1
|
Jia X, Zhang H, Qin H, Li K, Liu X, Wang W, Ye M, Yin H. Protein O-GlcNAcylation impairment caused by N-acetylglucosamine phosphate mutase deficiency leads to growth variations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:613-635. [PMID: 36799458 DOI: 10.1111/tpj.16156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/10/2023]
Abstract
As an essential enzyme in the uridine diphosphate (UDP)-GlcNAc biosynthesis pathway, the significant role of N-acetylglucosamine phosphate mutase (AGM) remains unknown in plants. In the present study, a functional plant AGM (AtAGM) was identified from Arabidopsis thaliana. AtAGM catalyzes the isomerization of GlcNAc-1-P and GlcNAc-6-P, and has broad catalytic activity on different phosphohexoses. UDP-GlcNAc contents were significantly decreased in AtAGM T-DNA insertional mutants, which caused temperature-dependent growth defects in seedlings and vigorous growth in adult plants. Further analysis revealed that protein O-GlcNAcylation but not N-glycosylation was dramatically impaired in Atagm mutants due to UDP-GlcNAc shortage. Combined with the results from O-GlcNAcylation or N-glycosylation deficient mutants, and O-GlcNAcase inhibitor all suggested that protein O-GlcNAcylation impairment mainly leads to the phenotypic variations of Atagm plants. In conclusion, based on the essential role in UDP-GlcNAc biosynthesis, AtAGM is important for plant growth mainly via protein O-GlcNAcylation-level regulation.
Collapse
Affiliation(s)
- Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongyan Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hongqiang Qin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
2
|
Phillips RM, Lam C, Wang H, Tran PT. Bittersweet tumor development and progression: Emerging roles of epithelial plasticity glycosylations. Adv Cancer Res 2019; 142:23-62. [PMID: 30885363 DOI: 10.1016/bs.acr.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Altered metabolism is one of the hallmarks of cancer. The best-known cancer metabolic anomaly is an increase in aerobic glycolysis, which generates ATP and other basic building blocks, such as nucleotides, lipids, and proteins to support tumor cell growth and survival. Epithelial plasticity (EP) programs such as the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are evolutionarily conserved processes that are essential for embryonic development. EP also plays an important role during tumor progression toward metastasis and treatment resistance, and new roles in the acceleration of tumorigenesis have been found. Recent evidence has linked EMT-related transcriptomic alterations with metabolic reprogramming in cancer cells, which include increased aerobic glycolysis. More recent studies have revealed a novel connection between EMT and altered glycosylation in tumor cells, in which EMT drives an increase in glucose uptake and flux into the hexosamine biosynthetic pathway (HBP). The HBP is a side-branch pathway from glycolysis which generates the end product uridine-5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc). A key downstream utilization of UDP-GlcNAc is for the post-translational modification O-GlcNAcylation which involves the attachment of the GlcNAc moiety to Ser/Thr/Asn residues of proteins. Global changes in protein O-GlcNAcylation are emerging as a general characteristic of cancer cells. In our recent study, we demonstrated that the EMT-HBP-O-GlcNAcylation axis drives the O-GlcNAcylation of key proteins such as c-Myc, which previous studies have shown to suppress oncogene-induced senescence (OIS) and contribute to accelerated tumorigenesis. Here, we review the HBP and O-GlcNAcylation and their putative roles in driving EMT-related cancer processes with examples to illuminate potential new therapeutic targets for cancer.
