1
|
Lee SE, Lee HB, Yoon JW, Park HJ, Kim SH, Han DH, Lim ES, Kim EY, Park SP. Rapamycin treatment during prolonged in vitro maturation enhances the developmental competence of immature porcine oocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:905-919. [PMID: 39398303 PMCID: PMC11466741 DOI: 10.5187/jast.2023.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2024]
Abstract
Porcine oocytes undergo in vitro maturation (IVM) for 42-44 h. During this period, most oocytes proceed to metaphase and then to pro-metaphase if the nucleus has sufficiently matured. Forty-four hours is sufficient for oocyte nuclear maturation but not for full maturation of the oocyte cytoplasm. This study investigated the influences of extension of the IVM duration with rapamycin treatment on molecular maturation factors. The phospho-p44/42 mitogen-activated protein kinase (MAPK) level was enhanced in comparison with the total p44/42 MAPK level after 52 h of IVM. Oocytes were treated with and without 10 μM rapamycin (10 R and 0 R, respectively) and examined after 52 h of IVM, whereas control oocytes were examined after 44 h of IVM. Phospho-p44/42 MAPK activity was upregulated the 10 R and 0 R oocytes than in control oocytes. The expression levels of maternal genes were highest in 10 R oocytes and were higher in 0 R oocytes than in control oocytes. Reactive oxygen species (ROS) activity was dramatically increased in 0 R oocytes but was similar in 10 R and control oocytes. The 10 R group exhibited an increased embryo development rate, a higher total cell number per blastocyst, and decreased DNA fragmentation. The mRNA level of development-related (POU5F1 and NANOG) mRNA, oocyte-apoptotic (BCL2L1) genes were highest in 10 R blastocysts. These results suggest that prolonged IVM duration with rapamycin treatment represses ROS production and increases expression of molecular maturation factors. Therefore, this is a good strategy to enhance the developmental capacity in porcine oocytes.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Subtropical Livestock Research Institute,
National Institute of Animal Science, RDA, Jeju 63242,
Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Hyo-Jin Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Mirae Cell Bio, Seoul 04795,
Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Mirae Cell Bio, Seoul 04795,
Korea
- Department of Bio Medical Informatic,
College of Applied Life Sciences, Jeju National University,
Jeju 63242, Korea
| |
Collapse
|
2
|
Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod 2023; 20:e20230049. [PMID: 37547564 PMCID: PMC10399133 DOI: 10.1590/1984-3143-ar2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the "nature versus/and nurture" question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.
Collapse
Affiliation(s)
- Burkhard Meinecke
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Ambulatorische und Geburtshilfliche Veterinärklinik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sabine Meinecke-Tillmann
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
3
|
Jiang Y, Adhikari D, Li C, Zhou X. Spatiotemporal regulation of maternal mRNAs during vertebrate oocyte meiotic maturation. Biol Rev Camb Philos Soc 2023; 98:900-930. [PMID: 36718948 DOI: 10.1111/brv.12937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Vertebrate oocytes face a particular challenge concerning the regulation of gene expression during meiotic maturation. Global transcription becomes quiescent in fully grown oocytes, remains halted throughout maturation and fertilization, and only resumes upon embryonic genome activation. Hence, the oocyte meiotic maturation process is largely regulated by protein synthesis from pre-existing maternal messenger RNAs (mRNAs) that are transcribed and stored during oocyte growth. Rapidly developing genome-wide techniques have greatly expanded our insights into the global translation changes and possible regulatory mechanisms during oocyte maturation. The storage, translation, and processing of maternal mRNAs are thought to be regulated by factors interacting with elements in the mRNA molecules. Additionally, posttranscriptional modifications of mRNAs, such as methylation and uridylation, have recently been demonstrated to play crucial roles in maternal mRNA destabilization. However, a comprehensive understanding of the machineries that regulate maternal mRNA fate during oocyte maturation is still lacking. In particular, how the transcripts of important cell cycle components are stabilized, recruited at the appropriate time for translation, and eliminated to modulate oocyte meiotic progression remains unclear. A better understanding of these mechanisms will provide invaluable insights for the preconditions of developmental competence acquisition, with important implications for the treatment of infertility. This review discusses how the storage, localization, translation, and processing of oocyte mRNAs are regulated, and how these contribute to oocyte maturation progression.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, 130062, China
| |
Collapse
|
4
|
Kawamoto TS, Viana JHM, Pontelo TP, Franco MM, de Faria OAC, Fidelis AAG, Vargas LN, Figueiredo RA. Dynamics of the Reproductive Changes and Acquisition of Oocyte Competence in Nelore (Bos taurus indicus) Calves during the Early and Intermediate Prepubertal Periods. Animals (Basel) 2022; 12:ani12162137. [PMID: 36009727 PMCID: PMC9405107 DOI: 10.3390/ani12162137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to characterize the reproductive physiology, oocyte competence, and chromatin compaction in Nelore calves in the early-prepubertal period (EPP) and the intermediate-prepubertal period (IPP). Calves aged 2-5 (EPP) and 8-11 months old (IPP) were assigned to Trial 1 (morpho-physiological-endocrine evaluations, n = 8) or Trial 2 (oocyte donors, n = 8) vs. the respective control groups of cows (n = 8, each). All morphological endpoints, except the antral follicle count, increased from the EPP to the IPP. The EPP LH-FSH plasma concentrations were similar to cows, whereas LH was lower and FSH was higher in the IPP than in cows. . Cows produced more Grade I (12.9% vs. 4.1% and 1.7%) and fewer Grade III COC (30.1% vs. 44.5% and 49.0%) than the EPP and IPP calves, respectively. The IPP calves' oocyte diameter was similar to those from cows but greater than those from EPP females (124.8 ± 8.5 and 126.0 ± 7.5 μm vs. 121.3 ± 7.5 μm, respectively). The expression of the chromatin compaction-related gene HDAC3 was downregulated in calves. The proportion of the blastocyst rate to the controls was lower in EPP than in IPP calves (43.7% vs. 78.7%, respectively). Progressive oocyte competence was found during the prepubertal period, which can help to decide whether to recover oocytes from calves.
