1
|
Kubiś P, Kuźmak J. Development of a recombinant protein-based ELISA for detection of antibodies against bovine herpesvirus 6 (BoHV6). J Vet Res 2023; 67:509-515. [PMID: 38130460 PMCID: PMC10730543 DOI: 10.2478/jvetres-2023-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Bovine herpesvirus 6 (BoHV6) belongs to the Herpesviridae family, Gammaherpesvirinae subfamily and Macavirus genus. It is common in cattle, but was also detected in American bison (Bison bison) and water buffalo (Bubalus bubalis). The aim of the experiment was to develop an ELISA for serological examination of cattle sera for the presence of anti-BoHV6 specific antibodies. Material and Methods Viral DNA from a BoHV6-positive cow was amplified by qPCR and the resulting fragments of the gB and gH genes encoding glycoproteins B and H (gB and gH) were cloned into the pLATE52 vector to express recombinant gB (rgB) and gH (rgH) in Rosetta (DE3) E. coli. The expressed recombinant proteins were used as antigens in the developed ELISA. Results The proteins expressed had the expected molecular weight. A total of 143 sera were examined, and 141 of them were positive, according to the chosen cut-off values of 9% and 10% for the sample-to-positive ratios of the rgB and rgH antigens, respectively. Conclusion The rgB and rgH recombinant antigens of BoHV6 were successfully expressed in E. coli and successfully used in a newly developed ELISA.
Collapse
Affiliation(s)
- Piotr Kubiś
- Department of Biochemistry, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
2
|
Shahin F, Raza S, Chen X, Hu C, Chen Y, Chen H, Guo A. Molecular Characterization of UL50 (dUTPase) Gene of Bovine Herpes Virus 1. Animals (Basel) 2023; 13:2607. [PMID: 37627398 PMCID: PMC10451702 DOI: 10.3390/ani13162607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Bovine herpes virus -1 (BoHV-1) infection leads to upper respiratory tract infection, conjunctivitis and genital disorders in cattle. To control BoHV-1, it is important to understand the role of viral proteins in viral infection. BoHV-1 has several gene products to help in viral replication in infected cell. One such gene is deoxyuridine triphosphate nucleotidohydrolase (dUTPase) also known as UL50. In this study, we analyzed the amino acid sequence of UL50 (dUTPase) using bioinformatics tools and found that it was highly conserved among herpesvirus family. Then, it was cloned and expressed in Escherichia coli Rosetta (DE3), induced by isopropy1-b-D-thiogalactopyranoside (IPTG) and the recombinant UL50 protein was purified to immunize rabbits for the preparation of polyclonal antiserum. The results indicated that the UL50 gene of BoHV-1 was composed of 978 nucleotides, which encoded 323 amino acids. Western blot analysis revealed that polyclonal sera against UL50 reacted with a band of 34 kDa. Furthermore, immunofluorescence assay showed that UL50 localized in the cytoplasmic area. Taken together, UL50 was successfully cloned, expressed and detected in BoHV-1-infected cells and was localized in the cytoplasm to help in the replication of BoHV-1 in infected cells.
Collapse
Affiliation(s)
- Farzana Shahin
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (S.R.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Sohail Raza
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (S.R.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Yingyu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (S.R.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (F.S.); (S.R.); (H.C.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (C.H.); (Y.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Quintero Barbosa JS, Alméciga-Díaz CJ, Pérez SE, Gutierrez MF. Humoral Immune Response of Mice against a Vaccine Candidate Composed of a Chimera of gB of Bovine Alphaherpesviruses 1 and 5. Vaccines (Basel) 2023; 11:1173. [PMID: 37514988 PMCID: PMC10386439 DOI: 10.3390/vaccines11071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious bovine rhinotracheitis (IBR) and bovine meningoencephalitis are caused by Bovine alphaherpesvirus (BoHV) types 1 and 5, which seriously threaten the global cattle industry. Vaccination to improve immunity is the most direct and effective means to prevent these conditions. Glycoprotein B (gB) is essential for the attachment of both viruses to permissive cells, and is a major target of the host immune system, inducing a strong humoral response. The aim of this study was to evaluate, in a murine model, the immune response of a candidate vaccine formulation composed of a chimeric BoHV-1 and BoHV-5 gB (DgB), expressed in Komagataella phaffii. The chimeric DgB vaccine adjuvanted with Montanide 50 ISA V2 or aluminum hydroxide was administered intramuscularly or subcutaneously. A control group and a group that received a commercial vaccine were inoculated subcutaneously. Higher titers of neutralizing antibodies against BoHV-1, BoHV-5, and a natural BoHV-1/5 recombinant strain were obtained with the oil-based candidate vaccine formulation administered intramuscularly. The results demonstrated that the chimeric DgB conserved important epitopes that were able to stimulate a humoral immune response capable of neutralizing BoHV-1, BoHV-5, and the recombinant strain, suggesting that the vaccine antigen is a promising candidate to be further evaluated in cattle.
Collapse
Affiliation(s)
- Juan Sebastian Quintero Barbosa
- Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Sandra E Pérez
- Tandil Veterinary Research Center (CIVETAN)-CONICET, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Tandil B7000GHG, Argentina
| | - María Fernanda Gutierrez
- Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| |
Collapse
|
4
|
Quintero Barbosa JS, Rojas HYT, Gonzalez J, Espejo-Mojica AJ, Díaz CJA, Gutierrez MF. Characterization and expression of domains of Alphaherpesvirus bovine 1/5 envelope glycoproteins B in Komagataella phaffi. BMC Vet Res 2023; 19:28. [PMID: 36721143 PMCID: PMC9887784 DOI: 10.1186/s12917-023-03590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Bovine herpes virus (BoHV 1 and BoHV-5) are the causative agents of infectious bovine rhinotracheitis (IBR). IBR is responsible for important economic losses in the cattle industry. The envelope glycoprotein B (gB) is essential for BoHV infection of cattle's upper respiratory and genital tract. gB is one of the main candidate antigens for a potential recombinant vaccine since it induces a strong and persistent immune response. RESULTS In this study, gB of BoHV-1 and BoHV-5 was characterized in terms of function, structure, and antigenicity through bioinformatics tools. gB showed conserved sequence and structure, so, both domains named PH Like 1 and 2 domains of each virus were selected for the design of a bivalent vaccine candidate. The immunoinformatic study showed that these two domains have epitopes recognizable by B and T lymphocytes, followed by this, the cDNA domains from BoHV-1/5 gB (Domains-gB) were transformed into the yeast Komagataella phaffii GS115 (previously known as Pichia pastoris). A recombinant protein with molecular weight of about 110 kDa was obtained from the culture media. The vaccine candidate protein (Domains-gB) was recognized by a monoclonal antibody from a commercial ELISA kit used for IBR diagnostic, which may suggest that the epitopes are conserved of the entire infectious virus. CONCLUSION Overall, it was shown that the recombinant domains of BoHV-1/5 gB have antigenic and immunogenic properties similar to the native gB. This vaccine candidate is promising to be used in future studies to assess its immunogenicity in an animal model.
Collapse
Affiliation(s)
- Juan Sebastián Quintero Barbosa
- grid.41312.350000 0001 1033 6040Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science Pontificia, Universidad Javeriana, Bogotá, D.C Colombia
| | - Heidy Yohana Triana Rojas
- grid.41312.350000 0001 1033 6040Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C Colombia
| | - Janneth Gonzalez
- grid.41312.350000 0001 1033 6040Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C Colombia
| | - Angela Johana Espejo-Mojica
- grid.41312.350000 0001 1033 6040Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C Colombia
| | - Carlos Javier Alméciga Díaz
- grid.41312.350000 0001 1033 6040Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C Colombia
| | - María Fernanda Gutierrez
- grid.41312.350000 0001 1033 6040Virology Laboratory, Infectious Diseases Group, Microbiology Department, Faculty of Science Pontificia, Universidad Javeriana, Bogotá, D.C Colombia
| |
Collapse
|
5
|
Koç BT. Molecular evidence for concurrent infection of goats by orf virus and bovine herpesvirus 1. Acta Vet Hung 2022. [PMID: 35895479 DOI: 10.1556/004.2022.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/25/2022] [Indexed: 11/19/2022]
Abstract
Orf is a disease of small ruminant animals, including goats and sheep, that is caused by a parapoxvirus. Although the mortality rate is low, economic losses may occur due to the clinical signs. Bovine herpesvirus 1 (BoHV-1) infection is known to cause respiratory and reproductive disorders mainly in cattle; however, it has been found to circulate among goats and sheep as well. In contrast to orf virus (ORFV), BoHV-1 does not induce clinical disease in goats. In this study, we aimed to detect the presence of ORFV by molecular methods and to uncover eventual simultaneous herpesvirus infections masked by orf disease signs. To this end, 82 goats, housed near to a cattle herd, were tested. By polymerase chain reaction (PCR), three goats (3.7%) were found to harbour both viruses, while an additional goat was positive for ORFV only. The PCR products were sequenced and phylogenetic analyses were performed. This study revealed that ORFV and BoHV-1 may be present simultaneously in an animal causing a concurrent infection. These data should be taken into consideration when looking for secondary pathogens in diseased goats, and the prevention methods should be developed accordingly.
