1
|
Al-Rawi SS, Ibrahim AH, Ahmed HJ, Khudhur ZO. Therapeutic, and pharmacological prospects of nutmeg seed: A comprehensive review for novel drug potential insights. Saudi Pharm J 2024; 32:102067. [PMID: 38690209 PMCID: PMC11059288 DOI: 10.1016/j.jsps.2024.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Background and objectives For centuries, plant seed extracts have been widely used and valued for their benefits. They have been used in food, perfumes, aromatherapy, and traditional medicine. These natural products are renowned for their therapeutic properties and are commonly used in medicinal treatments. Their significant pharmacological profiles provide an excellent hallmark for the prevention or treatment of various diseases. In this study, we comprehensively evaluated the biological and pharmacological properties of nutmeg seeds and explored their efficacy in treating various illnesses. Method Published articles in databases including Google Scholar, PubMed, Elsevier, Scopus, ScienceDirect, and Wiley, were analyzed using keywords related to nutmeg seed. The searched keywords were chemical compounds, antioxidants, anti-inflammatory, antibacterial, antifungal, antiviral, antidiabetic, anticancer properties, and their protective mechanisms in cardiovascular and Alzheimer's diseases. Results & discussion Nutmeg seeds have been reported to have potent antimicrobial properties against a wide range of various bacteria and fungi, thus showing potential for combating microbial infections and promoting overall health. Furthermore, nutmeg extract effectively reduces oxidative stress and inflammation by improving the body's natural antioxidant defense mechanism. Nutmeg affected lipid peroxidation, reduced lipid oxidation, reduced low-density lipoprotein (LDL), and increased phospholipid and cholesterol excretion. In addition, nutmeg extract improves the modulation of cardiac metabolism, accelerates cardiac conductivity and ventricular contractility, and prevents cell apoptosis. This study elucidated the psychotropic, narcotic, antidepressant, and anxiogenic effects of nutmeg seeds and their potential as a pharmaceutical medicine. Notably, despite its sedative and toxic properties, nutmeg ingestion alone did not cause death or life-threatening effects within the dosage range of 20-80 g powder. However, chemical analysis of nutmeg extracts identified over 50 compounds, including flavonoids, alkaloids, and polyphenolic compounds, which exhibit antioxidant properties and can be used as phytomedicines. Moreover, the exceptional pharmacokinetics and bioavailability of nutmeg have been found different for different administration routes, yet, more clinical trials are still needed. Conclusion Understanding the chemical composition and pharmacological properties of nutmeg holds promise for novel drug discovery and therapeutic advancements. Nutmeg seed offers therapeutic and novel drug prospects that can revolutionize medicine. By delving into their pharmacological properties, we can uncover the vast potential possibilities of this natural wonder.
Collapse
Affiliation(s)
- Sawsan S. Al-Rawi
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, KRG, Iraq
| | - Ahmad Hamdy Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Tishk International University, Erbil, KRG, Iraq
| | - Heshu Jalal Ahmed
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, KRG, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, KRG, Iraq
| |
Collapse
|
2
|
Getahun T, Das J, Sil PC, Gupta N. Antibacterial and Antioxidant Compounds from the Root Extract of Aloe debrana. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:6651648. [PMID: 38746073 PMCID: PMC11093683 DOI: 10.1155/2024/6651648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/25/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
This study was conducted to isolate and identify the chemical compounds from the roots of Aloe debrana (L.) and evaluate their antioxidant and antibacterial activities. From the acetone (99.5%) extract of the roots of this plant, four anthraquinones, such as chrysophanol (1), asphodeline (2), aloesaponarin I (5), and laccaic acid D-methyl ester (6), and a new catechol derivative, 5-allyl-3-methoxybenzene-1,2-diol (3), were isolated and elucidated by different chromatographic and spectroscopic methods together with linoleic acid (4), respectively. Compounds 2, 3, and 4 were reported here for the first time from this plant and compound 3 from the genus Aloe. The compounds were evaluated for their antioxidant activity using H2O2 and DPPH assays and bactericidal activity against S. aureus and E. coli. Compounds 3 and 6 showed highest antioxidant activities with IC50 values of 19.38 ± 0.64 and 32.81 ± 0.78 μg/mL in DPPH, and 28.52 ± 1.08 and 27.31 ± 1.46 μg/mL in H2O2, respectively. The isolated compounds also demonstrated considerable activity towards S. aureus. Among these compounds, compound 3 exhibited the highest activity (91.20 ± 0.12% and 9.14 ± 0.93 mm at 1.0 mg/mL) against this bacterium. The overall results suggest that the isolated compounds may be considered as potential sources of the bioactive agents to be used in the pharmacological, food, and other industries. Moreover, their high sensitivity against S. aureus may also support the use of A. debrana plant in the traditional medicine to treat wounds. Therefore, the isolated compounds are responsible for medicinal properties of this plant.