Collapse
Affiliation(s)
- Taynan Stonoga Kawamoto
- Department of Veterinary, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil
| | | | | | - Maurício Machaim Franco
- Animal Reproduction Laboratory, Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil
| | | | | | - Luna Nascimento Vargas
- Department of Biology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil
| | - Ricardo Alamino Figueiredo
- Animal Reproduction Laboratory, Embrapa Genetic Resources and Biotechnology, Brasília 70770-917, DF, Brazil
- Correspondence: ; Tel.: +55-61-3448-4961
| |
Collapse
|
5
|
A significant quantitative trait locus on chromosome Z and its impact on egg production traits in seven maternal lines of meat-type chicken. J Anim Sci Biotechnol 2022; 13:96. [PMID: 35941697 PMCID: PMC9361671 DOI: 10.1186/s40104-022-00744-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Egg production is economically important in the meat-type chicken industry. To better understand the molecular genetic mechanism of egg production in meat-type chicken, genetic parameter estimation, genome-wide association analyses combined with meta-analyses, Bayesian analyses, and selective sweep analyses were performed to screen single nucleotide polymorphisms (SNPs) and other genetic loci that were significantly associated with egg number traits in 11,279 chickens from seven material lines. RESULTS Yellow-feathered meat-type chickens laid 115 eggs at 43 weeks of age and white-feathered chickens laid 143 eggs at 60 weeks of age, with heritability ranging from 0.034-0.258. Based on meta-analyses and selective sweep analyses, one region (10.81-13.05 Mb) on chromosome Z was associated with egg number in all lines. Further analyses using the W2 line was also associated with the same region, and 29 SNPs were identified that significantly affected estimation of breeding value of egg numbers. The 29 SNPs were identified as having a significant effect on the egg number EBV in 3194 birds in line W2. There are 36 genes in the region, with glial cell derived neurotrophic factor, DAB adaptor protein 2, protein kinase AMP-activated catalytic subunit alpha 1, NAD kinase 2, mitochondrial, WD repeat domain 70, leukemia inhibitory factor receptor alpha, complement C6, and complement C7 identified as being potentially affecting to egg number. In addition, three SNPs (rs318154184, rs13769886, and rs313325646) associated with egg number were located on or near the prolactin receptor gene. CONCLUSION Our study used genomic information from different chicken lines and populations to identify a genomic region (spanning 2.24 Mb) associated with egg number. Nine genes and 29 SNPs were identified as the most likely candidate genes and variations for egg production. These results contribute to the identification of candidate genes and variants for egg traits in poultry.
