1
|
Asrat S, Devlin JC, Vecchione A, Klotz B, Setliff I, Srivastava D, Limnander A, Rafique A, Adler C, Porter S, Murphy AJ, Atwal GS, Sleeman MA, Lim WK, Orengo JM. TRAPnSeq allows high-throughput profiling of antigen-specific antibody-secreting cells. CELL REPORTS METHODS 2023; 3:100522. [PMID: 37533642 PMCID: PMC10391570 DOI: 10.1016/j.crmeth.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/15/2023] [Indexed: 08/04/2023]
Abstract
Following activation by cognate antigen, B cells undergo fine-tuning of their antigen receptors and may ultimately differentiate into antibody-secreting cells (ASCs). While antigen-specific B cells that express surface receptors (B cell receptors [BCRs]) can be readily cloned and sequenced following flow sorting, antigen-specific ASCs that lack surface BCRs cannot be easily profiled. Here, we report an approach, TRAPnSeq (antigen specificity mapping through immunoglobulin [Ig] secretion TRAP and Sequencing), that allows capture of secreted antibodies on the surface of ASCs, which in turn enables high-throughput screening of single ASCs against large antigen panels. This approach incorporates flow cytometry, standard microfluidic platforms, and DNA-barcoding technologies to characterize antigen-specific ASCs through single-cell V(D)J, RNA, and antigen barcode sequencing. We show the utility of TRAPnSeq by profiling antigen-specific IgG and IgE ASCs from both mice and humans and highlight its capacity to accelerate therapeutic antibody discovery from ASCs.
Collapse
Affiliation(s)
| | | | | | - Brian Klotz
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Ian Setliff
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | | | | | | | | | - Wei Keat Lim
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | |
Collapse
|
2
|
Bonamichi-Santos R, Aun MV, Kalil J, Castells MC, Giavina-Bianchi P. PD-L1 Blockade During Allergen Sensitization Inhibits the Synthesis of Specific Antibodies and Decreases Mast Cell Activation in a Murine Model of Active Cutaneous Anaphylaxis. Front Immunol 2021; 12:655958. [PMID: 33968057 PMCID: PMC8100332 DOI: 10.3389/fimmu.2021.655958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Programmed cell death ligand 1(PDL-1) is known for its inhibitory effect on the cellular immune response. Even though it is expressed on the surface of mast cells, its role in allergic diseases is unknown. We analyzed the effects of PD-L1 blockade in a murine model of active cutaneous anaphylaxis (ACA). C57BL/6 mice were sensitized and challenged with ovalbumin (OVA). Blood samples were collected to measure specific immunoglobulins. The mice were divided into six groups that underwent the active cutaneous anaphylaxis procedure. Group 1 (negative control) received 50 μl of phosphate-buffered saline (PBS) subcutaneously, and the other five groups were sensitized with 50 μg of OVA subcutaneously. Group 2 was the positive control, and the others received the anti-PD-L1 antibody or its isotype during sensitization (groups 3 and 4) or during the challenge (groups 5 and 6). All animals that underwent ACA on the ears with OVA and PBS were sacrificed, and the reaction was evaluated by extravasation of Evans blue (measured by spectrophotometry) and histological analysis of the collected fragments. Anti-PD-L1 blockade during the sensitization phase led to a reduction in specific IgE and IgG1 levels, allergic reaction intensity at the ACA site, and mast cell degranulation in the tissue. There was no significant biological effect of anti-PD-L1 administration on the challenge phase. PD-L1 blockade during allergen sensitization inhibited the synthesis of specific IgE and IgG1 and decreased mast cell activation in this murine model of anaphylaxis.
