1
|
Lee HS, Mo Y, Shin HC, Kim SJ, Ku B. Structural and Biochemical Characterization of the Two Drosophila Low Molecular Weight-Protein Tyrosine Phosphatases DARP and Primo-1. Mol Cells 2020; 43:1035-1045. [PMID: 33372666 PMCID: PMC7772506 DOI: 10.14348/molcells.2020.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/27/2022] Open
Abstract
The Drosophila genome contains four low molecular weightprotein tyrosine phosphatase (LMW-PTP) members: Primo-1, Primo-2, CG14297, and CG31469. The lack of intensive biochemical analysis has limited our understanding of these proteins. Primo-1 and CG31469 were previously classified as pseudophosphatases, but CG31469 was also suggested to be a putative protein arginine phosphatase. Herein, we present the crystal structures of CG31469 and Primo-1, which are the first Drosophila LMW-PTP structures. Structural analysis showed that the two proteins adopt the typical LMW-PTP fold and have a canonically arranged P-loop. Intriguingly, while Primo-1 is presumed to be a canonical LMW-PTP, CG31469 is unique as it contains a threonine residue at the fifth position of the P-loop motif instead of highly conserved isoleucine and a characteristically narrow active site pocket, which should facilitate the accommodation of phosphoarginine. Subsequent biochemical analysis revealed that Primo-1 and CG31469 are enzymatically active on phosphotyrosine and phosphoarginine, respectively, refuting their classification as pseudophosphatases. Collectively, we provide structural and biochemical data on two Drosophila proteins: Primo-1, the canonical LMW-PTP protein, and CG31469, the first investigated eukaryotic protein arginine phosphatase. We named CG31469 as DARP, which stands for Drosophila ARginine Phosphatase.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Yeajin Mo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
2
|
Croze M, Wollstein A, Božičević V, Živković D, Stephan W, Hutter S. A genome-wide scan for genes under balancing selection in Drosophila melanogaster. BMC Evol Biol 2017; 17:15. [PMID: 28086750 PMCID: PMC5237213 DOI: 10.1186/s12862-016-0857-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/17/2016] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND In the history of population genetics balancing selection has been considered as an important evolutionary force, yet until today little is known about its abundance and its effect on patterns of genetic diversity. Several well-known examples of balancing selection have been reported from humans, mice, plants, and parasites. However, only very few systematic studies have been carried out to detect genes under balancing selection. We performed a genome scan in Drosophila melanogaster to find signatures of balancing selection in a derived (European) and an ancestral (African) population. We screened a total of 34 genomes searching for regions of high genetic diversity and an excess of SNPs with intermediate frequency. RESULTS In total, we found 183 candidate genes: 141 in the European population and 45 in the African one, with only three genes shared between both populations. Most differences between both populations were observed on the X chromosome, though this might be partly due to false positives. Functionally, we find an overrepresentation of genes involved in neuronal development and circadian rhythm. Furthermore, some of the top genes we identified are involved in innate immunity. CONCLUSION Our results revealed evidence of genes under balancing selection in European and African populations. More candidate genes have been found in the European population. They are involved in several different functions.
Collapse
Affiliation(s)
- Myriam Croze
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| | - Andreas Wollstein
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Vedran Božičević
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Daniel Živković
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.,Center of Food and Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.,Natural History Museum Berlin, 10115, Berlin, Germany
| | - Stephan Hutter
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D. A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 2015; 589:951-66. [PMID: 25771859 DOI: 10.1016/j.febslet.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Most of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems.
Collapse
Affiliation(s)
- Teri Hatzihristidis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nikita Desai
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tzu-Ching Meng
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan; Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049 Madrid, Spain; IE Business School, IE University, María de Molina 31 bis, 28006 Madrid, Spain.
| |
Collapse
|
4
|
Linford AS, Jiang NM, Edwards TE, Sherman NE, Van Voorhis WC, Stewart LJ, Myler PJ, Staker BL, Petri WA. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase. Mol Biochem Parasitol 2014; 193:33-44. [PMID: 24548880 DOI: 10.1016/j.molbiopara.2014.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
Abstract
Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis.