Collapse
|
6
|
Idrees M, Kumar V, Joo MD, Ali N, Lee KW, Kong IK. SHP2 Nuclear/Cytoplasmic Trafficking in Granulosa Cells Is Essential for Oocyte Meiotic Resumption and Maturation. Front Cell Dev Biol 2021; 8:611503. [PMID: 33553147 PMCID: PMC7862566 DOI: 10.3389/fcell.2020.611503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Src-homology-2-containing phosphotyrosine phosphatase (SHP2), a classic cytoplasmic protein and a major regulator of receptor tyrosine kinases and G protein-coupled receptors, plays a significant role in preimplantation embryo development. In this study, we deciphered the role of SHP2 in the somatic compartment of oocytes during meiotic maturation. SHP2 showed nuclear/cytoplasmic localization in bovine cumulus and human granulosa (COV434) cells. Follicle-stimulating hormone (FSH) treatment significantly enhanced cytoplasmic SHP2 localization, in contrast to the E2 treatment, which augmented nuclear localization. Enhanced cytoplasmic SHP2 was found to negatively regulate the expression of the ERα-transcribed NPPC and NPR2 mRNAs, which are vital for oocyte meiotic arrest. The co-immunoprecipitation results revealed the presence of the SHP2/ERα complex in the germinal vesicle-stage cumulus-oocyte complexes, and this complex significantly decreased with the progression of meiotic maturation. The complex formation between ERα and SHP2 was also confirmed by using a series of computational modeling methods. To verify the correlation between SHP2 and NPPC/NPR2, SHP2 was knocked down via RNA interference, and NPPC and NPR2 mRNAs were analyzed in the control, E2, and FSH-stimulated COV434 cells. Furthermore, phenyl hydrazonopyrazolone sulfonate 1, a site-directed inhibitor of active SHP2, showed no significant effect on the ERα-transcribed NPPC and NPR2 mRNAs. Taken together, these findings support a novel nuclear/cytoplasmic role of SHP2 in oocyte meiotic resumption and maturation.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Vikas Kumar
- Division of Applied Life Science, Department of Bio and Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Niaz Ali
- Institute of Basic Medical Sciences, Khybar Medical University, Peshawar, Pakistan
| | - Keun-Woo Lee
- Division of Applied Life Science, Department of Bio and Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea.,The King Kong Corp. Ltd., Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
7
|
Kurowska P, Mlyczyńska E, Estienne A, Barbe A, Rajska I, Soból K, Poniedziałek-Kempny K, Dupont J, Rak A. Expression and Impact of Vaspin on In Vitro Oocyte Maturation through MAP3/1 and PRKAA1 Signalling Pathways. Int J Mol Sci 2020; 21:E9342. [PMID: 33302416 PMCID: PMC7762560 DOI: 10.3390/ijms21249342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022] Open
Abstract
Oocyte maturation is a critical stage in embryo production and female reproduction. The aims of this study were to determine: (i) the mRNA and protein expression of vaspin and its receptor 78-kDa glucose-regulated (GRP78) in porcine cumulus-oocyte complexes (COCs) by real-time PCR and Western blot analysis, respectively, and their localisation by immunofluorescence; and (ii) the effects of vaspin on in vitro oocyte maturation (IVM) and the involvement of mitogen ERK1/2 (MAP3/1)- and AMPKα (PRKAA1)-activated kinases in the studied processes. Porcine COCs were matured in vitro for 22 h or 44 h with vaspin at a dose of 1 ng/mL and nuclear maturation assessed by Hoechst 33342 or DAPI staining and the measurement of progesterone (P4) level in the maturation medium. We showed that vaspin and GRP78 protein expression increased in oocytes and cumulus cells after IVM. Moreover, vaspin enhanced significantly porcine oocyte IVM and P4 concentration, as well as MAP3/1 phosphorylation, while decreasing PRKAA1. Using pharmacological inhibitors of MAP3/1 (PD98059) and PRKAA1 (Compound C), we observed that the effect of vaspin was reversed to the control level by all studied parameters. In conclusion, vaspin, by improving in vitro oocyte maturation via MAP3/1 and PRKAA1 kinase pathways, can be a new factor to improve in vitro fertilisation protocols.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.)
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.)
| | - Anthony Estienne
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (A.E.); (A.B.); (J.D.)
| | - Alix Barbe
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (A.E.); (A.B.); (J.D.)
| | - Iwona Rajska
- Department of Reproductive Biotechnology and Cryopreservation, National Research Institute of Animal Production, 32-083 Balice, Poland; (I.R.); (K.S.); (K.P.-K.)
| | - Katarzyna Soból
- Department of Reproductive Biotechnology and Cryopreservation, National Research Institute of Animal Production, 32-083 Balice, Poland; (I.R.); (K.S.); (K.P.-K.)
| | - Katarzyna Poniedziałek-Kempny
- Department of Reproductive Biotechnology and Cryopreservation, National Research Institute of Animal Production, 32-083 Balice, Poland; (I.R.); (K.S.); (K.P.-K.)
| | - Joelle Dupont
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (A.E.); (A.B.); (J.D.)
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.)
| |
Collapse
|
8
|
Yoon JW, Lee SE, Park YG, Kim WJ, Park HJ, Park CO, Kim SH, Oh SH, Lee DG, Pyeon DB, Kim EY, Park SP. The antioxidant icariin protects porcine oocytes from age-related damage in vitro. Anim Biosci 2020; 34:546-557. [PMID: 32777912 PMCID: PMC7961286 DOI: 10.5713/ajas.20.0046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE If fertilization does not occur within a specific period, the quality of unfertilized oocytes in the oviduct (in vivo aging) or in culture (in vitro aging) will deteriorate over time. Icariin (ICA), found in all species of Epimedium herbs, has strong antioxidant activity, and is thought to exert anti-aging effects in vitro. We asked whether ICA protects oocytes against age-related changes in vitro. METHODS We analyzed the reactive oxygen species (ROS) levels and expression of antioxidant, maternal, and estrogen receptor genes, and along with spindle morphology, and the developmental competence and quality of embryos in the presence and absence of ICA. RESULTS Treatment with 5 μM ICA (ICA-5) led to a significant reduction in ROS activity, but increased mRNA expression of glutathione and antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, peroxiredoxin 5, and nuclear factor erythroid 2-like 2), during aging in vitro. In addition, ICA-5 prevented defects in spindle formation and chromosomal alignment, and increased mRNA expression of cytoplasmic maturation factor genes (bone morphogenetic protein 15, cyclin B1, MOS proto-oncogene, serine/threonine kinase, and growth differentiation factor-9). It also prevented apoptosis, increased mRNA expression of antiapoptotic genes (BCL2-like 1 and baculoviral IAP repeat-containing 5), and reduced mRNA expression of pro-apoptotic genes (BCL2 antagonist/killer 1 and activation of caspase-3). Although the maturation and cleavage rates were similar in all groups, the total cell number per blastocyst and the percentage of apoptotic cells at the blastocyst stage were higher and lower, respectively, in the control and ICA-5 groups than in the aging group. CONCLUSION ICA protects oocytes against damage during aging in vitro; therefore, it can be used to improve assisted reproductive technologies.
