1
|
Risikobezogener Leitwert für Vinylchlorid (Chlorethen) in der Innenraumluft. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64:1616-1623. [PMID: 34889964 DOI: 10.1007/s00103-021-03437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
2
|
Ghodke PP, Pradeepkumar PI. Site‐Specific
N
2
‐dG DNA Adducts: Formation, Synthesis, and TLS Polymerase‐Mediated Bypass. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pratibha P. Ghodke
- Department of Biochemistry Vanderbilt University School of Medicine 638B Robinson Research Building 2200 Pierce Avenue 37323‐0146 Nashville Tennessee United States
- Department of Chemistry Indian Institute of Technology Bombay 400076 Mumbai Powai India
| | | |
Collapse
|
3
|
Chang SC, Fedeles BI, Wu J, Delaney JC, Li D, Zhao L, Christov PP, Yau E, Singh V, Jost M, Drennan CL, Marnett LJ, Rizzo CJ, Levine SS, Guengerich FP, Essigmann JM. Next-generation sequencing reveals the biological significance of the N(2),3-ethenoguanine lesion in vivo. Nucleic Acids Res 2015; 43:5489-500. [PMID: 25837992 PMCID: PMC4477646 DOI: 10.1093/nar/gkv243] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022] Open
Abstract
Etheno DNA adducts are a prevalent type of DNA damage caused by vinyl chloride (VC) exposure and oxidative stress. Etheno adducts are mutagenic and may contribute to the initiation of several pathologies; thus, elucidating the pathways by which they induce cellular transformation is critical. Although N(2),3-ethenoguanine (N(2),3-εG) is the most abundant etheno adduct, its biological consequences have not been well characterized in cells due to its labile glycosidic bond. Here, a stabilized 2'-fluoro-2'-deoxyribose analog of N(2),3-εG was used to quantify directly its genotoxicity and mutagenicity. A multiplex method involving next-generation sequencing enabled a large-scale in vivo analysis, in which both N(2),3-εG and its isomer 1,N(2)-ethenoguanine (1,N(2)-εG) were evaluated in various repair and replication backgrounds. We found that N(2),3-εG potently induces G to A transitions, the same mutation previously observed in VC-associated tumors. By contrast, 1,N(2)-εG induces various substitutions and frameshifts. We also found that N(2),3-εG is the only etheno lesion that cannot be repaired by AlkB, which partially explains its persistence. Both εG lesions are strong replication blocks and DinB, a translesion polymerase, facilitates the mutagenic bypass of both lesions. Collectively, our results indicate that N(2),3-εG is a biologically important lesion and may have a functional role in VC-induced or inflammation-driven carcinogenesis.
Collapse
Affiliation(s)
- Shiou-chi Chang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Bogdan I Fedeles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jie Wu
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - James C Delaney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Deyu Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Linlin Zhao
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, United States Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, United States
| | - Plamen P Christov
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, United States Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, United States Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States
| | - Emily Yau
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Vipender Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Lawrence J Marnett
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, United States Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, United States Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Carmelo J Rizzo
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, United States Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, United States Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Stuart S Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, United States Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37232, United States Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, United States
| | - John M Essigmann
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
4
|
Zhao L, Pence MG, Christov PP, Wawrzak Z, Choi JY, Rizzo CJ, Egli M, Guengerich FP. Basis of miscoding of the DNA adduct N2,3-ethenoguanine by human Y-family DNA polymerases. J Biol Chem 2012; 287:35516-35526. [PMID: 22910910 DOI: 10.1074/jbc.m112.403253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
N(2),3-Ethenoguanine (N(2),3-εG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2'-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2'-fluoro-N(2),3-ε-2'-deoxyarabinoguanosine to investigate the miscoding potential of N(2),3-εG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N(2),3-εG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N(2),3-εG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N(2),3-εG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N(2),3-εG:dCTP base pair, whereas only one appears to be present in the case of the N(2),3-εG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N(2),3-εG.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146; Department of Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Matthew G Pence
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146; Department of Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Plamen P Christov
- Department of Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146; Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Zdzislaw Wawrzak
- Northwestern University Synchrotron Research Center, Life Sciences Collaborative Access Team, Argonne, Illinois 60439
| | - Jeong-Yun Choi
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do 440-746, Republic of Korea
| | - Carmelo J Rizzo
- Department of Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146; Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146; Department of Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146; Department of Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
5
|