Collapse
Affiliation(s)
- Ryan M Phillips
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christine Lam
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
3
|
Muenks AG, Stiers KM, Beamer LJ. Sequence-structure relationships, expression profiles, and disease-associated mutations in the paralogs of phosphoglucomutase 1. PLoS One 2017; 12:e0183563. [PMID: 28837627 PMCID: PMC5570346 DOI: 10.1371/journal.pone.0183563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
The key metabolic enzyme phosphoglucomutase 1 (PGM1) controls glucose homeostasis in most human cells. Four proteins related to PGM1, known as PGM2, PGM2L1, PGM3 and PGM5, and referred to herein as paralogs, are encoded in the human genome. Although all members of the same enzyme superfamily, these proteins have distinct substrate preferences and different functional roles. The recent association of PGM1 and PGM3 with inherited enzyme deficiencies prompts us to revisit sequence-structure and other relationships among the PGM1 paralogs, which are understudied despite their importance in human biology. Using currently available sequence, structure, and expression data, we investigated evolutionary relationships, tissue-specific expression profiles, and the amino acid preferences of key active site motifs. Phylogenetic analyses indicate both ancient and more recent divergence between the different enzyme sub-groups comprising the human paralogs. Tissue-specific protein and RNA expression profiles show widely varying patterns for each paralog, providing insight into function and disease pathology. Multiple sequence alignments confirm high conservation of key active site regions, but also reveal differences related to substrate specificity. In addition, we find that sequence variants of PGM2, PGM2L1, and PGM5 verified in the human population affect residues associated with disease-related mutants in PGM1 or PGM3. This suggests that inherited diseases related to dysfunction of these paralogs will likely occur in humans.
Collapse
Affiliation(s)
- Andrew G Muenks
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
| | - Kyle M Stiers
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
| | - Lesa J Beamer
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
4
|
A founder mutation underlies a severe form of phosphoglutamase 3 (PGM3) deficiency in Tunisian patients. Mol Immunol 2017; 90:57-63. [PMID: 28704707 DOI: 10.1016/j.molimm.2017.06.248] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/18/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022]
Abstract
Phosphoglucomutase 3 (PGM3) protein catalyzes the conversion of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6-P) to N-acetyl-d-glucosamine-1-phosphate (GlcNAc-1-P), which is required for the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) an important precursor for protein glycosylation. Mutations in PGM3 gene have been recently shown to underlie a new congenital disorder of glycosylation often associated to elevated IgE. Herein, we report twelve PGM3 deficient patients. They belong to three highly consanguineous families, originating from a rural district in the west central Tunisia. The patient's clinical phenotype is characterized by severe respiratory and cutaneous infections as well as developmental delay and severe mental retardation. Fourteen patients died in early infancy before diagnosis supporting the severity of the clinical phenotype. Laboratory findings revealed elevated IgE, CD4 lymphopenia and impaired T cell proliferation in most patients. Genetic analysis showed the presence, of a unique homozygous mutation (p.Glu340del) in PGM3 gene leading to reduced PGM3 abundance. Segregating analysis using fifteen polymorphic markers overlapping PGM3 gene showed that all patients inherited a common homozygous haplotype encompassing 10-Mb on chromosome 6. The founder mutational event was estimated to have occurred approximately 100 years ago. To date, (p.Glu340del) mutation represents the first founder mutation identified in PGM3 gene. These findings will facilitate the development of preventive approaches through genetic counselling and prenatal diagnosis in the affected families.
Collapse
|
5
|
Barbouche MR, Mekki N, Ben-Ali M, Ben-Mustapha I. Lessons from Genetic Studies of Primary Immunodeficiencies in a Highly Consanguineous Population. Front Immunol 2017; 8:737. [PMID: 28702026 PMCID: PMC5485821 DOI: 10.3389/fimmu.2017.00737] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/12/2017] [Indexed: 11/29/2022] Open
Abstract
During the last decades, the study of primary immunodeficiencies (PIDs) has contributed tremendously to unravel novel pathways involved in a variety of immune responses. Many of these PIDs have an autosomal recessive (AR) mode of inheritance. Thus, the investigation of the molecular basis of PIDs is particularly relevant in consanguineous populations from Middle East and North Africa (MENA). Although significant efforts have been made in recent years to develop genetic testing across the MENA region, few comprehensive studies reporting molecular basis of PIDs in these settings are available. Herein, we review genetic characteristics of PIDs identified in 168 patients from an inbred Tunisian population. A spectrum of 25 genes involved was analyzed. We show that AR forms compared to X-linked or autosomal dominant forms are clearly the most frequent. Furthermore, the study of informative consanguineous families did allow the identification of a novel hyper-IgE syndrome linked to phosphoglucomutase 3 mutations. We did also report a novel form of autoimmune lymphoproliferative syndrome caused by homozygous FAS mutations with normal or residual protein expression as well as a novel AR transcription factor 3 deficiency. Finally, we identified several founder effects for specific AR mutations. This did facilitate the implementation of preventive approaches through genetic counseling in affected consanguineous families. All together, these findings highlight the specific nature of highly consanguineous populations and confirm the importance of unraveling the molecular basis of genetic diseases in this context. Besides providing a better fundamental knowledge of novel pathways, their study is improving diagnosis strategies and appropriate care.