Collapse
Affiliation(s)
- Rafael Bonamichi-Santos
- Clinical Immunology and Allergy Division, University of São Paulo School of Medicine, São Paulo, Brazil.,Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Marcelo Vivolo Aun
- Clinical Immunology and Allergy Division, University of São Paulo School of Medicine, São Paulo, Brazil.,Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jorge Kalil
- Clinical Immunology and Allergy Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Mariana Concepcion Castells
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Pedro Giavina-Bianchi
- Clinical Immunology and Allergy Division, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
3
|
Mathew G, Sharma A, Pickering RJ, Rosado CJ, Lemarie J, Mudgal J, Thambi M, Sebastian S, Jandeleit-Dahm KA, de Haan JB, Unnikrishnan MK. A novel synthetic small molecule DMFO targets Nrf2 in modulating proinflammatory/antioxidant mediators to ameliorate inflammation. Free Radic Res 2018; 52:1140-1157. [PMID: 30422019 DOI: 10.1080/10715762.2018.1533636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammation is a protective immune response against invading pathogens, however, dysregulated inflammation is detrimental. As the complex inflammatory response involves multiple mediators, including the involvement of reactive oxygen species, concomitantly targeting proinflammatory and antioxidant check-points may be a more rational strategy. We report the synthesis and anti-inflammatory/antioxidant activity of a novel indanedione derivative DMFO. DMFO scavenged reactive oxygen species (ROS) in in-vitro radical scavenging assays and in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. In acute models of inflammation (carrageenan-induced inflammation in rat paw and air pouch), DMFO effectively reduced paw oedema and leucocyte infiltration with an activity comparable to diclofenac. DMFO stabilised mast cells (MCs) in in-vitro A23187 and compound 48/80-induced assays. Additionally, DMFO stabilised MCs in an antigen (ovalbumin)-induced MC degranulation model in-vivo, without affecting serum IgE levels. In a model of chronic immune-mediated inflammation, Freund's adjuvant-induced arthritis, DMFO reduced arthritic score and contralateral paw oedema, and increased the pain threshold with an efficacy comparable to diclofenac but without being ulcerogenic. Additionally, DMFO significantly reduced serum TNFα levels. Mechanistic studies revealed that DMFO reduced proinflammatory genes (IL1β, TNFα, IL6) and protein levels (COX2, MCP1), with a concurrent increase in antioxidant genes (NQO1, haem oxygenase 1 (HO-1), Glo1, Nrf2) and protein (HO-1) in LPS-stimulated macrophages. Importantly, the anti-inflammatory/antioxidant effect on gene expression was absent in primary macrophages isolated from Nrf2 KO mice suggesting an Nrf2-targeted activity, which was subsequently confirmed using siRNA transfection studies in RAW macrophages. Therefore, DMFO is a novel, orally-active, safe (even at 2 g/kg p.o.), a small molecule which targets Nrf2 in ameliorating inflammation.
Collapse
Affiliation(s)
- Geetha Mathew
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India.,b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia.,c Department of Diabetes, the Alfred Centre , Monash University , Melbourne , Australia
| | - Arpeeta Sharma
- b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia
| | - Raelene J Pickering
- c Department of Diabetes, the Alfred Centre , Monash University , Melbourne , Australia
| | - Carlos J Rosado
- c Department of Diabetes, the Alfred Centre , Monash University , Melbourne , Australia
| | - Jeremie Lemarie
- b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia
| | - Jayesh Mudgal
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Magith Thambi
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Sarine Sebastian
- a Department of Pharmacology, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| | - Karin A Jandeleit-Dahm
- b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia.,c Department of Diabetes, the Alfred Centre , Monash University , Melbourne , Australia
| | - Judy B de Haan
- b Oxidative Stress Laboratory, Basic Science Domain , Baker Heart and Diabetes Institute , Melbourne , Australia
| | - Mazhuvancherry K Unnikrishnan
- d Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , India
| |
Collapse
|
4
|