Zhao L, Christov PP, Kozekov ID, Pence MG, Pallan PS, Rizzo CJ, Egli M, Guengerich FP. Replication of N2,3-Ethenoguanine by DNA Polymerases. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Zhao L, Christov PP, Kozekov ID, Pence MG, Pallan PS, Rizzo CJ, Egli M, Guengerich FP. Replication of N2,3-ethenoguanine by DNA polymerases. Angew Chem Int Ed Engl 2012; 51:5466-9. [PMID: 22488769 DOI: 10.1002/anie.201109004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/27/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Linlin Zhao
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Weimann A, Broedbaek K, Henriksen T, Stovgaard ES, Poulsen HE. Assays for urinary biomarkers of oxidatively damaged nucleic acids. Free Radic Res 2012; 46:531-40. [PMID: 22352957 DOI: 10.3109/10715762.2011.647693] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The analysis of oxidized nucleic acid metabolites can be performed by a variety of methodologies: liquid chromatography coupled with electrochemical or mass-spectrometry detection, gas chromatography coupled with mass spectrometry, capillary electrophoresis and ELISA (Enzyme-linked immunosorbent assay). The major analytical challenge is specificity. The best combination of selectivity and speed of analysis can be obtained by liquid chromatography coupled with tandem mass spectrometric detection. This, however, is also the most demanding technique with regard to price, complexity and skills requirement. The available ELISA methods present considerable specificity problems and cannot be recommended at present. The oxidized nucleic acid metabolites in urine are assumed to originate from the DNA and RNA. However, direct evidence is not available. A possible contribution from the nucleotide pools is most probably minimal, if existing. Recent investigation on RNA oxidation has shown conditions where RNA oxidation but not DNA oxidation is prominent, and while investigation on DNA is of huge interest, RNA oxidation may be overlooked. The methods for analyzing oxidized deoxynucleosides can easily be expanded to analyze the oxidized ribonucleosides. The urinary measurement of oxidized nucleic acid metabolites provides a non-invasive measurement of oxidative stress to DNA and RNA.
Collapse
Affiliation(s)
- Allan Weimann
- Laboratory of Clinical Pharmacology Q7642, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
8
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 2010; 49:9-21. [PMID: 20363317 DOI: 10.1016/j.freeradbiomed.2010.03.025] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/16/2010] [Accepted: 03/26/2010] [Indexed: 12/17/2022]
Abstract
Search for the formation of oxidatively base damage in cellular DNA has been a matter of debate for more than 40 years due to the lack of accurate methods for the measurement of the lesions. HPLC associated with either tandem mass spectrometry (MS/MS) or electrochemical detector (ECD) together with optimized DNA extraction conditions constitutes a relevant analytical approach. This has allowed the accurate measurement of oxidatively generated single and clustered base damage in cellular DNA following exposure to acute oxidative stress conditions mediated by ionizing radiation, UVA light and one-electron oxidants. In this review the formation of 11 single base lesions that is accounted for by reactions of singlet oxygen, hydroxyl radical or high intensity UVC laser pulses with nucleobases is discussed on the basis of the mechanisms available from model studies. In addition several clustered lesions were found to be generated in cellular DNA as the result of one initial radical hit on either a vicinal base or the 2-deoxyribose. Information on nucleobase modifications that are formed upon addition of reactive aldehydes arising from the breakdown of lipid hydroperoxides is also provided.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR-E (CEA/UJF) Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
9
|
Himmelstein MW, Boogaard PJ, Cadet J, Farmer PB, Kim JH, Martin EA, Persaud R, Shuker DEG. Creating context for the use of DNA adduct data in cancer risk assessment: II. Overview of methods of identification and quantitation of DNA damage. Crit Rev Toxicol 2010; 39:679-94. [PMID: 19743945 DOI: 10.1080/10408440903164163] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The formation of deoxyribonucleic acid (DNA) adducts can have important and adverse consequences for cellular and whole organism function. Available methods for identification of DNA damage and quantification of adducts are reviewed. Analyses can be performed on various samples including tissues, isolated cells, and intact or hydrolyzed (digested) DNA from a variety of biological samples of interest for monitoring in humans. Sensitivity and specificity are considered key factors for selecting the type of method for assessing DNA perturbation. The amount of DNA needed for analysis is dependent upon the method and ranges widely, from <1 microg to 3 mg. The methods discussed include the Comet assay, the ligation-mediated polymerase reaction, histochemical and immunologic methods, radiolabeled ((14)C- and (3)H-) binding, (32)P-postlabeling, and methods dependent on gas chromatography (GC) or high-performance liquid chromatography (HPLC) with detection by electron capture, electrochemical detection, single or tandem mass spectrometry, or accelerator mass spectrometry. Sensitivity is ranked, and ranges from approximately 1 adduct in 10(4) to 10(12) nucleotides. A brief overview of oxidatively generated DNA damage is also presented. Assay limitations are discussed along with issues that may have impact on the reliability of results, such as sample collection, processing, and storage. Although certain methodologies are mature, improving technology will continue to enhance the specificity and sensitivity of adduct analysis. Because limited guidance and recommendations exist for adduct analysis, this effort supports the HESI Committee goal of developing a framework for use of DNA adduct data in risk assessment.