Collapse
Affiliation(s)
- B Taylan Koç
- Department of Virology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, 09016 Isikli Efeler, Aydin, Turkey
| |
Collapse
|
6
|
İnce ÖB, Şevik M. Risk assessment and seroprevalence of bovine herpesvirus type 1 infection in dairy herds in the inner Aegean Region of Turkey. Comp Immunol Microbiol Infect Dis 2021; 80:101741. [PMID: 34929412 DOI: 10.1016/j.cimid.2021.101741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
This cross-sectional study was performed to investigate the seroprevalence and associated risk factors of bovine herpesvirus type 1 (BoHV-1) infection in dairy cattle herds in Afyonkarahisar province in the Aegean Region of Turkey. Blood samples were collected from 602 cattle from 56 unvaccinated dairy herds between May 2018 and June 2019. Animal and herd-level epidemiological information was collected with a questionnaire during blood collection. Specific antibodies against BoHV-1 and bovine viral diarrhea virus (BVDV) were detected by using a virus neutralization test and a commercial indirect ELISA kit, respectively. Univariable and multivariable logistic regression analyses were used to determine any association between categorical variables and BoHV-1 seropositivity. The animal-level and herd-level seroprevalences of BoHV-1 infection were determined to be 39.53% (95% confidence interval, CI: 35.71-43.50) and 73.21% (95% CI: 60.41-83.04), respectively. Within-herd prevalence was more than 50% in 34.14% of infected herds. Cattle age (odds ratio, OR= 2.34, 95% CI: 1.58-3.44), BVDV infection (OR= 7.74, 95% CI: 5.08-11.76), and the presence of goats in the herd (OR= 2.84, 95% CI: 1.91-4.19) were identified as risk factors for BoHV-1 seropositivity by the multivariable logistic regression model. This is the first study conducted in Turkey using two-layer sampling and logistic regression analyses to determine the herd-level and animal-level seroprevalence and associated risk factors of BoHV-1 infection.
Collapse
Affiliation(s)
- Ömer Barış İnce
- Animal Breeding and Genetic Research and Implementation Center, Pamukkale University, Pamukkale, 20100 Denizli, Turkey; Province Directorate, Ministry of Agriculture and Forestry, Afyonkarahisar, Turkey.
| | - Murat Şevik
- Department of Virology, Veterinary Faculty, Necmettin Erbakan University, Eregli, 42310 Konya, Turkey
| |
Collapse
|
7
|
Characterization of BoHV-1 gG-/tk-/gE- Mutant in Differential Protein Expression, Virulence, and Immunity. Vet Sci 2021; 8:vetsci8110253. [PMID: 34822626 PMCID: PMC8621285 DOI: 10.3390/vetsci8110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bovine rhinotracheitis (IBR), caused by bovine alphaherpesvirus 1 (BoHV-1), is an important disease affecting cattle worldwide resulting in great economic losses. Marker vaccines are effective in controlling infectious diseases including IBR, because they allow the discrimination between the natural infection and the vaccination. Therefore, a triple gene deleted strain BoHV-1 gG-/tk-/gE- was developed and evaluated in vivo and in vitro as a marker vaccine. In cell culture, this triple mutant virus showed significantly slower growth kinetics and smaller plaques when compared to wild-type (wt) BoHV-1 and double mutant BoHV-1 gG-/tk- (p < 0.01). On proteomic level, it revealed downregulation of some virulence related proteins including thymidine kinase, glycoproteins G, E, I, and K when compared to the wt. In vitro, the triple mutant virus showed a significantly lower and shorter viral shedding period (p < 0.001) in calves compared to double mutant. Moreover, the immunized calves with triple mutant virus showed protection rates of 64.2% and 68.6% against wt BoHV-1 and wt BoHV-5 challenge, respectively, without reactivation of latency after dexamethasone injection. In conclusion, BoHV-1 gG-/tk-/gE- is a safer marker vaccine against IBR although its immunogenicity in calves was decreased when compared to double mutant virus.
Collapse
|
8
|
El-Mohamady RS, Behour TS, Rawash Z. Concurrent detection of bovine viral diarrhoea virus and bovine herpesvirus-1 in bulls' semen and their effect on semen quality. Int J Vet Sci Med 2020; 8:106-114. [PMID: 33426047 PMCID: PMC7751410 DOI: 10.1080/23144599.2020.1850197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Reproductive diseases may have destructive effects on the fertility of cattle. Bovine viral diarrhoea virus (BVDV) and bovine herpes virus-1 (BoHV-1) are potent viral pathogens linked to reproduction. Thus, the aim of this study was to utilize raw semen samples for conventional and molecular detection of BVDV and BoHV-1, simultaneously. Additionally, the effect of virus infection on the semen quality of naturally infected bulls has been investigated. Therefore, 40 bulls were employed for semen collection, evaluation and testing for both viruses by virus isolation, direct fluorescent antibody technique (FAT) and SYBR Green real-time PCR assay. In virus isolation results, no cytopathic effect (CPE) was observed for BVDV on cell culture whereas, eight (20%) samples displayed characteristic grape-like clusters of cells for BoHV-1. By direct FAT, 12 (30%) positive BVDV and 8 (20%) positive BoHV-1 samples were confirmed. SYBR Green real-time PCR analysis using 48 h inoculated semen samples revealed 14 (35%) and 8 (20%) positive samples for BVDV and BoHV-1, respectively. Statistical analysis of semen evaluation parameters showed a significant difference between viral-infected and free groups represented by increased sperm abnormalities and decreased sperm motility, liveability and concentration. However, there was no significant difference among BVDV, BoHV-1 and mixed-infected groups. The study concluded that BVDV and/or BoHV- 1 infected bulls expressed low semen quality. Real-time PCR was confirmed to be the ideal laboratory assay for detection of both viruses in semen.
Collapse
Affiliation(s)
- Rania S. El-Mohamady
- Viral Diseases Research Unit, Animal Reproduction Research Institute (ARRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Tahani S. Behour
- Biotechnology Research Unit, Animal Reproduction Research Institute (ARRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Z.M. Rawash
- Artificial Insemination and Embryo Transfer Department, Animal Reproduction Research Institute (ARRI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
9
|
Peltzer D, Tobler K, Fraefel C, Maley M, Bachofen C. Rapid and simple colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of Bovine alphaherpesvirus 1. J Virol Methods 2020; 289:114041. [PMID: 33309756 DOI: 10.1016/j.jviromet.2020.114041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023]
Abstract
As the causative agent of Infectious Bovine Rhinotracheitis (IBR) and Infectious Pustular Vulvovaginitis/Balanoposthitis (IPV/IPB), Bovine alphaherpesvirus 1 (BoHV-1) is responsible for high economic losses in the cattle industry worldwide. This study aimed to establish a fast, colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of viral DNA. Phenol red is used as pH-sensitive readout, relying on a distinct color change from pink to yellow in case of a positive reaction. LAMP reactions with different primers were compared and a newly designed set targeting the gene encoding the tegument protein V67 provided best results, enabling readout within 8-30 min. LAMP showed less cross-reactions with other ruminant alphaherpesviruses than qPCR but was 10-fold less sensitive. However, LAMP still detected down to 14 copies. The test performance was evaluated using 26 well-characterized nasal swabs from cattle with respiratory disease. All samples were correctly identified when using column-extracted DNA. Using a simple DNA precipitation method, only two weak-positive samples turned indeterminate. Combining this DNA precipitation with a makeshift water bath heated by a gastronomic immersion heater allowed successful application of the colorimetric LAMP assay under resource-limited conditions. This technique can therefore help in managing IBR/IPV outbreaks where sophisticated laboratory equipment is unavailable.
Collapse
Affiliation(s)
- Deborah Peltzer
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland.
| | - Kurt Tobler
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Madeleine Maley
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, EH26 0PZ, UK
| | - Claudia Bachofen
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
10
|
Time-course profiling of bovine alphaherpesvirus 1.1 transcriptome using multiplatform sequencing. Sci Rep 2020; 10:20496. [PMID: 33235226 PMCID: PMC7686369 DOI: 10.1038/s41598-020-77520-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Long-read sequencing (LRS) has become a standard approach for transcriptome analysis in recent years. Bovine alphaherpesvirus 1 (BoHV-1) is an important pathogen of cattle worldwide. This study reports the profiling of the dynamic lytic transcriptome of BoHV-1 using two long-read sequencing (LRS) techniques, the Oxford Nanopore Technologies MinION, and the LoopSeq synthetic LRS methods, using multiple library preparation protocols. In this work, we annotated viral mRNAs and non-coding transcripts, and a large number of transcript isoforms, including transcription start and end sites, as well as splice variants of BoHV-1. Our analysis demonstrated an extremely complex pattern of transcriptional overlaps.