Collapse
Affiliation(s)
- Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Najla Mekki
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infection (LR11IPT02), Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Stiers KM, Muenks AG, Beamer LJ. Biology, Mechanism, and Structure of Enzymes in the α-d-Phosphohexomutase Superfamily. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:265-304. [PMID: 28683921 PMCID: PMC5802415 DOI: 10.1016/bs.apcsb.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzymes in the α-d-phosphohexomutases superfamily catalyze the reversible conversion of phosphosugars, such as glucose 1-phosphate and glucose 6-phosphate. These reactions are fundamental to primary metabolism across the kingdoms of life and are required for a myriad of cellular processes, ranging from exopolysaccharide production to protein glycosylation. The subject of extensive mechanistic characterization during the latter half of the 20th century, these enzymes have recently benefitted from biophysical characterization, including X-ray crystallography, NMR, and hydrogen-deuterium exchange studies. This work has provided new insights into the unique catalytic mechanism of the superfamily, shed light on the molecular determinants of ligand recognition, and revealed the evolutionary conservation of conformational flexibility. Novel associations with inherited metabolic disease and the pathogenesis of bacterial infections have emerged, spurring renewed interest in the long-appreciated functional roles of these enzymes.
Collapse
Affiliation(s)
| | | | - Lesa J Beamer
- University of Missouri, Columbia, MO, United States.
| |
Collapse
|
7
|
Willems AP, van Engelen BGM, Lefeber DJ. Genetic defects in the hexosamine and sialic acid biosynthesis pathway. Biochim Biophys Acta Gen Subj 2015; 1860:1640-54. [PMID: 26721333 DOI: 10.1016/j.bbagen.2015.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Congenital disorders of glycosylation are caused by defects in the glycosylation of proteins and lipids. Classically, gene defects with multisystem disease have been identified in the ubiquitously expressed glycosyltransferases required for protein N-glycosylation. An increasing number of defects are being described in sugar supply pathways for protein glycosylation with tissue-restricted clinical symptoms. SCOPE OF REVIEW In this review, we address the hexosamine and sialic acid biosynthesis pathways in sugar metabolism. GFPT1, PGM3 and GNE are essential for synthesis of nucleotide sugars uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-sialic acid) as precursors for various glycosylation pathways. Defects in these enzymes result in contrasting clinical phenotypes of congenital myasthenia, immunodeficiency or adult-onset myopathy, respectively. We therefore discuss the biochemical mechanisms of known genetic defects in the hexosamine and CMP-sialic acid synthesis pathway in relation to the clinical phenotypes. MAJOR CONCLUSIONS Both UDP-GlcNAc and CMP-sialic acid are important precursors for diverse protein glycosylation reactions and for conversion into other nucleotide-sugars. Defects in the synthesis of these nucleotide sugars might affect a wide range of protein glycosylation reactions. Involvement of multiple glycosylation pathways might contribute to disease phenotype, but the currently available biochemical information on sugar metabolism is insufficient to understand why defects in these pathways present with tissue-specific phenotypes. GENERAL SIGNIFICANCE Future research on the interplay between sugar metabolism and different glycosylation pathways in a tissue- and cell-specific manner will contribute to elucidation of disease mechanisms and will create new opportunities for therapeutic intervention. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Anke P Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
8
|
PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 2014; 95:96-107. [PMID: 24931394 DOI: 10.1016/j.ajhg.2014.05.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/16/2014] [Indexed: 12/30/2022] Open
Abstract
Human phosphoglucomutase 3 (PGM3) catalyzes the conversion of N-acetyl-glucosamine (GlcNAc)-6-phosphate into GlcNAc-1-phosphate during the synthesis of uridine diphosphate (UDP)-GlcNAc, a sugar nucleotide critical to multiple glycosylation pathways. We identified three unrelated children with recurrent infections, congenital leukopenia including neutropenia, B and T cell lymphopenia, and progression to bone marrow failure. Whole-exome sequencing demonstrated deleterious mutations in PGM3 in all three subjects, delineating their disease to be due to an unsuspected congenital disorder of glycosylation (CDG). Functional studies of the disease-associated PGM3 variants in E. coli cells demonstrated reduced PGM3 activity for all mutants tested. Two of the three children had skeletal anomalies resembling Desbuquois dysplasia: short stature, brachydactyly, dysmorphic facial features, and intellectual disability. However, these additional features were absent in the third child, showing the clinical variability of the disease. Two children received hematopoietic stem cell transplantation of cord blood and bone marrow from matched related donors; both had successful engraftment and correction of neutropenia and lymphopenia. We define PGM3-CDG as a treatable immunodeficiency, document the power of whole-exome sequencing in gene discoveries for rare disorders, and illustrate the utility of genomic analyses in studying combined and variable phenotypes.