Collapse
Affiliation(s)
- Matthew W Himmelstein
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, Delaware, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cooke MS, Olinski R, Loft S. Measurement and Meaning of Oxidatively Modified DNA Lesions in Urine. Cancer Epidemiol Biomarkers Prev 2008; 17:3-14. [DOI: 10.1158/1055-9965.epi-07-0751] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Nair U, Bartsch H, Nair J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic Biol Med 2007; 43:1109-20. [PMID: 17854706 DOI: 10.1016/j.freeradbiomed.2007.07.012] [Citation(s) in RCA: 455] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 11/21/2022]
Abstract
Persistent oxidative stress and excess lipid peroxidation (LPO), induced by inflammatory processes, impaired metal storage, and/or dietary imbalance, cause accumulations and massive DNA damage. This massive DNA damage, along with deregulation of cell homeostasis, leads to malignant diseases. Reactive aldehydes produced by LPO, such as 4-hydroxy-2-nonenal, malondialdehyde, acrolein, and crotonaldehyde, react directly with DNA bases or generate bifunctional intermediates which form exocyclic DNA adducts. Modification of DNA bases by these electrophiles, yielding promutagenic exocyclic adducts, is thought to contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. Ultrasensitive detection methods have facilitated studies of the concentrations of promutagenic DNA adducts in human tissues, white blood cells, and urine, where they are excreted as modified nucleosides and bases. Thus, immunoaffinity-(32)P-postlabeling, high-performance liquid chromatography-electrochemical detection, gas chromatography-mass spectrometry, liquid chromatography-tandem mass spectrometry, immunoslotblot assay, and immunohistochemistry have made it possible to detect background concentrations of adducts arising from endogenous LPO products in vivo and studies of their role in carcinogenesis. These background adduct levels in asymptomatic human tissues occur in the order of 1 adduct/10(8) and in organs affected by cancer-prone inflammatory diseases these can be 1 or 2 orders of magnitude higher. In this review, we critically discuss the accuracy of the available methods and their validation and summarize studies in which measurement of exocyclic adducts suggested new mechanisms of cancer causation, providing potential biomarkers for cancer risk assessment in humans with cancer-prone diseases.
Collapse
Affiliation(s)
- Urmila Nair
- Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
12
|
Abstract
Human biomonitoring (HBM) of dose and biochemical effect nowadays has tremendous utility providing an efficient and cost effective means of measuring human exposure to chemical substances. HBM considers all routes of uptake and all sources which are relevant making it an ideal instrument for risk assessment and risk management. HBM can identify new chemical exposures, trends and changes in exposure, establish distribution of exposure among the general population, identify vulnerable groups and populations with higher exposures and identify environmental risks at specific contaminated sites with relatively low expenditure. The sensitivity of HBM methods moreover enables the elucidation of human metabolism and toxic mechanisms of the pollutants. So, HBM is a tool for scientists as well as for policy makers. Blood and urine are by far the most approved matrices. HBM can be done for most chemical substances which are in the focus of the worldwide discussion of environmental medicine. This especially applies for metals, PAH, phthalates, dioxins, pesticides, as well as for aromatic amines, perfluorinated chemicals, environmental tobacco smoke and volatile organic compounds. Protein adducts, especially Hb-adducts, as surrogates of DNA adducts measuring exposure as well as biochemical effect very specifically and sensitively are a still better means to estimate cancer risk than measuring genotoxic substances and their metabolites in human body fluids. Using very sophisticated but nevertheless routinely applicable analytical procedures Hb-adducts of alkylating agents, aromatic amines and nitro aromatic compounds are determined routinely today. To extend the spectrum of biochemical effect monitoring further methods should be elaborated which put up with cleavage and separation of the adducted protein molecules as a measure of sample preparation. This