Li Y, Liu B, Harmacek L, Long Z, Liang J, Lukin K, Leach SM, O'Connor B, Gerber AN, Hagman J, Roers A, Finkelman FD, Huang H. The transcription factors GATA2 and microphthalmia-associated transcription factor regulate Hdc gene expression in mast cells and are required for IgE/mast cell-mediated anaphylaxis. J Allergy Clin Immunol 2017; 142:1173-1184. [PMID: 29277702 DOI: 10.1016/j.jaci.2017.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Histamine is a critical mediator of IgE/mast cell-mediated anaphylaxis. Histamine is synthesized by decarboxylating the amino acid histidine, a reaction catalyzed by the histidine decarboxylase (Hdc) gene-encoded enzyme HDC. However, regulation of the Hdc gene in mast cells is poorly understood. OBJECTIVE We sought to investigate the in vivo regulation of IgE/mast cell-mediated anaphylaxis by the transcription factors GATA2 and microphthalmia-associated transcription factor (MITF) and the mechanisms by which GATA2 and MITF regulate Hdc gene expression in mouse and human mast cells. METHODS Mice deficient in the transcription factors Gata2, aryl hydrocarbon receptor (Ahr), aryl hydrocarbon receptor repressor (Ahrr), or basic helix-loop-helix family member E40 (Bhlhe40) were assessed for anaphylactic reactions. Chromatin immunoprecipitation sequencing analysis identified putative Hdc enhancers. Luciferase reporter transcription assay confirmed enhancer activities of putative enhancers in the Hdc gene. The short hairpin RNA knockdown approach was used to determine the role of MITF in regulating mouse and human HDC gene expression. RESULTS Connective tissue mast cell-specific Gata2-deficient mice did not have IgE/mast cell-mediated anaphylaxis. GATA2 induced the expression of Mitf, Ahr, Ahrr, and Bhlhe40 in mast cells. MITF, but not AHR, AHRR, or BHLHE40, was required for anaphylaxis. MITF bound to an enhancer located 8.8 kb upstream of the transcription start site of the Hdc gene and directed enhancer activity. MITF overexpression largely restored Hdc gene expression in the Gata2-deficient mast cells. In the human mast cell line LAD2, MITF was required for the HDC gene expression and histamine synthesis. CONCLUSION The transcription factors GATA2 and MITF regulate Hdc gene expression in mast cells and are required for IgE/mast cell-mediated anaphylaxis.
Collapse
Affiliation(s)
- Yapeng Li
- Department of Biomedical Research, National Jewish Health, Denver, Colo
| | - Bing Liu
- Department of Biomedical Research, National Jewish Health, Denver, Colo; Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Laura Harmacek
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colo
| | - Zijie Long
- Department of Biomedical Research, National Jewish Health, Denver, Colo; Department of Hematology, The Third Affiliated Hospital, Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Jinyi Liang
- Department of Biomedical Research, National Jewish Health, Denver, Colo; Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kara Lukin
- Department of Biomedical Research, National Jewish Health, Denver, Colo
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, Colo; Center for Genes, Environment and Health, National Jewish Health, Denver, Colo
| | - Brian O'Connor
- Department of Biomedical Research, National Jewish Health, Denver, Colo; Center for Genes, Environment and Health, National Jewish Health, Denver, Colo
| | - Anthony N Gerber
- Department of Biomedical Research, National Jewish Health, Denver, Colo; Department of Medicine, National Jewish Health, Denver, Colo
| | - James Hagman
- Department of Biomedical Research, National Jewish Health, Denver, Colo; Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Colo
| | - Axel Roers
- Institute for Immunology, Technische Universit ät Dresden, Dresden, Germany
| | - Fred D Finkelman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hua Huang
- Department of Biomedical Research, National Jewish Health, Denver, Colo; Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Colo.
| |
Collapse
|
5
|
Abstract
Allergic responses are the result of the activation of mast cells and basophils, and the subsequent release of vasoactive and proinflammatory mediators. Exposure to an allergen in a sensitized individual can result in clinical symptoms that vary from minor erythema to life threatening anaphylaxis. In the laboratory, various animal models have been developed to understand the mechanisms driving allergic responses. Herein, we describe a detailed method for measuring changes in vascular permeability to quantify localized allergic responses. The local anaphylaxis assay was first reported in the 1920s, and has been adapted from the technique published by Kojima et al. in 2007(1). In this assay, mice sensitized to OVA are challenged in the left ear with vehicle and in the right ear with OVA. This is followed by an intravenous injection of Evans Blue dye. Ten min after injecting Evans Blue, the animal is euthanized and the dye that has extravasated into the ears is extracted overnight in formamide. The absorbance of the extracted dye is then quantified with a spectrophotometer. This method reliably results in a visual and quantifiable manifestation of a local allergic response.
