus of p24β1 plays an important role in its Golgi target.
Collapse
Affiliation(s)
- Jun Chen
- Developmental Biology Research Initiatives, Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, H3A 1B1, Canada
| | | | | |
Collapse
|
14
|
Kawabe Y, Morio T, James JL, Prescott AR, Tanaka Y, Schaap P. Activated cAMP receptors switch encystation into sporulation. Proc Natl Acad Sci U S A 2009; 106:7089-94. [PMID: 19369200 PMCID: PMC2678454 DOI: 10.1073/pnas.0901617106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Indexed: 11/18/2022] Open
Abstract
Metazoan embryogenesis is controlled by a limited number of signaling modules that are used repetitively at successive developmental stages. The development of social amoebas shows similar reiterated use of cAMP-mediated signaling. In the model Dictyostelium discoideum, secreted cAMP acting on 4 cAMP receptors (cARs1-4) coordinates cell movement during aggregation and fruiting body formation, and induces the expression of aggregation and sporulation genes at consecutive developmental stages. To identify hierarchy in the multiple roles of cAMP, we investigated cAR heterogeneity and function across the social amoeba phylogeny. The gene duplications that yielded cARs 2-4 occurred late in evolution. Many species have only a cAR1 ortholog that duplicated independently in the Polysphondylids and Acytostelids. Disruption of both cAR genes of Polysphondylium pallidum (Ppal) did not affect aggregation, but caused complete collapse of fruiting body morphogenesis. The stunted structures contained disorganized stalk cells, which supported a mass of cysts instead of spores; cAMP triggered spore gene expression in Ppal, but not in the cAR null mutant, explaining its sporulation defect. Encystation is the survival strategy of solitary amoebas, and lower taxa, like Ppal, can still encyst as single cells. Recent findings showed that intracellular cAMP accumulation suffices to trigger encystation, whereas it is a complementary requirement for sporulation. Combined, the data suggest that cAMP signaling in social amoebas evolved from cAMP-mediated encystation in solitary amoebas; cAMP secretion in aggregates prompted the starving cells to form spores and not cysts, and additionally organized fruiting body morphogenesis. cAMP-mediated aggregation was the most recent innovation.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- College of Life Sciences, University of Dundee, Dundee, Angus, DD15EH, United Kingdom; and
| | - Takahiro Morio
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - John L. James
- College of Life Sciences, University of Dundee, Dundee, Angus, DD15EH, United Kingdom; and
| | - Alan R. Prescott
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshimasa Tanaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee, Angus, DD15EH, United Kingdom; and
| |
Collapse
|
15
|
Regulation of ammonia homeostasis by the ammonium transporter AmtA in Dictyostelium discoideum. EUKARYOTIC CELL 2007; 6:2419-28. [PMID: 17951519 DOI: 10.1128/ec.00204-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ammonia has been shown to function as a morphogen at multiple steps during the development of the cellular slime mold Dictyostelium discoideum; however, it is largely unknown how intracellular ammonia levels are controlled. In the Dictyostelium genome, there are five genes that encode putative ammonium transporters: amtA, amtB, amtC, rhgA, and rhgB. Here, we show that AmtA regulates ammonia homeostasis during growth and development. We found that cells lacking amtA had increased levels of ammonia/ammonium, whereas their extracellular ammonia/ammonium levels were highly decreased. These results suggest that AmtA mediates the excretion of ammonium. In support of a role for AmtA in ammonia homeostasis, AmtA mRNA is expressed throughout the life cycle, and its expression level increases during development. Importantly, AmtA-mediated ammonia homeostasis is critical for many developmental processes. amtA(-) cells are more sensitive to NH(4)Cl than wild-type cells in inhibition of chemotaxis toward cyclic AMP and of formation of multicellular aggregates. Furthermore, even in the absence of exogenously added ammonia, we found that amtA(-) cells produced many small fruiting bodies and that the viability and germination of amtA(-) spores were dramatically compromised. Taken together, our data clearly demonstrate that AmtA regulates ammonia homeostasis and plays important roles in multiple developmental processes in Dictyostelium.
Collapse
|
16
|
Boltz KA, Ellis LL, Carney GE. Drosophila melanogaster p24 genes have developmental, tissue-specific, and sex-specific expression patterns and functions. Dev Dyn 2007; 236:544-55. [PMID: 17131401 DOI: 10.1002/dvdy.21032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genes encoding members of the p24 family of intracellular trafficking proteins are present throughout animal and plant lineages. However, very little is known about p24 developmental, spatial, or sex-specific expression patterns or how localized expression affects function. We investigated these problems in Drosophila melanogaster, which contains nine genes encoding p24 proteins. One of these genes, logjam (loj), is expressed in the adult female nervous system and ovaries and is essential for oviposition. Nervous system-specific expression of loj, but not ovary-specific expression, rescues the behavioral defect of mutants. The Loj protein localizes to punctate structures in the cellular cytoplasm. These structures colocalize with a marker specific to the intermediate compartment and cis-Golgi, consistent with experimental evidence from other systems suggesting that p24 proteins function in intracellular transport between the endoplasmic reticulum and Golgi. Our findings reveal that Drosophila p24 transcripts are developmentally and tissue-specifically expressed. CG31787 is male-specifically expressed gene that is present during the larval, pupal, and adult stages. Female CG9053 mRNA is limited to the head, whereas males express this gene widely. Together, our studies provide experimental evidence indicating that some p24 genes have sex-specific expression patterns and tissue- and sex-limited functions.
Collapse
Affiliation(s)
- Kara A Boltz
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | |
Collapse
|
17
|
Kawabe Y, Kuwayama H, Morio T, Urushihara H, Tanaka Y. A putative serpentine receptor gene tasA required for normal morphogenesis of primary stalk and branch structure in Polysphondylium pallidum. Gene 2002; 285:291-9. [PMID: 12039057 DOI: 10.1016/s0378-1119(01)00887-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The fruiting body of Polysphondylium pallidum is composed of whorls of branches along the axis of a primary stalk. In the course of fruiting body formation, the interval between neighboring whorls and the number and the spacing of branches in a whorl are highly regulated. In this study, using restriction enzyme mediated integration mutagenesis, we have obtained a mutant (strain M6226) with thicker and aberrant primary stalk. The gene responsible for the mutant phenotype, confirmed by homologous recombination, encodes an open reading frame with 383 aa residues (46.3 kDa) and was named thick and aberrant stalk A (tasA). TasA is highly homologous to Dictyostelium discoideum cyclic adenosine 3',5'-monophosphate receptors. A tasA transcript is expressed strictly at the late aggregation stage. Cells expressing a tasA::gfp fusion DNA are localized at the posterior region of the primary sorogen where secondary sorogens and branches originate. This result indicates the existence of 'prebranch' and 'pretrunk' regions in P. pallidum instead of the prespore and prestalk regions in D. discoideum. The analyzes of the gene disruptant and chimeric fruiting bodies also suggests that TasA affects the normal morphogenesis of the primary stalk and the process of cell differentiation into prebranch cells, but not into spore or stalk cells directly.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|