Collapse
|
11
|
Marin M, Burucúa M, Rensetti D, Rosales JJ, Odeón A, Pérez S. Distinctive features of bovine alphaherpesvirus types 1 and 5 and the virus-host interactions that might influence clinical outcomes. Arch Virol 2019; 165:285-301. [PMID: 31845150 DOI: 10.1007/s00705-019-04494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are two closely related alphaherpesviruses. BoHV-1 causes several syndromes in cattle, including respiratory disease and sporadic cases of encephalitis, whereas BoHV-5 is responsible for meningoencephalitis in calves. Although both viruses are neurotropic, they differ in their neuropathogenic potential. This review summarizes the findings on the specific mechanisms and pathways known to modulate the pathogenesis of BoHV-1 and BoHV-5, particularly in relation to respiratory and neurological syndromes, which characterize BoHV-1 and BoHV-5 infections, respectively.
Collapse
Affiliation(s)
- Maia Marin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Mercedes Burucúa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Daniel Rensetti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Juan José Rosales
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Anselmo Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Sandra Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina. .,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.
| |
Collapse
|
12
|
Magalhães-Junior MJ, Baracat-Pereira MC, Pereira LKJ, Vital CE, Santos MR, Cunha PS, Fernandes KM, Bressan GC, Fietto JLR, Silva-Júnior A, Almeida MR. Proteomic and phosphoproteomic analyses reveal several events involved in the early stages of bovine herpesvirus 1 infection. Arch Virol 2019; 165:69-85. [PMID: 31705208 DOI: 10.1007/s00705-019-04452-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/28/2019] [Indexed: 12/23/2022]
Abstract
Herpesviruses are predicted to express more than 80 proteins during their infection cycle. The proteins synthesized by the immediate early genes and early genes target signaling pathways in host cells that are essential for the successful initiation of a productive infection and for latency. In this study, proteomic and phosphoproteomic tools showed the occurrence of changes in Madin-Darby bovine kidney cells at the early stage of the infection by bovine herpesvirus 1 (BoHV-1). Proteins that had already been described in the early stage of infection for other herpesviruses but not for BoHV-1 were found. For example, stathmin phosphorylation at the initial stage of infection is described for the first time. In addition, two proteins that had not been described yet in the early stages of herpesvirus infections in general were ribonuclease/angiogenin inhibitor and Rab GDP dissociation inhibitor beta. The biological processes involved in these cellular responses were repair and replication of DNA, splicing, microtubule dynamics, and inflammatory responses. These results reveal pathways that might be used as targets for designing antiviral molecules against BoHV-1 infection.
Collapse
Affiliation(s)
- Marcos J Magalhães-Junior
- Laboratory of Animal Molecular Infectology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.,Laboratory of Proteomics and Protein Biochemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Maria Cristina Baracat-Pereira
- Laboratory of Proteomics and Protein Biochemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil. .,Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Lorena K J Pereira
- Laboratory of Proteomics and Protein Biochemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Camilo E Vital
- Nucleus of Biomolecules Analysis, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcus R Santos
- Laboratory of Immunobiology and Animal Virology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Pricila S Cunha
- Laboratory of Cell and Molecular Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Kenner M Fernandes
- Laboratory of Cell Biology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Gustavo C Bressan
- Laboratory of Animal Molecular Infectology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Juliana L R Fietto
- Laboratory of Animal Molecular Infectology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Abelardo Silva-Júnior
- Laboratory of Immunobiology and Animal Virology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Márcia R Almeida
- Laboratory of Animal Molecular Infectology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
13
|
Molecular and antigenic characterization of bovine herpesvirus type 1 (BoHV-1) strains from cattle with diverse clinical cases in Turkey. Trop Anim Health Prod 2019; 52:555-564. [PMID: 31482481 PMCID: PMC7223183 DOI: 10.1007/s11250-019-02042-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/19/2019] [Indexed: 11/11/2022]
Abstract
The present study reports the molecular and antigenic characterization of 13 bovine herpesvirus type 1 (BoHV-1) field viruses obtained from cattle with different clinical cases in Turkey between 1992 and 2017. We selected glycoprotein C (gC) of BoHV-1 as a target to detect and/or verify presence of the virus in suspect materials followed by virus isolation (VI) in MDBK cells. In seven out of 13 BoHV-1 positive samples, cytophatic effects (CPEs) were observed in MDBK cell cultures, although only four virus samples reached a sufficient titer to use in phylogenetic assay, restriction endonuclease analysis (REA), and virus neutralization test (VNT). According to the results of sequence analysis of the 13 BoHV-1 positive samples, nine BoHV-1 field viruses were determined as BoHV-1.1 and four as BoHV-1.2. Using REA, we demonstrated that two of our isolated viruses could be categorized as BoHV-1.1 while the other two isolates were BoHV-1.2 subtypes. Differences between the BoHV-1.1 and BoHV-1.2 isolates were also detected in the VNT results by assaying 125 suspected serum samples after testing with isolated (KY748023, KY748022, KY748020, and KY748021) and reference viruses (BoHV-1 Cooper and BoHV-5 Texas 89). These results are indicating the need to correctly identify BoHV-1 field isolates to better understand the epidemiology and pathogenesis of infection. In addition, it would be useful to identify the subtypes circulating in the specific geographical area while determining vaccination preferences.
Collapse
|
14
|
El-Mohamady RS, Ghattas TA, Zawrah MF, Abd El-Hafeiz YGM. Inhibitory effect of silver nanoparticles on bovine herpesvirus-1. Int J Vet Sci Med 2018; 6:296-300. [PMID: 30564612 PMCID: PMC6286414 DOI: 10.1016/j.ijvsm.2018.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Rania S El-Mohamady
- Animal Reproduction Research Institute, Agriculture Research Center, 12556 Haram, Giza, Egypt
| | - T A Ghattas
- Animal Reproduction Research Institute, Agriculture Research Center, 12556 Haram, Giza, Egypt
| | - M F Zawrah
- National Research Center, Ceramics, Refractories and Building Materials Department, 12622-Dokki, Giza, Egypt
| | - Y G M Abd El-Hafeiz
- Animal Reproduction Research Institute, Agriculture Research Center, 12556 Haram, Giza, Egypt
| |
Collapse
|
15
|
Proteogenomic Identification of a Novel Protein-Encoding Gene in Bovine Herpesvirus 1 That Is Expressed during Productive Infection. Viruses 2018; 10:v10090499. [PMID: 30223481 PMCID: PMC6164122 DOI: 10.3390/v10090499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is one of several microbes that contributes to the development of the bovine respiratory disease (BRD) and can also induce abortions in cattle. As other alpha-herpesvirinae subfamily members, BoHV-1 efficiently replicates in many cell types and subsequently establishes a life-long latent infection in sensory neurons. BoHV-1 encodes more than 70 proteins that are expressed in a well-defined manner during productive infection. However, in silico open reading frame (ORF) prediction of the BoHV-1 genome suggests that the virus may encode more than one hundred proteins. In this study we used mass spectrometry followed by proteogenomic mapping to reveal the existence of 92 peptides that map to previously un-annotated regions of the viral genome. Twenty-one of the newly termed “intergenic peptides” were predicted to have a viable ORF around them. Twelve of these produced an mRNA transcript as demonstrated by strand-specific RT-PCR. We further characterized the 5′ and 3′ termini of one mRNA transcript, ORF-A, and detected a 55 kDa protein produced during active infection using a custom-synthesized antibody. We conclude that the coding potential of BoHV-1 is underestimated.