Collapse
Affiliation(s)
- Holly Evans
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences
| | - Kristin E Killoran
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences;
| |
Collapse
|
6
|
Li X, Wang J, Shi H, Gao L, Wang X. Inhibition of three novel Radix Scutellariae extracts on immediate hypersensitivity. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:54-60. [PMID: 25395705 DOI: 10.4314/ajtcam.v11i5.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Radix Scutellariae, a few papers reported its pharmacology activities including alleviate small intestines smooth muscles spasm, sedation, antihypertensive effect. However, the inhibition of its different organic extracts on immediate hypersensitivity has not bee researched. MATERIALS AND METHODS To investigate the anti-immediate hypersensitivity of three extracts including ethanol extracts, acetone extracts, ethyl acetate extracts from Radix Scutellariae, four pharmacological screening model were chose, such as 4-Aminopyridine induced pruritus model, histamine-induced mouse paw edema model, PCA(passive cutaneous anaphylaxis) in ear of mouse, activie cutaneous anaphylaxismouse (mouse ear edema test), furthermore, total IgE level in the sensitized mice serum was evaluated deeply. RESULTS Ethanol group at 1.42 g/kg and 0.71 g/kg could greatly decrease the licking number to 1.2 and 12.7 respectively; also keep mice paw swelling at 0.29 ml and 0.51 ml at 15 min after injection of histamine. Both ear passive cutaneous allergic reaction and active cutaneous anaphylaxis-ear swelling test demonstrated that ethanol group exhibit great inhibition on immediate hypersensitivity.Low IgE level was found in ethanol group, but high in other two groups. CONCLUSION The ethanol extracts exhibits obvious strong inhibition, however, the acetone ones and ethyl acetate showed a little.
Collapse
Affiliation(s)
- Xiaorong Li
- Central Laboratory, The Luhe Teaching Hospital of the Capital Medical University, Beijing, China
| | - Jiangning Wang
- Reparative and reconstructive Sugery, Beijing Shijitan Hospital, Capital Medical University Beijing, China
| | - Haiyun Shi
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Gao
- Plastic Surgery, The Luhe Teaching Hospital of the Capital Medical University, Beijing, China
| | - Xueyan Wang
- Department of Allergy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Guzmán-Pérez CA, Ibarra-Sánchez A, Ventura-Gallegos JL, González-Espinosa C, García-Román J, Zentella-Dehesa A. An in vivo model to study the effects of tumoral soluble factors on the vascular permeability in mice. Methods Mol Biol 2014; 1165:187-95. [PMID: 24839026 DOI: 10.1007/978-1-4939-0856-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Some cancer cell lines release soluble factors that activate the endothelial cells in vitro; also endothelial activation in vivo includes an increased expression of adhesion molecules on the apical membrane, and an increased permeability, which may contribute to the extravasation process of circulating cells. We have adapted the Miles assay into a protocol that uses IgE/antigen complex and VEGF-1 as controls. The Miles assay comprises the intradermic injection of a pro-inflammatory agent into the skin and the intravenous introduction of a dye; the increase in vascular permeability will allow for the extravasation of the dye and thus the skin will be stained. The dye is then extracted from the dissected skin and quantified by spectrophotometry. The use of localized treatments will allow for testing a larger number of experimental samples in the same animal. With this model, the effects of tumoral soluble factors (TSFs) on endothelial permeability can be studied, as well as the signaling pathways involved. It can also serve to study the interactions between endothelial, immune, and cancer cells during the extravasation process.