Collapse
|
9
|
Sassi A, Lazaroski S, Wu G, Haslam SM, Fliegauf M, Mellouli F, Patiroglu T, Unal E, Ozdemir MA, Jouhadi Z, Khadir K, Ben-Khemis L, Ben-Ali M, Ben-Mustapha I, Borchani L, Pfeifer D, Jakob T, Khemiri M, Asplund AC, Gustafsson MO, Lundin KE, Falk-Sörqvist E, Moens LN, Gungor HE, Engelhardt KR, Dziadzio M, Stauss H, Fleckenstein B, Meier R, Prayitno K, Maul-Pavicic A, Schaffer S, Rakhmanov M, Henneke P, Kraus H, Eibel H, Kölsch U, Nadifi S, Nilsson M, Bejaoui M, Schäffer AA, Smith CIE, Dell A, Barbouche MR, Grimbacher B. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol 2014; 133:1410-9, 1419.e1-13. [PMID: 24698316 DOI: 10.1016/j.jaci.2014.02.025] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recurrent bacterial and fungal infections, eczema, and increased serum IgE levels characterize patients with the hyper-IgE syndrome (HIES). Known genetic causes for HIES are mutations in signal transducer and activator of transcription 3 (STAT3) and dedicator of cytokinesis 8 (DOCK8), which are involved in signal transduction pathways. However, glycosylation defects have not been described in patients with HIES. One crucial enzyme in the glycosylation pathway is phosphoglucomutase 3 (PGM3), which catalyzes a key step in the synthesis of uridine diphosphate N-acetylglucosamine, which is required for the biosynthesis of N-glycans. OBJECTIVE We sought to elucidate the genetic cause in patients with HIES who do not carry mutations in STAT3 or DOCK8. METHODS After establishing a linkage interval by means of SNPchip genotyping and homozygosity mapping in 2 families with HIES from Tunisia, mutational analysis was performed with selector-based, high-throughput sequencing. Protein expression was analyzed by means of Western blotting, and glycosylation was profiled by using mass spectrometry. RESULTS Mutational analysis of candidate genes in an 11.9-Mb linkage region on chromosome 6 shared by 2 multiplex families identified 2 homozygous mutations in PGM3 that segregated with disease status and followed recessive inheritance. The mutations predict amino acid changes in PGM3 (p.Glu340del and p.Leu83Ser). A third homozygous mutation (p.Asp502Tyr) and the p.Leu83Ser variant were identified in 2 other affected families, respectively. These hypomorphic mutations have an effect on the biosynthetic reactions involving uridine diphosphate N-acetylglucosamine. Glycomic analysis revealed an aberrant glycosylation pattern in leukocytes demonstrated by a reduced level of tri-antennary and tetra-antennary N-glycans. T-cell proliferation and differentiation were impaired in patients. Most patients had developmental delay, and many had psychomotor retardation. CONCLUSION Impairment of PGM3 function leads to a novel primary (inborn) error of development and immunity because biallelic hypomorphic mutations are associated with impaired glycosylation and a hyper-IgE-like phenotype.