Collapse
|
16
|
Hidayati DN, Untari T, Wibowo MH, Akiyama K, Asmara W. Cloning and sequencing gB, gD, and gM genes to perform the genetic variability of bovine herpesvirus-1 from Indonesia. Vet World 2018; 11:1255-1261. [PMID: 30410230 PMCID: PMC6200558 DOI: 10.14202/vetworld.2018.1255-1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023] Open
Abstract
AIM Previous research has shown that bovine herpesvirus-1 (BHV-1) in Indonesia was closely related to subtype-1 based on glycoprotein D genes. This study aimed to analyze the genetic variability of the BHV-1 isolated from the recent case in Indonesia not only based on gD but also other genes such as gB and gM and to study the homology and similarity of the sample to other BHV-1 isolated in other countries or regions. MATERIALS AND METHODS Samples were drawn from the tracheal organ in recent field case and prepared for DNA extraction. The gB, gD, and gM were amplified using nested polymerase chain reaction (nPCR) with our specifically designed primer pair and based on the specified bands of 350 bp gB, 325 bp gD, and 734 bp gM confirmed as BHV-1. The PCR product was ligated into pGEM-T and transformed into competent Escherichia coli. The purified plasmid was subsequently sequenced. RESULTS The virus sample isolated from the recent field case of infectious bovine rhinotracheitis (IBR) from Indonesia showed variability based on the gB, gD, and gM sequences. However, all of the genes had high similarity (98-100%) to BHV-1.2. CONCLUSION The recent field case of IBR in Indonesia was similar to BHV-1.2.
Collapse
Affiliation(s)
- Dewi Noor Hidayati
- Doctoral Program, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2, Caturtunggal, Depok, Karangmalang, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
- PUSVETMA (Pusat Veteriner Farma), The Ministry of Agriculture of The Republic of Indonesia, Jl. Frontage Ahmad Yani Siwalankerto No. 68-70, Ketintang, Gayungan, Surabaya, Jawa Timur 60231, Indonesia
| | - Tri Untari
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2, Caturtunggal, Depok, Karangmalang, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
| | - Michael Haryadi Wibowo
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2, Caturtunggal, Depok, Karangmalang, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
| | - Koichi Akiyama
- Advanced Research Support Centre (ADRES), Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Widya Asmara
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2, Caturtunggal, Depok, Karangmalang, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
| |
Collapse
|
17
|
|
18
|
Barber KA, Daugherty HC, Ander SE, Jefferson VA, Shack LA, Pechan T, Nanduri B, Meyer F. Protein Composition of the Bovine Herpesvirus 1.1 Virion. Vet Sci 2017; 4:vetsci4010011. [PMID: 29056670 PMCID: PMC5606624 DOI: 10.3390/vetsci4010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/12/2017] [Indexed: 12/20/2022] Open
Abstract
Bovine herpesvirus (BoHV) type 1 is an important agricultural pathogen that infects cattle and other ruminants worldwide. Acute infection of the oro-respiratory tract leads to immune suppression and allows commensal bacteria to infect an otherwise healthy lower respiratory tract. This condition is known as the Bovine Respiratory Disease (BRD). BoHV-1 latently infects the host for life and periodical stress events re-initiate BRD, translating into high morbidity and large economic losses. To gain a better understanding of the biology of BoHV-1 and the disease it causes, we elucidated the protein composition of extracellular virions using liquid chromatography-mass spectrometry analysis. We detected 33 viral proteins, including the expected proteins of the nucleocapsid and envelope as well as other regulatory proteins present in the viral tegument. In addition to viral proteins, we have also identified packaged proteins of host origin. This constitutes the first proteomic characterization of the BoHV virion.
Collapse
Affiliation(s)
- Kaley A. Barber
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (K.A.B.); (H.C.D.); (S.E.A.); (V.A.J.)
| | - Hillary C. Daugherty
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (K.A.B.); (H.C.D.); (S.E.A.); (V.A.J.)
| | - Stephanie E. Ander
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (K.A.B.); (H.C.D.); (S.E.A.); (V.A.J.)
| | - Victoria A. Jefferson
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (K.A.B.); (H.C.D.); (S.E.A.); (V.A.J.)
| | - Leslie A. Shack
- Department of Basic Sciences, College of Veterinary Science, Mississippi State University, Mississippi State, MS 39762, USA; (A.S.); (B.N.)
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA;
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Science, Mississippi State University, Mississippi State, MS 39762, USA; (A.S.); (B.N.)
| | - Florencia Meyer
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; (K.A.B.); (H.C.D.); (S.E.A.); (V.A.J.)
- Correspondence: ; Tel.: +1-662-325-7734
| |
Collapse
|
19
|
Scheffer CM, Varela APM, Cibulski SP, Schmidt C, Campos FS, Paim WP, dos Santos RN, Teixeira TF, Loiko MR, Tochetto C, dos Santos HF, de Lima DA, Cerva C, Mayer FQ, Petzhold SA, Franco AC, George TS, Spilki FR, Roehe PM. Genome sequence of bubaline alphaherpesvirus 1 (BuHV1) isolated in Australia in 1972. Arch Virol 2017; 162:1169-1176. [DOI: 10.1007/s00705-016-3218-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
20
|
The latency related gene of bovine herpesvirus types 1 and 5 and its modulation of cellular processes. Arch Virol 2016; 161:3299-3308. [DOI: 10.1007/s00705-016-3067-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
|
21
|
Haque M, Stanfield B, Kousoulas KG. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production. Virology 2016; 499:156-164. [PMID: 27661734 DOI: 10.1016/j.virol.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 02/05/2023]
Abstract
We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealed that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1.
Collapse
Affiliation(s)
- Muzammel Haque
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Brent Stanfield
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
22
|
Pasman Y, Soliman C, Ramsland PA, Kaushik AK. Exceptionally long CDR3H of bovine scFv antigenized with BoHV-1 B-epitope generates specific immune response against the targeted epitope. Mol Immunol 2016; 77:113-25. [PMID: 27497190 DOI: 10.1016/j.molimm.2016.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022]
Abstract
We discovered that some bovine antibodies are amongst the largest known to exist due to the presence of an exceptionally long CDR3H (≥49 amino acids) with multiple cysteines that provide a unique knob and stalk structure to the antigen binding site. The large CDR3H size, unlike mouse and human, provides a suitable platform for antigenization with large configurational B-epitopes. Here we report the identification of a B-epitope on the gC envelope protein of bovine herpes virus type-1 (BoHV-1) recognized by a bovine IgG1 antibody. The identified 156 amino acid long gC fragment (gC156) was expressed as a recombinant protein. Subsequently, a functional scFv fragment with a 61 amino-acid long CDR3H (scFv1H12) was expressed such that gC156 was grafted into the CDR3H, replacing the "knob" region (gC156scFv1H12 or Ag-scFv). Importantly, the Ag-scFv could be recognized by a neutralizing antibody fragment (scFv3-18L), which suggests that the engraftment of gC156 into the CDR3H of 1H12 maintained the native conformation of the BoHV-1 B-epitope. A 3D model of gC156 was generated using fold-recognition approaches and this was grafted onto the CDR3H stalk of the 1H12 Fab crystal structure to predict the 3D structure of the Ag-scFv. The grafted antigen in Ag-scFv is predicted to have a compact conformation with the ability to protrude into the solvent. Upon immunization of bovine calves, the antigenized scFv (gC156scFv1H12) induced a higher antibody response as compared to free recombinant gC156. These observations suggest that antigenization of bovine scFv with an exceptionally long CDR3H provides a novel approach to developing the next generation of vaccines against infectious agents that require induction of protective humoral immunity.