Collapse
Affiliation(s)
- César Alejandro Guzmán-Pérez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Apartado postal 70228, Coyoacán, CP 04510, México, DF, México,
| | | | | | | | | | | |
Collapse
|
8
|
Stenton GR, Mackenzie LF, Tam P, Cross JL, Harwig C, Raymond J, Toews J, Chernoff D, MacRury T, Szabo C. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 2. Efficacy studies in allergic and pulmonary inflammation models in vivo. Br J Pharmacol 2013; 168:1519-29. [PMID: 23121409 DOI: 10.1111/bph.12038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 09/14/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The efficacy of AQX-1125, a small-molecule SH2-containing inositol-5'-phosphatase 1 (SHIP1) activator and clinical development candidate, is investigated in rodent models of inflammation. EXPERIMENTAL APPROACH AQX-1125 was administered orally in a mouse model of passive cutaneous anaphylaxis (PCA) and a number of rodent models of respiratory inflammation including: cigarette smoke, LPS and ovalbumin (OVA)-mediated airway inflammation. SHIP1 dependency of the AQX-1125 mechanism of action was investigated by comparing the efficacy in wild-type and SHIP1-deficient mice subjected to an intrapulmonary LPS challenge. RESULTS AQX-1125 exerted anti-inflammatory effects in all of the models studied. AQX-1125 decreased the PCA response at all doses tested. Using bronchoalveolar lavage (BAL) cell counts as an end point, oral or aerosolized AQX-1125 dose dependently decreased the LPS-mediated pulmonary neutrophilic infiltration at 3-30 mg kg⁻¹ and 0.15-15 μg kg⁻¹ respectively. AQX-1125 suppressed the OVA-mediated airway inflammation at 0.1-10 mg kg⁻¹. In the smoke-induced airway inflammation model, AQX-1125 was tested at 30 mg kg⁻¹ and significantly reduced the neutrophil infiltration of the BAL fluid. AQX-1125 (10 mg kg⁻¹) decreased LPS-induced pulmonary neutrophilia in wild-type mice but not in SHIP1-deficient mice. CONCLUSIONS The SHIP1 activator, AQX-1125, suppresses leukocyte accumulation and inflammatory mediator release in rodent models of pulmonary inflammation and allergy. As shown in the mouse model of LPS-induced lung inflammation, the efficacy of the compound is dependent on the presence of SHIP1. Pharmacological SHIP1 activation may have clinical potential for the treatment of pulmonary inflammatory diseases.
Collapse
|
9
|
Masuda Y, Takahashi T, Yoshida K, Nishitani Y, Mizuno M, Mizoguchi H. Anti-allergic effect of lactic acid bacteria isolated from seed mash used for brewing sake is not dependent on the total IgE levels. J Biosci Bioeng 2012; 114:292-6. [DOI: 10.1016/j.jbiosc.2012.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 01/03/2023]
|
10
|
In vivo study of antiallergenicity of ethanol extracts from Sargassum tenerrimum, Sargassum cervicorne and Sargassum graminifolium turn. Eur Food Res Technol 2009. [DOI: 10.1007/s00217-009-1066-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Chambers MA, Jahans K, Whelan A, Hughes C, Sayers R, Perkins A, Glyn Hewinson R. Simple objective measurement of the cutaneous delayed-type hypersensitivity reaction to tuberculin using spectrophotometry. Skin Res Technol 2002; 8:89-93. [PMID: 12060472 DOI: 10.1034/j.1600-0846.2001.80205.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND/AIMS A number of subjective methods have been used to quantify the extent of the cutaneous delayed-type hypersensitivity (DTH) reaction. However, because of their subjective nature, significant differences in measurements may be seen between individual observers or laboratories unless thorough training is given to each observer. METHODS Objective measurement of the DTH reaction using a hand-held spectrophotometer is described. Guinea pigs were primed using inoculation with Mycobacterium bovis Bacille Calmette-Guerin and challenged five weeks later in the shaved flank with three doses of bovine purified protein derivative. The extent of the ensuing DTH reaction was measured 24 and 48 h later. Spectrophotometric measurement of the reaction site was compared with a control region of skin on each animal and expressed as the change within a standard colour space. Data obtained with the spectrophotometer was compared with the subjective measurement of the area of the DTH reaction by an experienced operator. RESULTS The measurements obtained with the spectrophotometer correlated very closely with conventional measurement of the reaction area by a trained operator. The reaction size in square mm and changes along the red/green colour axis was correlated most strongly. CONCLUSION Spectrophotometric measurement of the DTH reaction had advantages over conventional measuring techniques in terms of speed, reproducibility and reduced operator to operator variation. We conclude that the cutaneous DTH reaction may be simply and objectively quantified with the use of a hand-held spectrophotometer.
Collapse
Affiliation(s)
- Mark A Chambers
- TB Research Group, Department of Bacterial Diseases, Veterinary Laboratories Agency, Addlestone, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|