Collapse
Affiliation(s)
- Atfa Sassi
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Sandra Lazaroski
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Manfred Fliegauf
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Fethi Mellouli
- Pediatrics Department, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Turkan Patiroglu
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey; Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Akif Ozdemir
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zineb Jouhadi
- Department of Pediatric Infectious Diseases, CHU IBN ROCHD, Hassan II University, Casablanca, Morocco
| | - Khadija Khadir
- Department of Pediatric Infectious Diseases, CHU IBN ROCHD, Hassan II University, Casablanca, Morocco
| | - Leila Ben-Khemis
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Meriem Ben-Ali
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Imen Ben-Mustapha
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Lamia Borchani
- Laboratory of Venoms and Therapeutic Molecules, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Dietmar Pfeifer
- Department of Medicine I, Specialties: Hematology, Oncology, and Stem-Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
| | - Thilo Jakob
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Monia Khemiri
- Pediatrics Department A, Children's Hospital of Tunis, Tunis, Tunisia
| | - A Charlotta Asplund
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Manuela O Gustafsson
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Karin E Lundin
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Elin Falk-Sörqvist
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Lotte N Moens
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Hatice Eke Gungor
- Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Karin R Engelhardt
- Royal Free Hospital, Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - Magdalena Dziadzio
- Royal Free Hospital, Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - Hans Stauss
- Royal Free Hospital, Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - Bernhard Fleckenstein
- Institute of Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rebecca Meier
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Khairunnadiya Prayitno
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Andrea Maul-Pavicic
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Sandra Schaffer
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Mirzokhid Rakhmanov
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Helene Kraus
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Uwe Kölsch
- Division of Immunology, Labor Berlin and Institute of Medical Immunology, Charité, Campus Virchow Klinikum, Berlin, Germany
| | - Sellama Nadifi
- Department of Genetics, Hassan II University, Casablanca, Morocco
| | - Mats Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Mohamed Bejaoui
- Pediatrics Department, Bone Marrow Transplantation Center, Tunis, Tunisia
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - C I Edvard Smith
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mohamed-Ridha Barbouche
- Laboratory of Immunopathology, Vaccinology and Molecular Genetics, Pasteur Institute of Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany; Royal Free Hospital, Institute of Immunity & Transplantation, University College London, London, United Kingdom.
| |
Collapse
|
10
|
Chen J, Liang Z, Liang Y, Pang R, Zhang W. Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:839-48. [PMID: 23796434 DOI: 10.1016/j.ibmb.2013.06.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/24/2013] [Accepted: 06/07/2013] [Indexed: 05/20/2023]
Abstract
Molting is an important developmental process in insects, usually along with synthesis and degradation of chitin. 20-hydroxyecdysone (20E), an insect hormone, has been reported to contribute to many processes including molting. However, little is known about the link between the chitin biosynthesis pathway and 20E signaling. Here, we report that conserved miR-8-5p (miR-8-5p) and miR-2a-3p and their new target genes are critical for ecdysone-induced chitin biosynthesis in a hemipteran insect Nilaparvata lugens. We found that membrane-bound trehalase (Tre-2) and phosphoacetylglucosamine mutase (PAGM) in the chitin biosynthesis pathway were targets of miR-8-5p and miR-2a-3p, respectively, through bioinformatic analysis and experimental verification. The levels of miR-8-5p and miR-2a-3p were reduced, whereas the levels of Tre-2 and PAGM were up-regulated in response to 20E. In addition, miR-8-5p and miR-2a-3p were transcriptionally repressed by an early-response gene, the Broad-Complex (BR-C), in the 20E signaling pathway. Moreover, the overexpression of miR-8-5p and miR-2a-3p led to a significant reduction in the survival rate along with a molting obstacles defect phenotype caused by miR-2a-3p mimics feeding, and the chitin content of N. lugens was simultaneously reduced. Thus, miR-8-5p and miR-2a-3p act as molecular link that tune the chitin biosynthesis pathway in response to 20E signaling.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | | | | | | | | |
Collapse
|
11
|
Metabolic cross-talk allows labeling of O-linked beta-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc Natl Acad Sci U S A 2011; 108:3141-6. [PMID: 21300897 DOI: 10.1073/pnas.1010045108] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hundreds of mammalian nuclear and cytoplasmic proteins are reversibly glycosylated by O-linked β-N-acetylglucosamine (O-GlcNAc) to regulate their function, localization, and stability. Despite its broad functional significance, the dynamic and posttranslational nature of O-GlcNAc signaling makes it challenging to study using traditional molecular and cell biological techniques alone. Here, we report that metabolic cross-talk between the N-acetylgalactosamine salvage and O-GlcNAcylation pathways can be exploited for the tagging and identification of O-GlcNAcylated proteins. We found that N-azidoacetylgalactosamine (GalNAz) is converted by endogenous mammalian biosynthetic enzymes to UDP-GalNAz and then epimerized to UDP-N-azidoacetylglucosamine (GlcNAz). O-GlcNAc transferase accepts UDP-GlcNAz as a nucleotide-sugar donor, appending an azidosugar onto its native substrates, which can then be detected by covalent labeling using azide-reactive chemical probes. In a proof-of-principle proteomics experiment, we used metabolic GalNAz labeling of human cells and a bioorthogonal chemical probe to affinity-purify and identify numerous O-GlcNAcylated proteins. Our work provides a blueprint for a wide variety of future chemical approaches to identify, visualize, and characterize dynamic O-GlcNAc signaling.