Collapse
Affiliation(s)
- Yfke Pasman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Caroline Soliman
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Paul A Ramsland
- School of Science, RMIT University, Bundoora, VIC 3083, Australia; Centre for Biomedical Research, Burnet Institute, Melbourne, VIC 3004, Australia; Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, VIC 3004, Australia; Department of Surgery Austin Health, University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Azad K Kaushik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
23
|
Puentes R, Campos FS, Furtado A, Torres FD, Franco AC, Maisonnave J, Roehe PM. Comparison between DNA Detection in Trigeminal Nerve Ganglia and Serology to Detect Cattle Infected with Bovine Herpesviruses Types 1 and 5. PLoS One 2016; 11:e0155941. [PMID: 27224314 PMCID: PMC4880179 DOI: 10.1371/journal.pone.0155941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/08/2016] [Indexed: 12/02/2022] Open
Abstract
Bovine herpesviruses (BoHVs) types 1 (BoHV-1) and 5 (BoHV-5) are alphaherpesviruses of major importance to the bovine production chain. Such viruses are capable of establishing latent infections in neuronal tissues. Infected animals tend to develop a serological response to infection; however, such response—usually investigated by antibody assays in serum—may eventually not be detected in laboratory assays. Nevertheless, serological tests such as virus neutralization (VN) and various enzyme-linked immunosorbent assays (ELISAs) are widely employed to check individual or herd status of BoHV infections. The correlation between detection of antibodies and the presence of viral nucleic acids as indicatives of infection in infected cattle has not been deeply examined. In order to investigate such correlation, 248 bovine serum samples were tested by VN to BoHV-1 and BoHV-5, as well as in a widely employed (though not type-differential) gB ELISA (IDEXX IBR gB X2 Ab Test) in search for antibodies to BoHVs. Immediately after blood withdrawal, cattle were slaughtered and trigeminal ganglia (TG) excised for DNA extraction and viral nucleic acid detection (NAD) by nested PCR. Neutralizing antibodies to BoHV-1 and/or BoHV-5 were detected in 44.8% (111/248) of sera, whereas the gB ELISA detected antibodies in 51.2% (127/248) of the samples. However, genomes of either BoHV-1, BoHV-5, or both, were detected in TGs of 85.9% (213/248) of the animals. These findings reveal that the assays designed to detect antibodies to BoHV-1 and/or BoHV-5 employed here may fail to detect a significant number of latently infected animals (in this study, 35.7%). From such data, it is clear that antibody assays are poorly correlated with detection of viral genomes in BoHV-1 and BoHV-5-infected animals.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Cattle
- Cattle Diseases/diagnosis
- Cattle Diseases/genetics
- Cattle Diseases/immunology
- Cell Line
- DNA, Viral/genetics
- Encephalitis, Viral/diagnosis
- Encephalitis, Viral/genetics
- Encephalitis, Viral/immunology
- Encephalitis, Viral/veterinary
- Enzyme-Linked Immunosorbent Assay/methods
- Herpesviridae Infections/diagnosis
- Herpesviridae Infections/genetics
- Herpesviridae Infections/immunology
- Herpesviridae Infections/veterinary
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 1, Bovine/immunology
- Herpesvirus 5, Bovine/genetics
- Herpesvirus 5, Bovine/immunology
- Meningoencephalitis/diagnosis
- Meningoencephalitis/genetics
- Meningoencephalitis/immunology
- Meningoencephalitis/veterinary
- Polymerase Chain Reaction/methods
- Trigeminal Ganglion/virology
Collapse
Affiliation(s)
- Rodrigo Puentes
- Departamento de Ciencias Microbiológicas, Área de Inmunología, Facultad de Veterinaria, Universidad de la República Oriental del Uruguay (UdelaR), Montevideo, Uruguay
- * E-mail:
| | - Fabrício Souza Campos
- Laboratório de Microbiologia Veterinária, Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília (UnB), Distrito Federal (DF), Brazil
| | - Agustin Furtado
- Departamento de Ciencias Microbiológicas, Área de Inmunología, Facultad de Veterinaria, Universidad de la República Oriental del Uruguay (UdelaR), Montevideo, Uruguay
| | - Fabrício Dias Torres
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jacqueline Maisonnave
- Departamento de Ciencias Microbiológicas, Área de Inmunología, Facultad de Veterinaria, Universidad de la República Oriental del Uruguay (UdelaR), Montevideo, Uruguay
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
24
|
Rai AN, Epperson WB, Nanduri B. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics. Bioinform Biol Insights 2015; 9:13-23. [PMID: 26526746 PMCID: PMC4620937 DOI: 10.4137/bbi.s30525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/27/2022] Open
Abstract
Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches.
Collapse
Affiliation(s)
- Aswathy N Rai
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - William B Epperson
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA. ; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, MS, USA
| |
Collapse
|
25
|
Recombinant bovine adenovirus-3 co-expressing bovine respiratory syncytial virus glycoprotein G and truncated glycoprotein gD of bovine herpesvirus-1 induce immune responses in cotton rats. Mol Biotechnol 2015; 57:58-64. [PMID: 25173687 DOI: 10.1007/s12033-014-9801-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
One of the impediments in the development of safe and cost effective vaccines for veterinary use has been the availability of appropriate delivery vehicle. We have chosen to develop and use bovine adenovirus (BAdV)-3 as vaccine delivery vector in cattle. Here, we describe the construction of recombinant E3 deleted BAdV-3 vectors expressing single vaccine antigen (BAV360; bovine respiratory syncytial virus G) or two vaccine antigens (BAV851; bovine herpesvirus-1gDt and bovine respiratory syncytial virus G). Recombinant proteins expressed by BAV360 or BAV851 were recognized by protein-specific monoclonal antibodies. Moreover, intranasal immunization of cotton rats with BAV360 (expressing a single vaccine antigen) or BAV851 (expressing two vaccine antigens) induced strong antigen-specific immune responses. These results suggest that single replication-competent BAdV-3 expressing vaccine antigens of two economically important respiratory pathogens of calves has potential to act as a feasible approach in the development of economically effective veterinary vaccines for cattle.
Collapse
|
26
|
Virus, strain, and epitope specificities of neutralizing bovine monoclonal antibodies to bovine herpesvirus 1 glycoproteins gB, gC, and gD, with sequence and molecular model analysis. Vet Immunol Immunopathol 2015; 164:179-93. [DOI: 10.1016/j.vetimm.2015.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/30/2022]
|
27
|
Robinson KE, Mahony TJ. Herpesvirus mutagenesis facilitated by infectious bacterial artificial chromosomes (iBACs). Methods Mol Biol 2015; 1227:181-97. [PMID: 25239746 DOI: 10.1007/978-1-4939-1652-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A critical factor in the study of herpesviruses, their genes and gene functions is the capacity to derive mutants that harbor deletions, truncations, or insertions within the genetic elements of interest. Once constructed the impact of the introduced mutation on the phenotypic properties of the rescued virus can be determined in either in vitro or in vivo systems. However, the construction of such mutants by traditional virological mutagenesis techniques can be a difficult and laborious undertaking. The maintenance of a viral genome as an infectious bacterial artificial chromosome (iBAC), however, endows the capacity to manipulate the viral genome for mutagenesis studies with relative ease. Here, the construction and characterization of two gene deletion mutants of an alphaherpesvirus maintained as iBAC in combination with an inducible homologous recombination system in Escherichia coli is detailed. The methodology is generally applicable to any iBAC and is demonstrated to be a highly efficient and informative approach for mutant virus construction.
Collapse
Affiliation(s)
- Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Level 3, Ritchie Building (64C), Research Road, St Lucia, QLD, 4072, Australia
| | | |
Collapse
|
28
|
Diogo JV, Novo SG, González MJ, Ciancia M, Bratanich AC. Antiviral activity of lambda-carrageenan prepared from red seaweed (Gigartina skottsbergii) against BoHV-1 and SuHV-1. Res Vet Sci 2014; 98:142-4. [PMID: 25435342 DOI: 10.1016/j.rvsc.2014.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/08/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022]
Abstract
The antiviral effect of polysaccharides has been known for many years. Carrageenans are considered a good alternative for the prevention of a wide range of diseases, mainly caused by enveloped viruses. The advantages lie on their high availability, low cost and low induction of resistance. The aim of this study was to evaluate the sensitivity of two viral pathogens of veterinary interest to the presence of lambda-carrageenan. This is the first report of a lambda-carrageenan having antiviral activity against animal viruses belonging to the Alphaherpesvirinae subfamily, BoHV-1 (bovine herpesvirus type 1) strain Cooper and SuHV-1 (suid herpesvirus type 1) strain Bartha. Lambda-carrageenan was able to reduce infectivity of both viruses with a more pronounced effect against BoHV-1. These results proved, as previously shown for human herpes virus type 1, that these compounds could be used as potential antiviral agents in the veterinary field.
Collapse
Affiliation(s)
- Jésica V Diogo
- Área de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Sabrina Galdo Novo
- Área de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Marcelo J González
- Área de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina
| | - Marina Ciancia
- Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires C1417DSE, Argentina; National Research Council of Argentina (CIHIDECAR-CONICET), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ana C Bratanich
- Área de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, Buenos Aires C1427CWO, Argentina.
| |
Collapse
|
29
|
El-Kholy AA, Abdelrahman K, Soliman H. Rapid detection of BoHV-1 genomic DNA by loop-mediated isothermal amplification assay. J Virol Methods 2014; 204:81-5. [PMID: 24769199 DOI: 10.1016/j.jviromet.2014.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/06/2014] [Accepted: 04/16/2014] [Indexed: 11/24/2022]
Abstract
Bovine herpes virus-1 (BoHV-1) is a serious viral pathogen of domestic and wild cattle. Herein, we report development of a new molecular diagnostic assay for rapid and sensitive detection of BoHV-1 utilizing the loop-mediated isothermal amplification (LAMP) technique. BoHV-1-LAMP assay was optimized to amplify the target DNA by incubation the Bst-DNA polymerase enzyme with a set of specially constructed six primers, based on the gE-gene of BoHV-1 virus, at 65°C for 60min. BoHV-1-LAMP products were detected by visual inspection using SYBR Green-I stain and had a ladder-like appearance by gel electrophoresis analysis. Negative results obtained with DNA from other tested fish viruses confirmed the specificity of the assay. The analytical sensitivity of the BoHV-1-LAMP assay was 1fg of BoHV-1 DNA (dilution of 10(6)). The developed assay could successfully detect BoVH-1 DNA from clinical samples. Results of this study indicate that the developed BoHV-1-LAMP is rapid and highly sensitive assay not only for detection of BoHV-1 in clinical samples, but also for differentiation between wild-type (gE-positive) and gE-negative BoHV-1 viruses, which will improve the control programs of BoHV-1 in Egypt.