Collapse
Affiliation(s)
- Tokuma Getahun
- Department of Chemistry, Asella College of Teachers Education, Asella, Oromia, Ethiopia
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl, Mizoram 796004, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Neeraj Gupta
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra 176215, HP, India
| |
Collapse
|
3
|
Jayaprakash R, Pook C, Ramzan F, Miles-Chan JL, Mithen RF, Foster M. Human Metabolism and Excretion of Kawakawa (Piper excelsum) Leaf Chemicals. Mol Nutr Food Res 2024; 68:e2300583. [PMID: 38389156 DOI: 10.1002/mnfr.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 02/24/2024]
Abstract
SCOPE Piper excelsum (kawakawa) has a history of therapeutic use by Māori in Aotearoa New Zealand. It is currently widely consumed as a beverage and included as an ingredient in "functional" food product. Leaves contain compounds that are also found in a wide range of other spices, foods, and medicinal plants. This study investigates the human metabolism and excretion of kawakawa leaf chemicals. METHODS AND RESULTS Six healthy male volunteers in one study (Bioavailability of Kawakawa Tea metabolites in human volunteers [BOKA-T]) and 30 volunteers (15 male and 15 female) in a second study (Impact of acute Kawakawa Tea ingestion on postprandial glucose metabolism in healthy human volunteers [TOAST]) consume a hot water infusion of dried kawakawa leaves (kawakawa tea [KT]). Untargeted Liquid Chromatography-Tandem Mass spectrometry (LC-MS/MS) analyses of urine samples from BOKA-T identified 26 urinary metabolites that are significantly associated with KT consumption, confirmed by the analysis of samples from the independent TOAST study. Seven of the 26 metabolites are also detected in plasma. Thirteen of the 26 urinary compounds are provisionally identified as metabolites of specific compounds in KT, eight metabolites are identified as being derived from specific compounds in KT but without resolution of chemical structure, and five are of unknown origin. CONCLUSIONS Several kawakawa compounds that are also widely found in other plants are bioavailable and are modified by phase 1 and 2 metabolism.
Collapse
Affiliation(s)
- Ramya Jayaprakash
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
| | - Chris Pook
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
| | - Farha Ramzan
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jennifer L Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, Waipapa Taumata Rau - The University of Auckland, Auckland, New Zealand
| | - Richard F Mithen
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
| | - Meika Foster
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, 85 Park Road, Private Bag 92019, Auckland, 1142, New Zealand
- AuOra Ltd, Wakatū Incorporation, Nelson, 7010, New Zealand
| |
Collapse
|
4
|
Lee MS, Park EJ, Cho YY, Lee JY, Kang HC, Lee HS. Comparative metabolism of fargesin in human, dog, monkey, mouse, and rat hepatocytes. Toxicol Res 2024; 40:125-137. [PMID: 38223669 PMCID: PMC10786765 DOI: 10.1007/s43188-023-00211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 01/16/2024] Open
Abstract
Fargesin, a bioactive lignan derived from Flos Magnoliae, possesses anti-inflammatory, anti-oxidative, anti-melanogenic, and anti-apoptotic effects. This study compared the metabolic profiles of fargesin in human, dog, monkey, mouse, and rat hepatocytes using liquid chromatography-high resolution mass spectrometry. In addition, we investigated the human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for fargesin metabolism. The hepatic extraction ratio of fargesin among the five species ranged from 0.59 to 0.78, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. During metabolism, fargesin generates three phase 1 metabolites, including fargesin catechol (M1) and O-desmethylfargesin (M2 and M3), and 11 phase 2 metabolites, including O-methyl-M1 (M4 and M5) via catechol O-methyltransferase (COMT), glucuronides of M1, M2, M4, and M5, and sulfates of M1-M5. The production of M1 from fargesin via O-demethylenation is catalyzed by CYP2C9, CYP3A4, CYP2C19, and CYP2C8 enzymes, whereas the formation of M2 and M3 (O-desmethylfargesin) is catalyzed by CYP2C9, CYP2B6, CYP2C19, CYP3A4, CYP1A2, and CYP2D6 enzymes. M4 is metabolized to M4 glucuronide by UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17 enzymes, whereas M4 sulfate is generated by multiple SULT enzymes. Fargesin is extensively metabolized in human hepatocytes by CYP, COMT, UGT, and SULT enzymes. These findings help to elucidate the pharmacokinetics and drug interactions of fargesin.