Collapse
|
12
|
Greig KT, Antonchuk J, Metcalf D, Morgan PO, Krebs DL, Zhang JG, Hacking DF, Bode L, Robb L, Kranz C, de Graaf C, Bahlo M, Nicola NA, Nutt SL, Freeze HH, Alexander WS, Hilton DJ, Kile BT. Agm1/Pgm3-mediated sugar nucleotide synthesis is essential for hematopoiesis and development. Mol Cell Biol 2007; 27:5849-59. [PMID: 17548465 PMCID: PMC1952135 DOI: 10.1128/mcb.00802-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbohydrate modification of proteins includes N-linked and O-linked glycosylation, proteoglycan formation, glycosylphosphatidylinositol anchor synthesis, and O-GlcNAc modification. Each of these modifications requires the sugar nucleotide UDP-GlcNAc, which is produced via the hexosamine biosynthesis pathway. A key step in this pathway is the interconversion of GlcNAc-6-phosphate (GlcNAc-6-P) and GlcNAc-1-P, catalyzed by phosphoglucomutase 3 (Pgm3). In this paper, we describe two hypomorphic alleles of mouse Pgm3 and show there are specific physiological consequences of a graded reduction in Pgm3 activity and global UDP-GlcNAc levels. Whereas mice lacking Pgm3 die prior to implantation, animals with less severe reductions in enzyme activity are sterile, exhibit changes in pancreatic architecture, and are anemic, leukopenic, and thrombocytopenic. These phenotypes are accompanied by specific rather than wholesale changes in protein glycosylation, suggesting that while universally required, the functions of certain proteins and, as a consequence, certain cell types are especially sensitive to reductions in Pgm3 activity.
Collapse
Affiliation(s)
- Kylie T Greig
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
D-Glucosamine is an important building block of major structural components of the fungal cell wall, namely chitin, chitosan and mannoproteins. Other amino sugars, such as D-mannosamine and D-galactosamine, relatively abundant in higher eukaryotes, rarely occur in fungal cells and are actually absent from yeast and yeast-like fungi. The glucosamine-containing sugar nucleotide UDP-GlcNAc is synthesized in yeast cells in a four-step cytoplasmic pathway. This article provides a comprehensive overview of the present knowledge on the enzymes catalysing the particular steps of the pathway in Candida albicans and Saccharomyces cerevisiae, with a special emphasis put on mechanisms of the catalysed reactions, regulation of activity and perspectives for exploitation of enzymes participating in UDP-GlcNAc biosynthesis as potential targets for antifungal chemotherapy.