Collapse
Affiliation(s)
- Alicia S Linford
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Nona M Jiang
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - Nicholas E Sherman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lance J Stewart
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA; Departments of Global Health and Medical Education & Biomedical Informatics, University of Washington, Seattle, WA 98195, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA; Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
Kim HT, Kim JW. Compartmentalization of vertebrate optic neuroephithelium: external cues and transcription factors. Mol Cells 2012; 33:317-24. [PMID: 22450691 PMCID: PMC3887801 DOI: 10.1007/s10059-012-0030-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 02/02/2023] Open
Abstract
The vertebrate eye is a laterally extended structure of the forebrain. It develops through a series of events, including specification and regionalization of the anterior neural plate, evagination of the optic vesicle (OV), and development of three distinct optic structures: the neural retina (NR), optic stalk (OS), and retinal pigment epithelium (RPE). Various external signals that act on the optic neuroepithelium in a spatial- and temporal-specific manner control the fates of OV subdomains by inducing localized expression of key transcription factors. Investigating the mechanisms underlying compartmentalization of these distinct optic neuroepithelium-derived tissues is therefore not only important from the standpoint of accounting for vertebrate eye morphogenesis, it is also helpful for understanding the fundamental basis of fate determination of other neuroectoderm- derived tissues. This review focuses on the molecular signatures of OV subdomains and the external factors that direct the development of tissues originating from the OV.
Collapse
Affiliation(s)
- Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| |
Collapse
|
6
|
Zabell APR, Schroff AD, Bain BE, Van Etten RL, Wiest O, Stauffacher CV. Crystal Structure of the Human B-form Low Molecular Weight Phosphotyrosyl Phosphatase at 1.6-Å Resolution. J Biol Chem 2006; 281:6520-7. [PMID: 16253994 DOI: 10.1074/jbc.m506285200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of HPTP-B, a human isoenzyme of the low molecular weight phosphotyrosyl phosphatase (LMW PTPase) is reported here at a resolution of 1.6 A. This high resolution structure of the second human LMW PTPase isoenzyme provides the opportunity to examine the structural basis of different substrate and inhibitor/activator responses. The crystal packing of HPTP-B positions a normally surface-exposed arginine in a position equivalent to the tyrosyl substrate. A comparison of all deposited crystallographic coordinates of these PTPases reveals three atomic positions within the active site cavity occupied by hydrogen bond donor or acceptor atoms on bound molecules, suggesting useful design elements for synthetic inhibitors. A selection of inhibitor and activator molecules as well as small molecule and peptide substrates were tested against each human isoenzyme. These results along with the crystal packing seen in HPTP-B suggest relevant sequence elements in the currently unknown target sequence.
Collapse
Affiliation(s)
- Adam P R Zabell
- Department of Biological Sciences and the Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chen Z, Aston E, Yu MK. Loss of Zap-70 and low molecular weight phosphotyrosine phosphatase occurs after therapy in a patient with B-chronic lymphocytic leukemia. Leukemia 2005; 19:1503-5. [PMID: 15931269 DOI: 10.1038/sj.leu.2403793] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Zabell APR, Corden S, Helquist P, Stauffacher CV, Wiest O. Inhibition studies with rationally designed inhibitors of the human low molecular weight protein tyrosine phosphatase. Bioorg Med Chem 2004; 12:1867-80. [PMID: 15051056 DOI: 10.1016/j.bmc.2004.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Revised: 01/19/2004] [Accepted: 01/27/2004] [Indexed: 01/11/2023]
Abstract
The human low molecular weight protein tyrosine phosphatase (HCPTP) is ubiquitously expressed as two isoforms in a wide range of human cells and may be involved in regulating the metastatic nature of epithelial tumors. A homology model is presented for the HCPTP-B isoform based on known X-ray crystal structures of other low molecular weight PTPs. A comparison of the two isoform structures indicates the possibility of developing isoform-specific inhibitors of HCPTP. Molecular dynamics simulations with CHARMM have been used to study the binding modes of the known adenine effector and phosphate in the active site of both isoforms. This analysis led to the design of the initial lead compound, based on an azaindole ring moiety, which was then also evaluated computationally. A comparison of these simulations indicates the need for a phosphonate group on the indole and provides insight into inhibitor binding modes. Compounds with varying degrees of structural similarity to the azaindole have been synthesized and tested for inhibition with each isoform. These molecular systems were examined with the program AutoDock, and comparisons made with the kinetics and the explicit simulations to validate AutoDock as a screening tool for potential inhibitors. Two compounds were experimentally found to have sub-millimolar inhibition, but the greater solubility of one reinforces the need for experimental testing alongside computational analysis.