Collapse
Affiliation(s)
- Min Seo Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Eun Jeong Park
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| |
Collapse
|
5
|
Wazalwar SS, Banpurkar AR, Perdih F. Synthesis, crystal structure and molecular docking study of novel isoxazole derivatives as CYP450 inhibitors in search of anticancer agents. J Biomol Struct Dyn 2023; 41:9476-9491. [PMID: 36350074 DOI: 10.1080/07391102.2022.2142667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Synthesis of some novel isoxazole derivatives and their molecular docking with enzymes from CYP450 family carried out using erlotinib, gemcitabine and ketoconazole as reference drugs are reported in this work. Eight isoxazole derivatives of 3,4-substituted phenyl 3-chloroacrylaldehyde and one isoxazole derivative of cinnamaldehyde were synthesized. A molecular docking study of all nine compounds shows good docking score compared to standard drugs erlotinib, gemcitabine and ketoconazole. 4-OH and 4-F derivatives were found to have strong affinity for all six CYP450 proteins under study in the present work. 4-F and 3-NO2 derivatives could be a suitable lead compound inhibitor to CYP1A2 followed by 4-OH derivatives. 4-OH derivative with significant binding affinity showed encouraging inhibition of CYP1A2, CYP2C9, CYP2C8, CYP2C19 and CYP2D6. The current predictions over these nine isoxazole derivatives of 3,4-substituted phenyl 3-chloroacrylaldehyde will be needed to be further investigated in vivo and in vitro conditions to identify the optimum therapeutic efficacy. Synthesis of the isoxazole derivatives is the first known report of the Knoevenagal condensation of acrylaldehyde derivatives to form isoxazole derivatives as per the literature survey. A detailed crystal structure study of five analogues gives insight into the solid-state structural features of this new framework with isoxazole moieties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sachin Sudhakar Wazalwar
- Department of Applied Chemistry, Rajiv Gandhi College of Engineering, Research & Technology, Chandrapur, Maharashtra, India
| | - Anita Ravindra Banpurkar
- Department of Applied Chemistry, Rajiv Gandhi College of Engineering, Research & Technology, Chandrapur, Maharashtra, India
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Götz ME, Sachse B, Schäfer B, Eisenreich A. Myristicin and Elemicin: Potentially Toxic Alkenylbenzenes in Food. Foods 2022; 11:1988. [PMID: 35804802 PMCID: PMC9265716 DOI: 10.3390/foods11131988] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alkenylbenzenes represent a group of naturally occurring substances that are synthesized as secondary metabolites in various plants, including nutmeg and basil. Many of the alkenylbenzene-containing plants are common spice plants and preparations thereof are used for flavoring purposes. However, many alkenylbenzenes are known toxicants. For example, safrole and methyleugenol were classified as genotoxic carcinogens based on extensive toxicological evidence. In contrast, reliable toxicological data, in particular regarding genotoxicity, carcinogenicity, and reproductive toxicity is missing for several other structurally closely related alkenylbenzenes, such as myristicin and elemicin. Moreover, existing data on the occurrence of these substances in various foods suffer from several limitations. Together, the existing data gaps regarding exposure and toxicity cause difficulty in evaluating health risks for humans. This review gives an overview on available occurrence data of myristicin, elemicin, and other selected alkenylbenzenes in certain foods. Moreover, the current knowledge on the toxicity of myristicin and elemicin in comparison to their structurally related and well-characterized derivatives safrole and methyleugenol, especially with respect to their genotoxic and carcinogenic potential, is discussed. Finally, this article focuses on existing data gaps regarding exposure and toxicity currently impeding the evaluation of adverse health effects potentially caused by myristicin and elemicin.