Collapse
Affiliation(s)
- Jae-Wook Yoon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Yun-Gwi Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Won-Jae Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Hyo-Jin Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Chan-Oh Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - So-Hee Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Seung-Hwan Oh
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Do-Geon Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Da-Bin Pyeon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea.,Mirae Cell Bio, Seoul 04795, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea.,Stem Cell Research Center, Jeju National University, Jeju 63243, Korea.,Mirae Cell Bio, Seoul 04795, Korea
| |
Collapse
|
9
|
Nie ZW, Niu YJ, Zhou W, Kim JY, Ock SA, Cui XS. Thiamethoxam induces meiotic arrest and reduces the quality of oocytes in cattle. Toxicol In Vitro 2019; 61:104635. [DOI: 10.1016/j.tiv.2019.104635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/18/2019] [Accepted: 08/29/2019] [Indexed: 11/15/2022]
|
10
|
Campen KA, Kucharczyk KM, Bogin B, Ehrlich JM, Combelles CMH. Spindle abnormalities and chromosome misalignment in bovine oocytes after exposure to low doses of bisphenol A or bisphenol S. Hum Reprod 2019. [PMID: 29538760 DOI: 10.1093/humrep/dey050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION What are the effects of exposure to bisphenol A (BPA) or bisphenol S (BPS) during IVM on bovine oocyte maturation, spindle morphology and chromosome alignment? SUMMARY ANSWER Exposure to BPA or BPS during IVM resulted in increased spindle abnormalities and chromosome misalignment, even at very low concentrations. WHAT IS KNOWN ALREADY BPA is an endocrine disrupting chemical that alters oocyte maturation, spindle morphology and chromosome alignment in a range of species. The use of BPA substitutes, such as BPS, is increasing and these substitutes often display different potencies and mechanisms of action compared with BPA. STUDY DESIGN, SIZE, DURATION Bovine cumulus-oocyte complexes (COCs) underwent IVM with BPA or BPS for 24 h, together with vehicle-only controls. Overall, 10 different concentrations of BPA or BPS were used ranging from 1 fM to 50 μM in order to detect low dose or non-monotonic effects. An incomplete block design was utilized for the study, with at least three replicates per block. A total of 939 oocytes (250 of which were controls) were used for the BPA experiments, and 432 (110 controls) for the BPS experiments. Following the IVM period, the oocytes were denuded and fixed for immunocytochemistry. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunocytochemistry was used to label the chromatin, actin, and microtubules in the fixed oocytes. The meiotic stage was assessed using immunofluorescence, and the metaphase-II (MII) oocytes were further assessed for spindle morphology and chromosome alignment (in all MII oocytes regardless of spindle morphology) using immunofluorescence and confocal microscopy. Significant differences between the treatment and control groups were determined using chi-square and Fisher's exact tests. MAIN RESULTS AND THE ROLE OF CHANCE There was no effect of BPA or BPS on the proportion of bovine oocytes that reached MII (P > 0.05). BPA and BPS increased spindle abnormalities in MII oocytes at almost all concentrations tested, including those as low as 1 fM (P = 0.013) or 10 fM (P < 0.0001), respectively, compared to control. Oocytes with flattened spindles with broad poles were observed at a higher frequency at some concentrations of BPA (P = 0.0002 and P = 0.002 for 10 nM and 50 μM, respectively) or BPS (P = 0.01 for 100 nM BPS), while this spindle phenotype was absent in the controls. BPA increased chromosome misalignment at concentrations of 10 fM, 10 nM and 50 μM (P < 0.0001 to P = 0.043 depending on the dose). BPS increased chromosome misalignment at concentrations of 10 fM, 100 pM, 10 nM, 100 nM and 50 μM (P < 0.0001 to P = 0.013 depending on the dose). LIMITATIONS REASONS FOR CAUTION Exposures to BPA or BPS were performed during the IVM of COCs to allow for determination of direct effects of these chemicals on oocyte maturation. Whole follicle culture or in vivo studies will confirm whether follicular cell interactions modify the effects of BPA or BPS on oocyte meiotic maturation. Investigation into the effects of BPA or BPS on other oocyte functions will determine whether these chemicals alter oocyte quality via mechanisms independent of the meiotic endpoints characterized here. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study show that both BPA and BPS induce spindle abnormalities and chromosome misalignment in bovine in a non-monotonic manner, and at concentrations that are orders of magnitude below those measured in humans. Taken in context with previous studies on the effects of BPA in a range of species, our data support the literature that BPA may reduce oocyte quality and lead to subsequent infertility. Additionally, these results contribute to the burgeoning field of research on BPS and suggest that BPS may indeed be a 'regrettable substitution' for BPA. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by funding from the National Institutes of Health (NIH) (Grant 1R15ES024520-01). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Kelly A Campen
- Biology Department, Middlebury College, Middlebury, VT 05753, USA.,Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37902, USA