Collapse
Affiliation(s)
- Alaa A El-Kholy
- Veterinary Serum & Vaccine Research Institute, Abbassia, P.O. Box # 131, Cairo, Egypt
| | - Khaled Abdelrahman
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Hatem Soliman
- Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, 71515 Assiut, Egypt.
| |
Collapse
|
30
|
Spatz SJ, Volkening JD, Ross TA. Molecular characterization of the complete genome of falconid herpesvirus strain S-18. Virus Res 2014; 188:109-21. [PMID: 24685675 DOI: 10.1016/j.virusres.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Falconid herpesvirus type 1 (FaHV-1) is the causative agent of falcon inclusion body disease, an acute, highly contagious disease of raptors. The complete nucleotide sequence of the genome of FaHV-1 has been determined using Illumina MiSeq sequencing. The genome is 204,054 nucleotides in length and has a class E organization. The genome encodes approximately 130 putative protein-coding genes, of which 70 are orthologs of conserved alphaherpesvirus and Mardivirus proteins. Three FaHV-1 genes (UL3.5, UL44.5 and CIRC) were identified that encode protein homologues unique to Mardivirus and Varicellovirus. The genome also encodes homologues to the Mardivirus genes LORF2, LORF3, LORF4, LORF5, SORF3 and SORF4. An opal mutation resulting in premature termination was identified in the FaHV-1 UL43 gene. Phylogenetically, FaHV-1 resides in a monophyletic group with the other Mardiviruses but, along with anatid herpesvirus 1, represents a more distant divergence from the rest of the Mardivirus genus.
Collapse
Affiliation(s)
- Stephen J Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | | | - Teresa A Ross
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
31
|
Abstract
Bovine herpesvirus 1 (BHV-1) infection is widespread and causes a variety of diseases. Although similar in many respects to the human immune response to human herpesvirus 1, the differences in the bovine virus proteins, immune system components and strategies, physiology, and lifestyle mean the bovine immune response to BHV-1 is unique. The innate immune system initially responds to infection, and primes a balanced adaptive immune response. Cell-mediated immunity, including cytotoxic T lymphocyte killing of infected cells, is critical to recovery from infection. Humoral immunity, including neutralizing antibody and antibody-dependent cell-mediated cytotoxicity, is important to prevention or control of (re-)infection. BHV-1 immune evasion strategies include suppression of major histocompatibility complex presentation of viral antigen, helper T-cell killing, and latency. Immune suppression caused by the virus potentiates secondary infections and contributes to the costly bovine respiratory disease complex. Vaccination against BHV-1 is widely practiced. The many vaccines reported include replicating and non-replicating, conventional and genetically engineered, as well as marker and non-marker preparations. Current development focuses on delivery of major BHV-1 glycoproteins to elicit a balanced, protective immune response, while excluding serologic markers and virulence or other undesirable factors. In North America, vaccines are used to prevent or reduce clinical signs, whereas in some European Union countries marker vaccines have been employed in the eradication of BHV-1 disease.
Collapse
|
32
|
van Drunen Littel-van den Hurk S. Cell-mediated immune responses induced by BHV-1: rational vaccine design. Expert Rev Vaccines 2014; 6:369-80. [PMID: 17542752 DOI: 10.1586/14760584.6.3.369] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bovine herpesvirus-1 (BHV-1) is one of the major respiratory pathogens in cattle worldwide. Although antibodies have been correlated with protection and recovery from BHV-1 infection, the cell-mediated immune response is also a critical defense mechanism because cell-to-cell spread occurs before hematogenous spread. Furthermore, induction of robust T-cell memory is critical for the long-term duration of immunity. Among current commercial vaccines, the attenuated conventional vaccines induce a balanced immune response and long-term memory but may result in viral shedding. By contrast, inactivated vaccines primarily elicit a humoral immune response and relative short-term memory. These vaccines do not allow differentiation of vaccinated from infected cattle. Recent efforts are focusing on the development of vaccines that induce a balanced immune response and long-term memory, as well as having differentiation markers. This includes well-defined genetically engineered gene-deleted, subunit and vectored vaccines.
Collapse
|
33
|
El-Kholy AA, Rady DI, Abdou ER, Elseafy MM, Abdelrahman KA, Soliman H. Construction, characterization and immunogenicity of a glycoprotein E negative bovine herpesvirus-1.1 Egyptian strain "Abu-Hammad". J Virol Methods 2013; 194:74-81. [PMID: 23962750 DOI: 10.1016/j.jviromet.2013.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
A full glycoprotein E (gE) deletion was generated in genome of the Egyptian BoHV-1.1 Abu-Hammad strain. Integrity of the gE negative (gE(-)) mutant virus was proved by successful specific PCR amplifications of gB, gC, tk, gD, gI and gE genes along with definite immune reaction to polyclonal anti-BoHV-1 antibody in infected cell culture. BoHV-1 gE(-) mutant exhibited growth kinetics inferior to those of the parental virus manifested as lower virus titers with delayed and poorer cytopathic effect in infected cells. Adjuvanted vaccines were made of the gE(-) mutant, live and killed; besides a conventional killed vaccine made of the parental virus and were used to immunize separate groups of calves. After i.m. vaccinations, no virus shedding could be detected in nasal swabs collected from all vaccinates and all calves remained apparently healthy. They all seroconverted to BoHV-1 as was revealed by virus neutralization test and a gB enzyme-linked immunosorbent assay (ELISA). Calves vaccinated with live and killed gE(-) vaccines did not elicit any detectable anti-gE antibody as shown by a blocking gE-ELISA. In conclusion, the constructed BoHV-1.1 gE(-) mutant was proved as safe and immunogenic as a reliable candidate for inclusion in a local marker vaccine.
Collapse
Affiliation(s)
- Alaa A El-Kholy
- Veterinary Serum & Vaccine Research Institute, El-Sekka El-Beda St., P.O. Box 131, P.C. 11381, Abbassia, Cairo, Egypt.
| | | | | | | | | | | |
Collapse
|
34
|
Hall RN, Meers J, Mitter N, Fowler EV, Mahony TJ. The Meleagrid herpesvirus 1 genome is partially resistant to transposition. Avian Dis 2013; 57:380-6. [PMID: 23901750 DOI: 10.1637/10339-082912-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed.
Collapse
Affiliation(s)
- Robyn N Hall
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | | | | | | | | |
Collapse
|
35
|
El-Kholy AA, Abdou ER, Rady DI, Elseafy MM. Baculovirus expression and diagnostic utility of the glycoprotein E of bovine herpesvirus-1.1 Egyptian strain “Abu-Hammad”. J Virol Methods 2013; 191:33-40. [DOI: 10.1016/j.jviromet.2013.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
|
36
|
Biswas S, Bandyopadhyay S, Dimri U, H. Patra P. Bovine herpesvirus-1 (BHV-1) – a re-emerging concern in livestock: a revisit to its biology, epidemiology, diagnosis, and prophylaxis. Vet Q 2013; 33:68-81. [DOI: 10.1080/01652176.2013.799301] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Suman Biswas
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | | | - Umesh Dimri
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Pabitra H. Patra
- Department of Pharmacology & Toxicology, C.V.Sc. & AH, Tripura, India
| |
Collapse
|
37
|
Abstract
AbstractBovine herpesvirus 1 (BHV-1) causes a variety of diseases and is globally distributed. It infects via mucosal epithelium, leading to rapid lytic replication and latent infection, primarily in sensory ganglia. Large amounts of virus can be excreted by the host on primary infection or upon recrudescence of latent infection, resulting in disease spread. The bovine immune response to BHV-1 is rapid, robust, balanced, and long-lasting. The innate immune system is the first to respond to the infection, with type I interferons (IFNs), inflammatory cytokines, killing of infected host cells, and priming of a balanced adaptive immune response. The virus possesses a variety of immune evasion strategies, including inhibition of type I IFN production, chemokine and complement binding, infection of macrophages and neutrophils, and latency. BHV-1 immune suppression contributes to the severity of its disease manifestations and to the bovine respiratory disease complex, the leading cause of cattle death loss in the USA.