Collapse
Affiliation(s)
| | | | | | - Andreas Eisenreich
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (M.E.G.); (B.S.); (B.S.)
| |
Collapse
|
7
|
Yim SK, Kim K, Chun S, Oh T, Jung W, Jung K, Yun CH. Screening of Human CYP1A2 and CYP3A4 Inhibitors from Seaweed In Silico and In Vitro. Mar Drugs 2020; 18:E603. [PMID: 33260381 PMCID: PMC7760626 DOI: 10.3390/md18120603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/28/2022] Open
Abstract
Phenolic compounds and carotenoids are potential inhibitors of cytochrome P450s. Sixteen known compounds, phenolic compounds and carotenoids from seaweed were examined for potential inhibitory capacity against CYP1A2 and CYP3A4 in silico and in vitro. Morin, quercetin, and fucoxanthin inhibited the enzyme activity of CYP1A2 and CYP3A4 in a dose-dependent manner. The IC50 values of morin, quercetin, and fucoxanthin were 41.8, 22.5, and 30.3 μM for CYP1A2 and 86.6, 16.1, and 24.4 μM for CYP3A4, respectively. Siphonaxanthin and hesperidin did not show any significant effect on CYP1A2, but they slightly inhibited CYP3A4 activity at high concentrations. In silico modeling of CYP's binding site revealed that the potential inhibitors bound in the cavity located above the distal surface of the heme prosthetic group through the 2a or 2f channel of CYPs. This study presents an approach for quickly predicting CYP inhibitory activity and shows the potential interactions of compounds and CYPs through in silico modeling.
Collapse
Affiliation(s)
- Sung-Kun Yim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (K.K.); (S.C.); (T.O.); (W.J.); (K.J.)
| | - Kian Kim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (K.K.); (S.C.); (T.O.); (W.J.); (K.J.)
| | - SangHo Chun
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (K.K.); (S.C.); (T.O.); (W.J.); (K.J.)
| | - TaeHawn Oh
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (K.K.); (S.C.); (T.O.); (W.J.); (K.J.)
| | - WooHuk Jung
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (K.K.); (S.C.); (T.O.); (W.J.); (K.J.)
| | - KyooJin Jung
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Korea; (K.K.); (S.C.); (T.O.); (W.J.); (K.J.)
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| |
Collapse
|
8
|
Zhu X, Wang YK, Yang XN, Xiao XR, Zhang T, Yang XW, Qin HB, Li F. Metabolic Activation of Myristicin and Its Role in Cellular Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4328-4336. [PMID: 30912427 DOI: 10.1021/acs.jafc.9b00893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Myristicin is widely distributed in spices and medicinal plants. The aim of this study was to explore the role of metabolic activation of myristicin in its potential toxicity through a metabolomic approach. The myristicin- N-acetylcysteine adduct was identified by comparing the metabolic maps of myristicin and 1'-hydroxymyristicin. The supplement of N-acetylcysteine could protect against the cytotoxicity of myristicin and 1'-hydroxymyristicin in primary mouse hepatocytes. When the depletion of intracellular N-acetylcysteine was pretreated with diethyl maleate in hepatocytes, the cytotoxicity induced by myristicin and 1'-hydroxymyristicin was deteriorated. It suggested that the N-acetylcysteine adduct resulting from myristicin bioactivation was closely associated with myristicin toxicity. Screening of human recombinant cytochrome P450s (CYPs) and treatment with CYP inhibitors revealed that CYP1A1 was mainly involved in the formation of 1'-hydroxymyristicin. Collectively, this study provided a global view of myristicin metabolism and identified the N-acetylcysteine adduct resulting from myristicin bioactivation, which could be used for understanding the mechanism of myristicin toxicity.