| | | | - Benjamin Bogin
- Biology Department, Middlebury College, Middlebury, VT 05753, USA
| | - Julie M Ehrlich
- Biology Department, Middlebury College, Middlebury, VT 05753, USA
| | | |
Collapse
|
11
|
Effect of Kisspeptin on the Developmental Competence and Early Transcript Expression in Porcine Oocytes Parthenogenetically Activated with Different Methods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3693602. [PMID: 29682539 PMCID: PMC5841116 DOI: 10.1155/2018/3693602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/02/2022]
Abstract
Recent studies showed the modulatory effect of kisspeptin (KP) on calcium waves through the cell membrane and inside the cell. Spermatozoon can induce similar ooplasmic calcium oscillations at fertilization to trigger meiosis II. Here, we evaluated the effect of KP supplementation with 6-dimethylaminopurine (6-DMAP) for 4 h on embryonic development after oocyte activation with single electric pulse, 5 µM ionomycin, or 8% ethanol. Compared to control nonsupplemented groups, KP significantly improved embryo developmental competence electric- and ethanol-activated oocytes in terms of cleavage (75.3% and 58.6% versus 64% and 48%, respectively, p < 0.05) and blastocyst development (31.3% and 10% versus 19.3% and 4%, respectively, p < 0.05). MOS expression was increased in electrically activated oocytes in presence of KP while it significantly reduced CCNB1 expression. In ionomycin treated group, both MOS and CCNB1 showed significant increase with no difference between KP and control groups. In ethanol-treated group, KP significantly reduced CCNB1 but no effect was observed on MOS expression. The early alterations in MOS and CCNB1 mRNA transcripts caused by KP may explain the significant differences in the developmental competence between the experimental groups. Kisspeptin supplementation may be adopted in protocols for porcine oocyte activation through electric current and ethanol to improve embryonic developmental competence.
Collapse
|
12
|
Abstract
When removed from the follicles, during the 44 h process of in vitro maturation (IVM) fully grown porcine oocytes resume meiosis spontaneously from the late diplotene stage of the first meiotic prophase and proceed to the metaphase-II (MII) stage at which they remain arrested until fertilization. However, the spontaneous resumption may start at various times causing heterogeneity in the nuclear stage and also in cytoplasmic characteristics within a population. Those oocytes that reach the MII stage earlier than others undergo an aging process which is detrimental for further embryo development. The synchronization of nuclear progression of porcine oocytes can be achieved by a transient inhibition of meiotic resumption during the first 20-22 h of IVM by the elevation of intracellular levels of cyclic adenosine monophosphate (cAMP) using the cellular membrane-permeable analog of cAMP, dibutyryl cyclic AMP. A simple and efficient protocol for such treatment is described below.
Collapse
Affiliation(s)
- Tamás Somfai
- National Agriculture and Food Research Organization (NARO), Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan.
| | - Yuji Hirao
- National Agriculture and Food Research Organization (NARO), Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| |
Collapse
|
13
|
Tiwari M, Gupta A, Sharma A, Prasad S, Pandey AN, Yadav PK, Pandey AK, Shrivastav TG, Chaube SK. Role of Mitogen Activated Protein Kinase and Maturation Promoting Factor During the Achievement of Meiotic Competency in Mammalian Oocytes. J Cell Biochem 2017; 119:123-129. [DOI: 10.1002/jcb.26184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Anumegha Gupta
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Alka Sharma
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Shilpa Prasad
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Ashutosh N. Pandey
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Pramod K. Yadav
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Ajai K. Pandey
- Faculty of AyurvedaDepartment of KayachikitsaBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| | - Tulsidas G. Shrivastav
- Department of Reproductive BiomedicineNational Institute of Health and Family WelfareBaba Gang Nath MargMunirkaNew Delhi 110067India
| | - Shail K. Chaube
- Cell Physiology LaboratoryDepartment of ZoologyInstitute of ScienceBanaras Hindu UniversityVaranasiUttar Pradesh 221005India
| |
Collapse
|
14
|
Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev 2016; 61:495-502. [PMID: 26688146 PMCID: PMC4685214 DOI: 10.1262/jrd.2015-069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the
preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling
network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa
cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell
compartment and the oocyte itself. Over the last decade, essential progress has been made in the
identification of molecular events associated with the final maturation and ovulation of mammalian oocytes.
All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the
gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways
leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation
of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even
though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we
aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the
activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a
specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.