Collapse
Affiliation(s)
- Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, Gdańsk, Poland.
| | | | | |
Collapse
|
14
|
Tanaka K, Tamura H, Tanaka H, Katoh M, Futamata Y, Seki N, Nishimune Y, Hara T. Spermatogonia-dependent expression of testicular genes in mice. Dev Biol 2002; 246:466-79. [PMID: 12051830 DOI: 10.1006/dbio.2002.0671] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spermatogenesis is initiated by the interaction of germ cells and somatic cells in seminiferous tubules. We used cDNA microarrays and representational difference analysis to identify genes that are expressed in the testis of the jsd/jsd mutant mouse, which contains only type A spermatogonial germ cells and Sertoli cells, but not in the testis of the W/W(v) mutant mouse, where Sertoli cells but few germ cells are present. We isolated 20 known genes and 4 novel genes, including 2 genes encoding lipocalin family members (prostaglandin D synthetase and 24p3) and 2 tumor suppressors (protein tyrosine phosphatase TD14 and Sui1). All 24 of these jsd/jsd-derived genes were highly expressed in the cryptorchid testis as well as in the jsd/jsd testis. This indicates that their selective expression is not directly caused by the as-yet-uncharacterized jsd gene product, but is rather correlated to the cessation of spermatogonial differentiation. In situ hybridization analysis and flow cytometric sorting followed by reverse transcriptase-PCR revealed that these genes are expressed in both the spermatogonial germ cells and the somatic cells in the developing gonads and adult testes. As the mRNAs of these jsd/jsd-derived genes were barely detectable in the W/W(v) testis, we propose that early spermatogonial germ cells regulate the expression of a group of testicular genes.
Collapse
Affiliation(s)
- Kiyoko Tanaka
- Department of Tumor Biochemistry, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pu JJ, Li C, Rodriguez M, Banerjee D. Cloning and structural characterization of ECTACC, a new member of the transforming acidic coiled coil (TACC) gene family: cDNA sequence and expression analysis in human microvascular endothelial cells. Cytokine 2001; 13:129-37. [PMID: 11161455 DOI: 10.1006/cyto.2000.0812] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythropoietin (Epo) transduces mitogenic and chemoattractant signals to human endothelial cells. Identifications of Epo-responsive genes are important for understanding the molecular nature of Epo signaling in endothelial cells. The effects of Epo on differential expression of various genes were examined in human microvascular endothelial cells (HMVEC) by differential display reverse transcriptase polymerase chain reaction (RT-PCR). In the current study we obtained from Epo-treated HMVEC a cDNA fragment with characteristics of the 3' end of mRNA. Using the cDNA fragment, we then selectively isolated a full-length clone by screening an unamplified endothelial cell cDNA library followed by 5' rapid amplification of cDNA ends by polymerase chain reaction (RACE-PCR). The nucleotide sequence of the longest cDNA revealed an open reading frame of 3311 nucleotides that encodes a protein consisting of approximately 906 amino acids with a predicted MW of approximately 100 kDa. The nucleotide sequence of the cDNA is nearly identical to that of transforming acidic coiled coil-containing (TACC2) and anti-zuai-1 (AZU-1) cDNA clones except at the 5'- and 3'-ends. Northern blot analysis showed an increase in endothelial-TACC-related mRNA levels in Epo-treated cells in comparison to that of the control cells. Endothelial-TACC-related mRNA was highly expressed in heart and skeletal muscle tissue. Placenta and brain tissue exhibited low levels of expression of endothelial-TACC-related gene. Southern blot analysis of genomic DNA from somatic cell hybrids showed that endothelial-TACC-related cDNA maps to chromosome 10. Immunofluorescence microscopy and the occurrence of several putative phosphorylation and SH3 binding sites on the deduced protein suggest that endothelial-TACC-related protein may be involved in Epo signaling cascades in endothelial cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Carrier Proteins
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Human, Pair 10/genetics
- Cloning, Molecular
- Cricetinae
- DNA, Complementary/biosynthesis
- DNA, Complementary/isolation & purification
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Fetal Proteins
- Fluorescent Antibody Technique, Indirect
- Gene Amplification
- Gene Expression Profiling
- Gene Library
- Humans
- Mice
- Microcirculation/chemistry
- Microcirculation/cytology
- Microcirculation/metabolism
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/isolation & purification
- Microtubule-Associated Proteins/metabolism
- Molecular Sequence Data
- Multigene Family
- Nuclear Proteins
- RNA, Messenger/biosynthesis
- Sequence Analysis, DNA
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- J J Pu
- Department of Membrane Biochemistry II, The Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|