Collapse
|
38
|
Ravishankar C, Nandi S, Chander V, Mohapatra TK. Glycoprotein C gene based molecular subtyping of a bovine herpesvirus -1 isolate from uttar pradesh, India. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:402-6. [PMID: 24293834 PMCID: PMC3550786 DOI: 10.1007/s13337-012-0116-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022]
Abstract
Bovine herpesvirus -1 (BHV-1) is the etiological agent of many clinical syndromes in cattle which causes huge economic losses to the animal husbandry sector annually. Since the first report of its presence in India in 1976, the disease is considered to be endemic in the country. In the present study, a case of keratoconjunctivitis in a cow was investigated to find out the underlying cause of the condition. The clinical material (ocular swab) was tested by BHV-1 glycoprotein D gene specific PCR using in house designed primers and found to be positive by the presence of a 212 bp DNA product in agarose gel electrophoresis. The virus was isolated in MDBK cell line in the third passage and the serum from the animal, was positive for antibodies against BHV-1 by ELISA. A 575 bp segment of the glycoprotein C gene of the isolate was amplified by PCR, cloned and sequenced. On phylogenetic analysis, it was seen that the sequence matched with published BHV-1.1 sequences from USA and Uruguay whereas it was divergent from Brazilian BHV-1.1 isolates. This study highlights the isolation, rapid and sensitive detection of BHV-1 virus from clinical cases and its subtyping by nucleotide sequencing and subsequent phylogenetic analysis which gives invaluable information about the molecular epidemiology of BHV-1 subtypes prevalent in the country.
Collapse
Affiliation(s)
- Chintu Ravishankar
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, 243 122 Uttar Pradesh India
| | - S. Nandi
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, 243 122 Uttar Pradesh India
| | - V. Chander
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, 243 122 Uttar Pradesh India
| | - T. K. Mohapatra
- Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, 243 122 Uttar Pradesh India
| |
Collapse
|
39
|
Enhanced bovine herpesvirus type 1 neutralization by multimerized single-chain variable antibody fragments regardless of differential glycosylation. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1150-7. [PMID: 22695166 DOI: 10.1128/cvi.00130-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single-chain variable antibody fragments (scFvs) with a 2-amino-acid linker capable of multimerization as di-, tri-, or tetrabodies that neutralize bovine herpesvirus type 1 (BoHV-1) in vitro were constructed and expressed in Pichia pastoris. In contrast to the monomeric form, multimeric scFvs had a higher virus neutralization potency, as evidenced by a 2-fold increase in their ability to neutralize BoHV-1 due to avidity effects. Mass spectrum (quadrupole time of flight [Q-TOF]) analyses of multimeric scFv demonstrated extensive heterogeneity due to differential cleavage, variable glycosylation (1 to 9 mannose residues), and the incorporation of minor unidentified adducts. Regardless of the differential glycosylation patterns, the scFvs recognized non-gB or -gE target viral epitopes in the BoHV-1 envelope fraction in a Western blot and also neutralized BoHV-1 in infected Madin-Darby kidney (MDBK) cells in vitro. Indirect evidence for the noncovalent multimerization of scFv was the presence of a major peak of multimerized scFv without a His tag (due to differential cleavage) in the Q-TOF profile, unlike monomeric scFv, which copurified with normally His-tagged scFv and recognized the target antigen. Overall, differentially glycosylated recombinant scFvs against BoHV-1 with a short linker (2 amino acids) are capable of assembly into functional multimers that confer high avidity, resulting in increased virus neutralization in vitro compared to that of monovalent scFv with a long (18-amino-acid) flexible linker. Overall, recombinant multimerized scFv5-2L potentially provides a high-potency therapeutic and immunodiagnostic reagent against BoHV-1, which is suitable for passive immunization and topical application.
Collapse
|
40
|
A comparative analysis of envelope and tegument proteins of suid herpesvirus 1, bovine herpesvirus 1 and bovine herpesvirus 5. Arch Virol 2010; 155:1687-92. [DOI: 10.1007/s00705-010-0747-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/27/2010] [Indexed: 11/26/2022]
|
41
|
Abstract
This paper is about the taxonomy and genomics of herpesviruses. Each theme is presented as a digest of current information flanked by commentaries on past activities and future directions. The International Committee on Taxonomy of Viruses recently instituted a major update of herpesvirus classification. The former family Herpesviridae was elevated to a new order, the Herpesvirales, which now accommodates 3 families, 3 subfamilies, 17 genera and 90 species. Future developments will include revisiting the herpesvirus species definition and the criteria used for taxonomic assignment, particularly in regard to the possibilities of classifying the large number of herpesviruses detected only as DNA sequences by polymerase chain reaction. Nucleotide sequence accessions in primary databases, such as GenBank, consist of the sequences plus annotations of the genetic features. The quality of these accessions is important because they provide a knowledge base that is used widely by the research community. However, updating the accessions to take account of improved knowledge is essentially reserved to the original depositors, and this activity is rarely undertaken. Thus, the primary databases are likely to become antiquated. In contrast, secondary databases are open to curation by experts other than the original depositors, thus increasing the likelihood that they will remain up to date. One of the most promising secondary databases is RefSeq, which aims to furnish the best available annotations for complete genome sequences. Progress in regard to improving the RefSeq herpesvirus accessions is discussed, and insights into particular aspects of herpesvirus genomics arising from this work are reported.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK.
| |
Collapse
|
42
|
Steiner F, Zumsteg A, Vogt B, Ackermann M, Schwyzer M. Bovine herpesvirus 5 BICP0 complements the bovine herpesvirus 1 homolog. Vet Microbiol 2010; 143:37-44. [DOI: 10.1016/j.vetmic.2010.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Complete genomic sequence and an infectious BAC clone of feline herpesvirus-1 (FHV-1). Virology 2010; 401:215-27. [PMID: 20304455 DOI: 10.1016/j.virol.2010.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 12/22/2009] [Accepted: 02/17/2010] [Indexed: 11/21/2022]
Abstract
Infection with feline herpesvirus-1 (FHV-1) is a major cause of upper respiratory and ocular diseases in Felidae. We report the first complete genomic sequence of FHV-1, as well as the construction and characterization of a bacterial artificial chromosome (BAC) clone of FHV-1, which contains the entire FHV-1 genome and has the BAC vector inserted at the left end of U(L). Complete genomic sequences were derived from both the FHV-1 BAC clone and purified virion DNA. The FHV-1 genome is 135,797bp in size with an overall G+C content of 45%. A total of 78 open reading frames were predicted, encoding 74 distinct proteins. The gene arrangement is collinear with that of most sequenced varicelloviruses. The virus regenerated from the BAC was very similar to the parental C-27 strain in vitro in terms of plaque morphology and growth characteristics and highly virulent in cats in a preliminary in vivo study.
Collapse
|
44
|
RoyChoudhury S, Mukherjee D. A detailed comparative analysis on the overall codon usage pattern in herpesviruses. Virus Res 2010; 148:31-43. [DOI: 10.1016/j.virusres.2009.11.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 11/30/2022]
|
45
|
Should the domestic buffalo (Bubalus bubalis) be considered in the epidemiology of Bovine Herpesvirus 1 infection? Vet Microbiol 2010; 143:81-8. [PMID: 20206452 DOI: 10.1016/j.vetmic.2010.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Only limited information is available on the epidemiology and pathogenesis of Bovine Herpesvirus 1 (BoHV-1) in domestic buffalos. In this study, a virulent BoHV-1 field strain isolated from cattle was inoculated into buffaloes to evaluate their susceptibility to the virus and to investigate the establishment of viral latency through clinical, virological and serological investigations. Latency was also studied by attempting viral reactivation using pharmacological induction. Six of seven male, 5 months old buffaloes were intranasally inoculated with BoHV-1; the other animal was kept as negative control. The animals were clinically monitored during the post-infection (P.I.) and the post-pharmacological induction (P.P.) periods. During these periods, nasal and rectal swabs, and blood samples, with and without anticoagulant, were collected at 2-3 day intervals. On culling the animals, 206 days P.I., their trigeminal ganglia and tonsils were collected. No clinical signs referable to BoHV-1 were observed throughout the experimental period. However, seropositivity was detected in all infected animals within day 20 P.I., using BoHV-1 glycoprotein E and glycoprotein B competitive ELISAs (IDEXX) and virus neutralisation test. In real-time PCR (RT-PCR), five of these animals were positive, at least once, for nasal or rectal swabs, during the P.I. period. The sixth infected animal was found positive only in the trigeminal ganglia after culling. Ganglia were also positive for two other animals. Virus isolation in permissive cell-lines was successful for a part of the RT-PCR positive samples. The detected viruses were confirmed by genetic analysis as identical to the inoculated strain. No evidence of infection was observed in the negative control. This study represents the first experimental transmission of BoHV-1 in buffaloes, confirming their susceptibility to infection and their possible role as host/reservoirs of BoHV-1.