Collapse
Affiliation(s)
- Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | | |
Collapse
|
15
|
An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes. Sci Rep 2016; 6:23555. [PMID: 27009903 PMCID: PMC4806380 DOI: 10.1038/srep23555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
The mechanisms for the transition from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) chromatin configuration during oocyte growth/maturation are unclear. By manipulating enzyme activities and measuring important molecules using small-follicle pig oocytes with a high proportion of NSN configuration and an extended germinal vesicle stage in vitro, this study has the first time up-to-date established the essential role for intra-oocyte mitogen-activated protein kinase (MAPK) in the NSN-to-SN transition. Within the oocyte in 1–2 mm follicles, a cAMP decline activates MAPK, which prevents the NSN-to-SN transition by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) while inhibiting histone deacetylase (HDAC). In cumulus cells of 1–2 mm follicles, a lower level of estradiol and oocyte-derived paracrine factor (ODPF) reduces natriuretic peptide receptor 2 (NPR2) while enhancing FSH and cAMP actions. FSH elevates cAMP levels, which decreases NPR2 while activating MAPK. MAPK closes the gap junctions, which, together with the NPR2 decrease, reduces cyclic guanosine monophosphate (cGMP) delivery leading to the cAMP decline within oocytes. In 3–6 mm follicles, a higher level of estradiol and ODPF and a FSH shortage initiate a reversion of the above events leading to MAPK inactivation and NSN-to-SN transition within oocytes.
Collapse
|
16
|
Hooper LM, Payton RR, Rispoli LA, Saxton AM, Edwards JL. Impact of heat stress on germinal vesicle breakdown and lipolytic changes during in vitro maturation of bovine oocytes. J Reprod Dev 2015; 61:459-64. [PMID: 26120041 PMCID: PMC4623152 DOI: 10.1262/jrd.2014-168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two studies were conducted with the overarching goal of determining the extent to which lipolytic changes relate to germinal vesicle breakdown (GVBD) in bovine oocytes matured under thermoneutral or hyperthermic conditions. To this end, cumulus-oocyte complexes underwent in vitro maturation for 0, 2, 4, 6 or 24 h at 38.5 (first study) or 38.5 and 41.0 C (second study; heat stress applied up through first 12 h only, then shifted to 38.5 C). Independent of maturation temperature, triglyceride and phospholipid content decreased markedly by 2 h of in vitro maturation (hIVM; P < 0.0005). Content was lowest at 24 hIVM with no detectable impact of heat stress when exposure occurred during first 12 hIVM. Germinal vesicle breakdown occurred earlier in oocytes experiencing heat stress with effects observed as soon as 4 hIVM (P < 0.0001). Germinal vesicle breakdown was associated with lipolytic changes (R2 = 0.2123 and P = 0.0030 for
triglyceride content; R2 = 0.2243 and P = 0.0026 for phospholipid content). ATP content at 24 hIVM was higher in oocytes experiencing heat stress (P = 0.0082). In summary, GVBD occurs sooner in heat-stressed oocytes. Although marked decreases in triglyceride and phospholipid content were noted as early as 2 hIVM and preceded GVBD, lipolytic changes such as these are not likely serving as an initial driver of GVBD in heat-stressed oocytes because changes occurred similarly in oocytes matured at thermoneutral conditions.
Collapse
Affiliation(s)
- Leah M Hooper
- University of Tennessee, Institute of Agriculture, UT AgResearch, Department of Animal Science, Knoxville, TN 37996-4574, USA
| | | | | | | | | |
Collapse
|
17
|
Tanaka H, Takeo S, Monji Y, Kuwayama T, Iwata H. Maternal liver damage delays meiotic resumption in bovine oocytes through impairment of signalling cascades originated from low p38MAPK activity in cumulus cells. Reprod Domest Anim 2013; 49:101-8. [PMID: 24102925 DOI: 10.1111/rda.12235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
Abstract
The main objective of the present study is to investigate the molecular mechanism underlying the delay in progression of nuclear maturation in oocytes derived from cows with damaged livers (DL cows), which was previously reported. In present study, delayed progression of nuclear maturation of oocytes derived from DL cows relative to oocytes derived from cows with healthy livers (HL cows) was accompanied by low maturation promoting factor (MPF) activity (0.43 fold, p < 0.05). When cumulus cells were removed from cumulus-oocyte complexes and the denuded oocytes were cultured, there was no difference in the progression of nuclear maturation between the two liver conditions. In addition, gap junctional communication (GJC) between the oocyte and cumulus cells was higher in DL cows than in HL cows at 3 and 7 h of in vitro maturation (IVM) (p < 0.05). Supplementation of IVM medium with epidermal growth factor (EGF) increased the ratio of germinal vesicle breakdown (GVBD) of oocytes derived from DL cows to the level seen in oocytes derived from HL cows. Additionally, the level of p38MAPK phosphorylation at 0 h of IVM was significantly lower in cumulus cells derived from DL cows than in cumulus cells derived from HL cows (HL cows, 53.5%; DL cows, 28.9%; p < 0.05). Thus, a low level of p38MAPK phosphorylation in cumulus cells induced slow GJC closure between oocyte and cumulus cells, which resulted in slow meiotic maturation of oocytes derived from DL cows.