way all sites of adduction as well as further proteins, like serum albumin could be used for HBM. DNA-adducts indicate the mutagenicity of a chemical substance as well as an elevated cancer risk. DNA-adducts therefore would be ideal parameters for HBM. Though there are very sensitive techniques for DNA adduct monitoring like P32-postlabelling and immunological methods they lack specificity. For elucidating the mechanism of carcinogenesis and for a broad applicability and comparability in epidemiological studies analytical methods must be elaborated which are strictly specific for the chemical structure of the DNA-adduct. Current analytical possibilities however meet their borders. In HBM studies with exposure to genotoxic chemicals especially the measurement of DNA strand breaks in lymphocytes and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in white blood cells has become very popular. However, there is still a lack of well-established dose-response relations between occupational or environmental exposures and the induction of 8-OHdG or formation of strand breaks which limits the applicability of these markers. Most of the biomarkers used in population studies are covered by standard operating procedures (SOPs) as well as by internal and external quality assessment schemes. Therefore, HBM results from the leading laboratories worldwide are analytically reliable and comparable. Newly upcoming substances of environmental relevance like perfluorinated compounds can rapidly be assessed in body fluids because there are very powerful laboratories which are able to elaborate the analytical prerequisites in due time. On the other hand, it is getting more and more difficult for the laboratories to keep up with a progress in instrumental analyses. In spite of this it will pay to reach the ultimate summit of HBM because it is the only way to identify and quantify human exposure and risk, elucidate the mechanism of toxic effects and to ultimately decide if measures have to be taken to reduce exposure. Risk assessment and risk management without HBM lead to wrong risk estimates and cause inadequate measures. In some countries like in USA and in Germany, thousands of inhabitants are regularly investigated with respect to their internal exposure to a broad range of environmentally occurring substances. For the evaluation of HBM results the German HBM Commission elaborates reference- and HBM-values.
Collapse
Affiliation(s)
- Jürgen Angerer
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstrasse 25/29, 91054 Erlangen, Germany.
| | | | | |
Collapse
|
13
|
Chiron S, Barbati S, De Méo M, Botta A. In vitro synthesis of 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine by 2,4-dinitrophenol and 1,3-dinitropyrene in presence of a bacterial nitroreductase. ENVIRONMENTAL TOXICOLOGY 2007; 22:222-7. [PMID: 17366551 DOI: 10.1002/tox.20253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The formation of covalent nitro-PAH DNA adducts and nitro-PAH mediated oxidative lesions are two possible mechanisms for the initiation of nitro-PAH carcinogenesis. Sixty-minute incubation of 1,3-dinitropyrene (100 microM) or 1,4-dinitrophenol (100 microM) with a mixture of 150 microM NADH, 0.5 units of E. coli nitroreductase, 100 microM linoleic acid, 0.5 mM ferrous iron, and 100 microM 2'-deoxyadenosine (2'-dA) or 100 microM 2'-deoxyguanosine (2'-dG) were analyzed by liquid chromatography multistage mass spectrometry. Mixtures of 1,N(6)-etheno-2'-deoxyadenosine (epsilondA) plus 4-oxo-2-nonenal (4-ONE) and 1,N(2)-etheno-2'-deoxyguanosine (epsilondG) plus 4-ONE could be detected from 2'-dA and 2'-dG, respectively. Addition of 2% propanol inhibited the formation of etheno adducts. Analyses of disappearance kinetics of dA and dG showed that dG was more rapidly eliminated than does dA (t[1/2] = 23.3 min and 98.3 min for dG and dA, respectively). Curves of formation kinetics revealed that the peak of epsilondG was at 55.6 min while that of epsilondA was at 186.9 min. These peaks represented 1.43% and 1.25% of the original dG and dA, respectively. In both cases, the peaks were followed by rapid degradations of etheno adducts. The results, obtained in this system, do not allow any extrapolation to realistic cellular responses; nevertheless, these data questioned the validity of the use of unsubstituted etheno adducts as reliable oxidative stress and nitro-PAH exposure biomarkers.