Collapse
Affiliation(s)
- Xu Zhu
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yi-Kun Wang
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Xiao-Nan Yang
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement , Guangxi Botanical Garden of Medicinal Plant , Nanning , Guangxi 530023 , People's Republic of China
| | - Xue-Rong Xiao
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Ting Zhang
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Xiu-Wei Yang
- School of Pharmaceutical Sciences, Peking University Health Science Center , Peking University , Beijing 100191 , People's Republic of China
| | - Hong-Bo Qin
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Fei Li
- States Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
- Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi 330004 , People's Republic of China
| |
Collapse
|
9
|
Zehetner P, Höferl M, Buchbauer G. Essential oil components and cytochrome P450 enzymes: a review. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Petra Zehetner
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna Vienna Austria
| | - Martina Höferl
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna Vienna Austria
| | - Gerhard Buchbauer
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna Vienna Austria
| |
Collapse
|
10
|
Systems Pharmacology Based Study of the Molecular Mechanism of SiNiSan Formula for Application in Nervous and Mental Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9146378. [PMID: 28058059 PMCID: PMC5183803 DOI: 10.1155/2016/9146378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 11/09/2016] [Indexed: 12/27/2022]
Abstract
Background. Mental disorder is a group of systemic diseases characterized by a variety of physical and mental discomfort, which has become the rising threat to human life. Herbal medicines were used to treat mental disorders for thousand years in China in which the molecular mechanism is not yet clear. Objective. To systematically explain the mechanisms of SiNiSan (SNS) formula on the treatment of mental disorders. Method. A systems pharmacology method, with ADME screening, targets prediction, and DAVID enrichment analysis, was employed as the principal approach in our study. Results. 60 active ingredients of SNS formula and 187 mental disorders related targets were discovered to have interactions with them. Furthermore, the enrichment analysis of drug-target network showed that SNS probably acts through “multi-ingredient, multitarget, and multisystems” holistic coordination in different organs pattern by indirectly regulating the nutritional and metabolic pathway even their serial complications. Conclusions. Our research provides a reference for the molecular mechanism of medicinal herbs in the treatment of mental disease on a systematic level. Hopefully, it will also provide a theoretical basis for the discovery of lead compounds of natural medicines for other diseases based on traditional medicine.
Collapse
|
11
|
Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2. Chem Biol Interact 2015; 237:133-40. [DOI: 10.1016/j.cbi.2015.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 12/26/2022]
|
12
|
Simple and rapid determination of myristicin in human serum. Forensic Toxicol 2013; 31:119-123. [PMID: 23440626 PMCID: PMC3573713 DOI: 10.1007/s11419-012-0151-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/09/2012] [Indexed: 10/29/2022]
Abstract
Myristicin (5-allyl-1-methoxy-2,3-methylenodioxybenzene) is the main component of nutmeg (Myristica fragrans Houtt.) essential oil. The increasing use of myristicin as a cheap hallucinogenic intoxicant, frequently causing fatal cases of myristicin poisoning, requires new methods for determination of this compound in blood. This report describes the rapid, simple, and useful procedure for myristicin analysis in human serum, involving myristicin-protein complex degradation before chromatographic analysis. The developed method is characterized by a high recovery (above 99 %), a low detection limit (6.0 ng/g) and good repeatability (average RDS of 2.01 %).
Collapse
|
13
|
Braune A, Maul R, Schebb NH, Kulling SE, Blaut M. The red clover isoflavone irilone is largely resistant to degradation by the human gut microbiota. Mol Nutr Food Res 2010; 54:929-38. [PMID: 19998384 DOI: 10.1002/mnfr.200900233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal bacteria may influence bioavailability and physiological activity of dietary isoflavones. We therefore investigated the ability of human intestinal microbiota to convert irilone and genistein in vitro. In contrast to genistein, irilone was largely resistant to transformation by fecal slurries of ten human subjects. The fecal microbiota converted genistein to dihydrogenistein, 6'-hydroxy-O-desmethylangolensin, and 2-(4-hydroxyphenyl)-propionic acid. However, considerable interindividual differences in the rate of genistein degradation and the pattern of metabolites formed from genistein were observed. Only one metabolite, namely dihydroirilone, was formed from irilone in minor amounts. In further experiments, Eubacterium ramulus, a prevalent flavonoid-degrading species of the human gut, was tested for transformation of irilone. In contrast to genistein, irilone was not converted by E. ramulus. Irilone only differs from genistein by a methylenedioxy group attached to the A-ring of the isoflavone skeleton. This substitution obviously restricts the degradability of irilone by human intestinal bacteria.