Collapse
Affiliation(s)
- H Tanaka
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | | | | | | | | |
Collapse
|
18
|
Nuttinck F, Gall L, Ruffini S, Laffont L, Clement L, Reinaud P, Adenot P, Grimard B, Charpigny G, Marquant-Le Guienne B. PTGS2-Related PGE2 Affects Oocyte MAPK Phosphorylation and Meiosis Progression in Cattle: Late Effects on Early Embryonic Development. Biol Reprod 2011; 84:1248-57. [DOI: 10.1095/biolreprod.110.088211] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
19
|
ZHANG DX, PARK WJ, SUN SC, XU YN, LI YH, CUI XS, KIM NH. Regulation of Maternal Gene Expression by MEK/MAPK and MPF Signaling in Porcine Oocytes During In Vitro Meiotic Maturation. J Reprod Dev 2011; 57:49-56. [DOI: 10.1262/jrd.10-087h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Won-Jun PARK
- Department of Animal Sciences, Chungbuk National University
| | - Shao-Chen SUN
- Department of Animal Sciences, Chungbuk National University
| | - Yong-Nan XU
- Department of Animal Sciences, Chungbuk National University
| | - Ying-Hua LI
- Department of Animal Sciences, Chungbuk National University
| | - Xiang-Shun CUI
- Department of Animal Sciences, Chungbuk National University
| | - Nam-Hyung KIM
- Department of Animal Sciences, Chungbuk National University
| |
Collapse
|
20
|
Abstract
When removed from the follicles, during the 44 h process of in vitro maturation (IVM) fully grown porcine oocytes resume meiosis spontaneously from the late diplotene stage of the first meiotic prophase and proceed to the metaphase-II (MII) stage at which they remain arrested until fertilization. However, the resumption may start at various times causing heterogeneity in the nuclear stage and also in cytoplasmic characteristics (i.e., the activity of certain protein kinases) within a population. Those oocytes that reach the MII stage earlier than others undergo an ageing process which is detrimental for further embryo development. The synchronization of nuclear progression is possible by a transient inhibition of meiotic resumption during the first 20-22 h of IVM either by (1) the elevation of intracellular levels of cyclic adenosine monophosphate (cAMP) or (2) suppressing the activity of the metaphase promoting factor (MPF). A protocol for each approach is described.
Collapse
Affiliation(s)
- Tamas Somfai
- National Agriculture and Food Research Organization, National Institute of Livestock and Grassland Science, 305-0901, Ibaraki, Japan.
| | | |
Collapse
|
21
|
Involvement of the metabolic hormones leptin, ghrelin, obestatin, IGF-I and of MAP kinase in control of porcine oocyte maturation. Animal 2011; 5:94-9. [DOI: 10.1017/s1751731110001552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction 2010; 139:979-88. [PMID: 20215338 DOI: 10.1530/rep-09-0503] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Linoleic acid (LA; 18:2 n-6) is the most abundant fatty acid in bovine follicular fluid, and it was previously reported that LA concentration significantly decreases when follicle size increases. This suggests that LA may have a role in the regulation of oocyte maturation. The present study investigated the effect of LA supplementation on bovine oocyte maturation and early embryo development in vitro. Treatment of cumulus-oocyte complexes (COCs) with LA significantly inhibited cumulus cell expansion and retarded development of the oocytes to the metaphase II (MII) stage in a dose-dependent manner. This effect was reversible, and the oocytes developed to the MII stage after extended culture in the absence of LA. Treatment of COCs with LA also resulted in a significantly lower percentage of cleaved embryos and blastocyst yield. Furthermore, COCs treated with LA had significant effects compared with controls in i) increasing prostaglandin E(2) concentration in the medium, ii) decreasing intracellular cAMP at 6 and 24 h of maturation and iii) decreasing phosphorylation of the MAPK1 and 3 at 24 h, and AKT at 6 h of maturation. In conclusion, LA supplementation to bovine oocytes during maturation altered the molecular mechanisms regulating oocyte maturation and resulted in decreased percentage of oocytes at MII stage and inhibition of the subsequent early embryo development. These data provide evidence for adverse effects of LA on oocyte development, which can be associated with dietary increased level of LA in the follicular fluid and the decline in fertility in farm animals and human.