Collapse
Affiliation(s)
- Serge Chiron
- Laboratoire Chimie et Environnement, Université de Provence, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | | | | | | |
Collapse
|
14
|
Hillestrøm PR, Weimann A, Poulsen HE. Quantification of urinary etheno-DNA adducts by column-switching LC/APCI-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:605-610. [PMID: 16504536 DOI: 10.1016/j.jasms.2005.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/23/2005] [Accepted: 12/23/2005] [Indexed: 05/06/2023]
Abstract
Lipid peroxidation induced etheno-DNA adducts are promutagenic and have been suggested to play a causal role in the development of human cancers. Therefore, human biomonitoring of etheno-DNA adducts in urine has been suggested as a potential marker for oxidative stress-related DNA damage. For quantitative determination, a column-switching LC/APCI-MS/MS method was developed for simultaneous analysis of epsilonAde, epsilondC, and epsilondA in human urine. Quantitative validation parameters (precision, within-day repeatability, and between-day reproducibility) yielded satisfactory results below 10%. Limit of quantification for epsilonAde, epsilondC, and epsilondA was 5.3 fmol, 7.5 fmol, and 1.3 fmol on column, respectively. Mean urinary excretion rates of a six healthy volunteers were 45.8 pmol epsilonAde/24 h, 96.8 pmol epsilondC/24 h, and 18.1 pmol epsilondA/24 h. The demonstrated levels of performance suggest a future applicability of this method to studies of cancer and other diseases related to oxidative stress in humans. To our knowledge, this is the first method described that allows simultaneous determination of epsilonAde, epsilondC, and epsilondA in human urine samples.
Collapse
Affiliation(s)
- Peter R Hillestrøm
- Department of Clinical Pharmacology Q-7642, Rigshospitalet, University Hospital Copenhagen, Tagensvej 20, DK-2200, Copenhagen N, Denmark
| | - Allan Weimann
- Department of Clinical Pharmacology Q-7642, Rigshospitalet, University Hospital Copenhagen, Tagensvej 20, DK-2200, Copenhagen N, Denmark
| | - Henrik E Poulsen
- Department of Clinical Pharmacology Q-7642, Rigshospitalet, University Hospital Copenhagen, Tagensvej 20, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
15
|
Sawa T, Tatemichi M, Akaike T, Barbin A, Ohshima H. Analysis of urinary 8-nitroguanine, a marker of nitrative nucleic acid damage, by high-performance liquid chromatography-electrochemical detection coupled with immunoaffinity purification: association with cigarette smoking. Free Radic Biol Med 2006; 40:711-20. [PMID: 16458202 DOI: 10.1016/j.freeradbiomed.2005.09.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 08/30/2005] [Accepted: 09/16/2005] [Indexed: 12/12/2022]
Abstract
We have developed an analytical method to quantitate urinary 8-nitroguanine, a product of nitrative nucleic acid damage caused by reactive nitrogen species such as peroxynitrite and nitrogen dioxide. 8-Nitroguanine was purified from human urine using immunoaffinity columns with an anti-8-nitroguanine antibody, followed by quantitation by high-performance liquid chromatography-electrochemical detection. Four sequential electrodes were used to (a) oxidize interfering compounds (+250 mV), (b) reduce nitrated bases (two online electrodes at -1000 mV), and (c) quantitate reduced derivatives (+150 mV). Using this system 8-nitroxanthine can also be detected, with the detection limits being 25 and 50 fmol/injection for 8-nitroguanine and 8-nitroxanthine, respectively. The method was used to analyze both adducts in the urine of smokers (n=12) and nonsmokers (n=17). We found that smokers excrete more 8-nitroguanine [median, 6.1 fmol/mg creatinine; interquartile range (IQR), 23.8] than nonsmokers (0; IQR, 0.90) (p=0.018), and although 8-nitroxanthine was detected in human urine, its level was not related to smoking status. This is the first report to show that 8-nitroguanine is present in human urine and the methodology developed can be used to study the pathogenic roles of this adduct in the etiology of cancers associated with cigarette smoking and inflammation.