Collapse
Affiliation(s)
- Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany.
| | | | | | | | | |
Collapse
|
14
|
Kimura Y, Ito H, Hatano T. Effects of Mace and Nutmeg on Human Cytochrome P450 3A4 and 2C9 Activity. Biol Pharm Bull 2010; 33:1977-82. [DOI: 10.1248/bpb.33.1977] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuka Kimura
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Hideyuki Ito
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Tsutomu Hatano
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
15
|
Cytotoxic, mutagenic and genotoxic effects of new anti-T. cruzi 5-phenylethenylbenzofuroxans. Contribution of phase I metabolites on the mutagenicity induction. Toxicol Lett 2009; 190:140-9. [PMID: 19595752 DOI: 10.1016/j.toxlet.2009.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 01/01/2023]
Abstract
5-Phenylethenylbenzofuroxans have displayed in vitro and in vivo activity against Trypanosoma cruzi, the etiologic agent of American Trypanosomiasis. On the basis of benzofuroxans pre-clinical studies we evaluated the potential of six 5-phenylethenyl derivatives to induce cytotoxicity, mutagenicity and genotoxicity using different in vitro models. Cytotoxic effects were evaluated using a set of cells, mammal pre-monocytic macrophages, V-79 lung fibroblast from Chinese hamster, and colorectal adenocarcinoma Caco-2 cells, in the MTT viability assay. Mutagenicity was tested in the Ames assay using Salmonella typhimurium TA98 strain with and without metabolic activation by S9-rat liver homogenate. The genotoxic potentials were evaluated with the alkaline single cell gel electrophoresis (comet assay) in V-79 cells. In view of the Ames test results we study whether the main mammals' phase I metabolites, the corresponding o-nitroanilines, are involved in the mechanism of mutagenicity. These metabolites are produced by NADPH-dependent enzymes in cytosol and by xanthine oxidase and cytochrome P450 in microsomes from rat liver. Among them, the electronic property of phenyl substituent seems to be responsible for this effect. It could be pointed out that the equimolecular mixture of compounds 1 and 2 (5E- and 5Z-(2-phenylethenyl)benzofuroxan, respectively) could be used in further clinical studies as anti-T. cruzi drug.
Collapse
|
16
|
Mao W, Zangerl AR, Berenbaum MR, Schuler MA. Metabolism of myristicin by Depressaria pastinacella CYP6AB3v2 and inhibition by its metabolite. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:645-651. [PMID: 18510976 DOI: 10.1016/j.ibmb.2008.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
Although methylenedioxyphenyl (MDP) compounds, such as myristicin, are useful in the management of insecticide-resistant insects, the molecular mechanisms for their action in mammals and insects have not been elucidated. In this study, GC-MS analyses of methanol extracts of foliage of wild parsnip (Pastinaca sativa) have identified myristicin as a substrate for CYP6AB3v2, an imperatorin-metabolizing cytochrome P450 monooxygenase from Depressaria pastinacella (parsnip webworm). In contrast with its strong inhibitory effects on many mammalian P450s, myristicin is effectively metabolized by CYP6AB3v2 (V(max) and K(m) of 97.9 pmol/min/pmol P450 and 17.9 microM, respectively) at a rate exceeding that recorded previously for imperatorin, the only other known substrate for this highly specialized enzyme. The myristicin metabolite of CYP6AB3v2 is 1-(3',4'-methylenedioxy-5'-methoxyphenyl)-2,3-epoxypropane. Molecular dockings have indicated that, unlike other epoxide metabolites of furanocoumarins, this epoxide metabolite is likely to remain in the CYP6AB3v2 catalytic site due to its low binding energy (-31.0 kcal/mol). Inhibition assays indicate that myristicin acts as a mixed inhibitor of this insect P450 and suggest that the epoxide metabolite may be an intermediate involved in the formation of P450-methylenedioxyphenyl complexes.
Collapse
Affiliation(s)
- Wenfu Mao
- Department of Entomology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
17
|
Denisov IG, Makris TM, Sligar SG, Schlichting I. Structure and Chemistry of Cytochrome P450. Chem Rev 2005; 105:2253-77. [PMID: 15941214 DOI: 10.1021/cr0307143] [Citation(s) in RCA: 1546] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, 61801, USA
| | | | | | | |
Collapse
|