Collapse
Affiliation(s)
- Adam P R Zabell
- Department of Chemistry and Biochemistry and the Walther Cancer Research Center, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
| | | | | | | | | |
Collapse
|
9
|
Li R, Haile JD, Kennelly PJ. An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics. J Bacteriol 2004; 185:6780-9. [PMID: 14617642 PMCID: PMC262706 DOI: 10.1128/jb.185.23.6780-6789.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deduced protein product of open reading frame slr0946 from Synechocystis sp. strain PCC 6803, SynArsC, contains the conserved sequence features of the enzyme superfamily that includes the low-molecular-weight protein-tyrosine phosphatases and the Staphylococcus aureus pI258 ArsC arsenate reductase. The recombinant protein product of slr0946, rSynArsC, exhibited vigorous arsenate reductase activity (V(max) = 3.1 micro mol/min. mg), as well as weak phosphatase activity toward p-nitrophenyl phosphate (V(max) = 0.08 micro mol/min. mg) indicative of its phosphohydrolytic ancestry. pI258 ArsC from S. aureus is the prototype of one of three distinct families of detoxifying arsenate reductases. The prototypes of the others are Acr2p from Saccharomyces cerevisiae and R773 ArsC from Escherichia coli. All three have converged upon catalytic mechanisms involving an arsenocysteine intermediate. While SynArsC is homologous to pI258 ArsC, its catalytic mechanism exhibited a unique combination of features. rSynArsC employed glutathione and glutaredoxin as the source of reducing equivalents, like Acr2p and R773 ArsC, rather than thioredoxin, as does the S. aureus enzyme. As postulated for Acr2p and R773 ArsC, rSynArsC formed a covalent complex with glutathione in an arsenate-dependent manner. rSynArsC contains three essential cysteine residues like pI258 ArsC, whereas the yeast and E. coli enzymes require only one cysteine for catalysis. As in the S. aureus enzyme, these "extra" cysteines apparently shuttle a disulfide bond to the enzyme's surface to render it accessible for reduction. SynArsC and pI258 ArsC thus appear to represent alternative branches in the evolution of their shared phosphohydrolytic ancestor into an agent of arsenic detoxification.
Collapse
Affiliation(s)
- Renhui Li
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
10
|
Abstract
Big brain (bib) is a neurogenic gene that when mutated causes defects in cell fate determination during Drosophila neurogenesis through an unknown mechanism. The protein Big Brain (BIB) has sequence identity with the major intrinsic protein family that includes the water- and ion-conducting aquaporin channels. We show here that BIB expressed heterologously in Xenopus oocytes provides a voltage-insensitive, nonselective cation channel function with permeability to K+ > Na+ >> tetraethylammonium. The conductance, activated in response to endogenous signaling pathways in BIB-expressing oocytes, is decreased after treatment with 20 microm insulin and is enhanced with 10 microm lavendustin A, a tyrosine kinase inhibitor. Western blot analysis confirms that BIB is tyrosine-phosphorylated. Both tyrosine phosphorylation and the potentiating effect of lavendustin A are removed by partial deletion of the C terminus (amino acids 317-700). Current activation is not observed in control oocytes or in oocytes expressing a nonfunctional mutant (BIB E71N) that appears to be expressed on the plasma membrane by confocal microscopy and Western blotting. These results indicate that BIB can participate in tyrosine kinase-regulated transmembrane signaling and may suggest a role for membrane depolarization in the neurogenic function of BIB in early development.
Collapse
|
11
|
Lucentini L, Angiolillo A, Varasano E, Panara F. Low‐molecular‐weight phosphotyrosyl protein phosphatase expression in brain of chicken and some lower vertebrates. ACTA ACUST UNITED AC 2002. [DOI: 10.1080/11250000209356445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|