Collapse
Affiliation(s)
- Tomohiro Sawa
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
16
|
Williams MV, Lee SH, Pollack M, Blair IA. Endogenous lipid hydroperoxide-mediated DNA-adduct formation in min mice. J Biol Chem 2006; 281:10127-33. [PMID: 16449227 DOI: 10.1074/jbc.m600178200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite intensive research over the last two decades, there are still no specific markers of endogenous lipid hydroperoxide-mediated DNA damage. We recently demonstrated that heptanone-etheno-2'-deoxyguanosine adducts are formed in the DNA of rat intestinal epithelial cells that stably express cyclooxygenase-2. Heptanone-etheno adducts can only arise from the reaction of lipid hydroperoxide-derived 4-oxo-2(E)-nonenal with DNA. This raised the possibility that similar adducts would be formed in vivo in settings where cyclooxygenase-2 expression is increased. Therefore, DNA-adduct formation was studied in C57BL/6JAPC(min) mice, a colorectal cancer mouse model in which cyclooxygenase-2 is up-regulated. 15(S)-Hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid is the major lipid hydroperoxide produced endogenously by cyclooxygenase-2. It undergoes homolytic decomposition to the DNA-reactive bifunctional electrophile 4-oxo-2(E)-nonenal, which forms heptanone-etheno adducts with DNA. A quantitative comparison was made of the heptanone-etheno-DNA adducts present in C57BL/6J and C57BL/6JAPC(min) mice. Using highly specific and sensitive methodology based on stable isotope dilution liquid chromatography/tandem mass spectrometry, we have detected the endogenous formation of heptanone-etheno adducts in mammalian tissue DNA for the first time. In addition, we found that there were statistically significant increased levels of the heptanone-etheno-2'-deoxyguanosine and heptanone-etheno-2'-deoxycytidine adducts in the C57BL/6JAPC(min) mice when compared with the control C57BL/6J mice.
Collapse
Affiliation(s)
- Michelle V Williams
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
17
|
Singh R, Farmer PB. Liquid chromatography-electrospray ionization-mass spectrometry: the future of DNA adduct detection. Carcinogenesis 2005; 27:178-96. [PMID: 16272169 DOI: 10.1093/carcin/bgi260] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past 40 years considerable emphasis has been placed on the development of accurate and sensitive methods for the detection and quantitation of DNA adducts. The formation of DNA adducts resulting from the covalent interaction of genotoxic carcinogens with DNA, derived from exogenous and endogenous sources, either directly or following metabolic activation, can if not repaired lead to mutations in critical genes such as those involved in the regulation of cellular growth and subsequent development of cancer. The major analytical challenge has been to detect levels of DNA adducts at the level of 0.1-1 adducts per 10(8) unmodified DNA bases using only low microgram amounts of DNA, and with high specificity and accuracy, in humans exposed to genotoxic carcinogens derived from occupational, environmental, dietary and life-style sources. In this review we will highlight the merits as well as discuss the progress made by liquid chromatography coupled to electrospray ionization mass spectrometry as a method for DNA adduct detection.
Collapse
Affiliation(s)
- Rajinder Singh
- Cancer Biomarkers and Prevention Group, Biocentre, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | | |
Collapse
|
18
|
Hennebrüder K, Angerer J. Determination of DMF modified DNA base N4-methylcarbamoylcytosine in human urine using off-line sample clean-up, two-dimensional LC and ESI-MS/MS detection. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 822:124-32. [PMID: 16002350 DOI: 10.1016/j.jchromb.2005.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/16/2005] [Accepted: 05/15/2005] [Indexed: 12/29/2022]
Abstract
A sensitive internal standard method for the analysis of a DNA-adduct of N,N-dimethylformamide (N4-methylcarbamoylcytosine, NMC-C) in human urine has been developed. A sample pre-treatment involving an acidic hydrolysis is followed by the sample clean-up performed with solid-phase extraction (SPE) technique using a cation-exchange resin. A two-dimensional liquid chromatography is used to separate the target analyte from the matrix using first a C18 reversed phase column with incorporated hydrophilic moieties and then a C8 bonded reversed phase column for the final separation. Quantification is carried out by positive electrospray ionisation and mass spectrometry detection of the transitions from molecule ions to product ions (169-->112 and 172-->115) for the analyte and the labelled internal standard, respectively. The detection limit in urine reaches down to 8 ng/L (48 pmol/L). In the general population NMC-C could not be detected. In 10 out of 32 urine samples of occupationally to DMF exposed subjects NMC-C could be detected. The concentrations ranged up to 172 ng/L (1023 pmol/L) with a 95th percentile of 121 ng/L (720 pmol/L).
Collapse
Affiliation(s)
- Kristina Hennebrüder
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, D-91054 Erlangen, Germany.
| | | |
Collapse
|
19
|
Current literature in journal of mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:235-244. [PMID: 12577291 DOI: 10.1002/jms.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|