Collapse
|
46
|
Brum M, Weiblen R, Flores E, Chowdhury S. Construction and growth properties of bovine herpesvirus type 5 recombinants defective in the glycoprotein E or thymidine kinase gene or both. Braz J Med Biol Res 2010; 43:217-24. [DOI: 10.1590/s0100-879x2009007500008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 10/23/2009] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - R. Weiblen
- Universidade Federal de Santa Maria, Brasil
| | | | | |
Collapse
|
47
|
Ding Q, Guo H, Lin F, Pan W, Ye B, Zheng AC. Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Res 2010; 149:95-103. [PMID: 20109505 DOI: 10.1016/j.virusres.2010.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 01/19/2010] [Indexed: 11/16/2022]
Abstract
In previous study, we have identified a nuclear localization signal (NLS) and a nucleolar localization signal (NoLS) in bovine herpesvirus-1 (BHV-1) infected cell protein 27 (BICP27), which targets predominantly to the nucleolus. Furthermore, the C-terminal 300 amino acid residues targets exclusively to the cytoplasm, suggesting that BICP27 might contain a nuclear export signal (NES). Amino acid sequence analysis revealed that there is a cluster of leucine-rich residues resembling a NES. Heterokaryon assays demonstrated that BICP27 is capable of shuttling between the nucleus and the cytoplasm of the BHV-1 infected, BICP27 and BICP27-EYFP transfected cells. Deletion mutant analysis revealed that this property is attributed to the leucine-rich NES 299LEELCAARRLSL310. Moreover, the functional NES could mediate transport of a monomer EYFP and a dimer EYFP to the cytoplasm. The nucleocytoplasmic shuttling of BICP27 and the nuclear export of NES-EYFP and NES-dEYFP could be blocked by leptomycin LMB, an inhibitor of the chromosomal region maintenance 1 (CRM1), which is the receptor for exportin-1-dependent nuclear export. In addition, the nuclear import of BICP27 was inhibited by a dominant negative Ran-GTP, namely Ran-GTP Q69L, indicating that BICP27 localized to the nucleus by means of a classic Ran dependent nuclear import mechanism. In conclusion, these results demonstrate that BICP27 shuttles between the nucleus and the cytoplasm by the functional NES and NLS through a CRM1-dependent nuclear export pathway and a Ran dependent nuclear import pathway.
Collapse
Affiliation(s)
- Qiong Ding
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Brum MCS, Caron L, Chowdhury SI, Weiblen R, Flores EF. Immunogenicity of an inactivated bovine herpesvirus type 5 strain defective in thymidine kinase and glycoprotein E. PESQUISA VETERINARIA BRASILEIRA 2010. [DOI: 10.1590/s0100-736x2010000100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The immunogenicity of an inactivated, experimental vaccine based on a bovine herpesvirus type 5 strain defective in thymidine kinase and glycoprotein E (BoHV-5 gE/TKΔ) was evaluated in cattle and the results were compared with a vaccine containing the parental BoHV-5 strain (SV507/99). To formulate the vaccines, each virus (wildtype SV507/99 and BoHV-5 gE/TK∆) was multiplied in cell culture and inactivated with binary ethyleneimine (BEI). Each vaccine dose contained approximately of 10(7.5) TCID50 of inactivated virus mixed with an oil-based adjuvant (46:54). Forty calves, 6 to 9-months-old, were allocated into two groups of 20 animals each and vaccinated twice (days 0 and 22pv) by the subcutaneous route with either vaccine. Serum samples collected at day 0 and at different intervals after vaccination were tested for virus neutralizing (VN) antibodies against the parental virus and against heterologous BoHV-5 and BoHV-1 isolates. The VN assays demonstrated seroconversion to the respective homologous viruses in all vaccinated animals after the second vaccine dose (mean titers of 17.5 for the wildtype vaccine; 24.1 for the recombinant virus). All animals remained reagents up to day 116 pv, yet showing a gradual reduction in VN titers. Animals from both vaccine groups reacted in similar VN titers to different BoHV-1 and BoHV-5 isolates, yet the magnitude of serological response of both groups was higher against BoHV-5 field isolates. Calves vaccinated with the recombinant virus did not develop antibodies to gE as verified by negative results in a gE-specific ELISA, what would allow serological differentiation from naturally infected animals. Taken together, these results indicate that inactivated antigens of BoHV-5 gE/TK recombinant virus induced an adequate serological response against BoHV-5 and BoHV-1 and thus can be used as an alternative, differential vaccine candidate.
Collapse
|
49
|
Silva SC, Brum MCS, Weiblen R, Flores EF, Chowdhury SI. A bovine herpesvirus 5 recombinant defective in the thymidine kinase (TK) gene and a double mutant lacking TK and the glycoprotein E gene are fully attenuated for rabbits. Braz J Med Biol Res 2009; 43:150-9. [PMID: 20027480 DOI: 10.1590/s0100-879x2009007500030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 12/10/2009] [Indexed: 05/26/2023] Open
Abstract
Bovine herpesvirus 5 (BoHV-5), the agent of herpetic meningoencephalitis in cattle, is an important pathogen of cattle in South America and several efforts have been made to produce safer and more effective vaccines. In the present study, we investigated in rabbits the virulence of three recombinant viruses constructed from a neurovirulent Brazilian BoHV-5 strain (SV507/99). The recombinants are defective in glycoprotein E (BoHV-5gEDelta), thymidine kinase (BoHV-5TKDelta) and both proteins (BoHV-5gEDeltaTKDelta). Rabbits inoculated with the parental virus (N = 8) developed neurological disease and died or were euthanized in extremis between days 7 and 13 post-infection (pi). Infectivity was detected in several areas of their brains. Three of 8 rabbits inoculated with the recombinant BoHV-5gEDelta developed neurological signs between days 10 and 15 pi and were also euthanized. A more restricted virus distribution was detected in the brain of these animals. Rabbits inoculated with the recombinants BoHV-5TKDelta (N = 8) or BoHV-5gEDeltaTKDelta (N = 8) remained healthy throughout the experiment in spite of variable levels of virus replication in the nose. Dexamethasone (Dx) administration to rabbits inoculated with the three recombinants at day 42 pi did not result in viral reactivation, as demonstrated by absence of virus shedding and/or increase in virus neutralizing titers. Nevertheless, viral DNA was detected in the trigeminal ganglia or olfactory bulbs of all animals at day 28 post-Dx, demonstrating they were latently infected. These results show that recombinants BoHV-5TKDelta and BoHV-5gEDeltaTKDelta are attenuated for rabbits and constitute potential vaccine candidates upon the confirmation of this phenotype in cattle.
Collapse
Affiliation(s)
- S C Silva
- Setor de Virologia, Departamento de Microbiologia e Parasitologia and Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | | | | | | | | |
Collapse
|
50
|
Koti M, Farrugia W, Nagy E, Ramsland PA, Kaushik AK. Construction of single-chain Fv with two possible CDR3H conformations but similar inter-molecular forces that neutralize bovine herpesvirus 1. Mol Immunol 2009; 47:953-60. [PMID: 20006385 DOI: 10.1016/j.molimm.2009.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/13/2009] [Accepted: 11/14/2009] [Indexed: 11/26/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1) causes respiratory and genital diseases in cattle for which available vaccines do not confer adequate protection. Since passive immunization with antibodies permits disease prevention, single-chain fragment variable (scFv), originating from a monoclonal bovine IgG1 antibody against BoHV-1, were constructed and expressed in Pichia pastoris in V(lambda)-V(H) orientation via a flexible seven-amino acid linker. Similar to the intact IgG, the purified recombinant scFv neutralized BoHV-1 in vitro and recognized viral antigens in BoHV-1 infected MDBK cells by immunofluorescence. Homology modeling of the Fv predicts two distinct conformations for CDR3H. Firstly, a long protruding CDR3H conformation where no disulfide linkage occurred between two "non-canonical" Cys residues resulted in a large binding cavity between V(lambda) and V(H). Secondly, a smaller potential antigen-binding cavity is predicted with a disulfide linkage between the two Cys residues of CDR3H creating a six-membered loop in the ascending polypeptide, which fitted into the space between V(lambda) and V(H). Despite such potential configurational diversity of the antigen-binding site, the electrostatic surface potentials that would interact with the BoHV-1 epitope are largely similar for both the topographies where salt-bridge type electrostatic interactions likely occur at the edges of the binding site. Given that IgG1 antibody against BoHV-1 is clonally selected, it is likely that disulfide-stabilized broader and flatter surface topography is specifically generated to accommodate the predicted carbohydrate neutralizing B-epitope on BoHV-1. The specificity and neutralizing capacity for BoHV-1 of the scFv should make this bovine antibody fragment a useful diagnostic and potential therapeutic candidate for an important viral pathogen in cattle.
Collapse
Affiliation(s)
- Madhuri Koti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|