Collapse
Affiliation(s)
- Waleed F Marei
- Reproduction, Genes and Development Research Group, Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL97TA, UK
| | | | | |
Collapse
|
23
|
Zhang DX, Cui XS, Kim NH. Molecular characterization and polyadenylation-regulated expression of cyclin B1 and Cdc2 in porcine oocytes and early parthenotes. Mol Reprod Dev 2010; 77:38-50. [PMID: 19705412 DOI: 10.1002/mrd.21095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Meiotic maturation of mammalian oocytes is controlled by the maturation/M-phase promotion factor (MPF), a complex of Cdc2 kinase and cyclin B protein. To better understand the molecular mechanism of oocyte maturation, we characterized porcine cyclin B1 and Cdc2 genes, both of which are widely expressed in pig tissues. We further analyzed their expression profiles during in vitro maturation of pig oocyte and early embryonic development at both the mRNA and protein level. Two isoforms of cyclin B1, comprising the same open reading frame but differing in 3'-UTR length, were identified. Cyclin B1 transcripts was up-regulated after 30 hr of maturation, while Cdc2 mRNA levels were unchanged during maturation except for a sharp decline at 44 hr. Cyclin B1 protein synthesis increased with oocyte maturation. Cdc2 protein expression was relatively low during 0-18 hr, followed by a higher level of expression up to 44 hr of maturation. Poly(A)-test PCR clearly revealed that both cyclin B1 isoforms underwent cytoplasmic polyadenylation starting around 18-24 hr during maturation, while a substantial de-adenylation and degradation of Cdc2 isoforms were observed in metaphase II oocytes and during embryo development after parthenogenetic activation. Porcine MII oocytes derived from small follicles (< or = 3 mm) and bad quality 2-cell parthenotes showed lower developmental competence and lower levels of cyclin B1 protein, and Cdc2 mRNA or both gene mRNAs, respectively, compared to their control counterparts. These results suggested that cyclin B1 was regulated posttranscriptionally by cytoplasmic polyadenylation during porcine oocyte maturation. Further, the decreased expression of maternal cyclin B1 and Cdc2 at the mRNA or protein level in developmentally incompetent oocytes and embryos was responsible for, at least in part, a profound defect in further embryonic development.
Collapse
Affiliation(s)
- Ding-Xiao Zhang
- Department of Animal Sciences, Chungbuk National University, Chungbuk, South Korea
| | | | | |
Collapse
|
24
|
Oocyte quality and estradiol supplementation affect in vitro maturation success in the white-tailed deer (Odocoileus virginianus). Theriogenology 2009; 73:112-9. [PMID: 19853902 DOI: 10.1016/j.theriogenology.2009.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/27/2009] [Accepted: 08/05/2009] [Indexed: 11/22/2022]
Abstract
White-tailed deer oocyte biology is not well documented. The objective of this study was to determine (1) the influence of estradiol (E(2)) supplementation on meiotic resumption and the ability to "rescue" poorer quality (lower grade) oocytes and (2) the kinetics of oocyte nuclear maturation in vitro in the white-tailed deer. In Experiment 1, immature oocytes harvested during hunting-culling operations were cultured for 24h in the presence or absence of E(2). Incubation in 1mug/mL E(2) promoted nuclear maturation (to telophase I, TI; or to metaphase II, MII) in a higher proportion of Grade 1 oocytes ( approximately 77%; P<0.05) compared with that in Grade 2 or Grade 3 counterparts ( approximately 51%). For Grades 2 and 3 oocytes, there was no advantage (P>0.05) for E(2) supplementation in reaching TI/MII. In Experiment 2, Grade 1 oocytes were cultured in the presence of E(2) and nuclear status evaluated at 0, 3, 6, 12, and 24h of in vitro incubation. At 0h,>70% of oocytes already had undergone germinal vesicle breakdown. After 12h, approximately 70% of oocytes had reached metaphase I of nuclear maturation, with approximately 75% achieving TI/MII by 24h in vitro. In summary, adding E(2) to an in vitro maturation (IVM) culture system for white-tailed deer was advantageous, but only for the highest quality oocytes, with approximately 75% achieving nuclear maturation. In contrast, E(2) supplement did not benefit lower-grade oocytes, half of which will reach MII, with the other half failing. Under the described culture conditions, good-quality white-tailed deer oocytes achieve nuclear maturation over a time duration comparable with that reported in other ungulates.
Collapse
|
25
|
Marei WF, Wathes DC, Fouladi-Nashta AA. The effect of linolenic Acid on bovine oocyte maturation and development. Biol Reprod 2009; 81:1064-72. [PMID: 19587335 DOI: 10.1095/biolreprod.109.076851] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Dietary polyunsaturated fatty acids can influence reproductive performance. In dairy cattle, some high-fat diets resulted in higher blastocyst rates and improved embryo quality. These effects may partly be mediated by a direct action of fatty acids on oocyte development. The present study investigated the effect of linolenic acid (ALA; 18:3 n-3) supplementation on bovine oocyte maturation and early embryo development in vitro. Treatment of cumulus-oocyte complexes (COCs) with 50 muM ALA significantly increased the percentage of oocytes at the metaphase II (MII) stage compared with untreated controls (95% +/- 2% vs. 84% +/- 2%, respectively). Higher doses of ALA were detrimental. Treatment of COCs with 50 muM ALA compared with controls also resulted in a significantly higher percentage of cleaved embryos (77% +/- 9% vs. 69% +/- 9%, respectively) and blastocyst rate (36% +/- 4% vs. 23% +/- 5%, respectively) and better-quality embryos. Furthermore, COCs treated with ALA had significant increases compared with controls in: 1) prostaglandin E(2) (PGE(2)) concentration (233% +/- 41%) in the medium, 2) intracellular cAMP at 3 h of maturation, and 3) phosphorylation of the mitogen-activated protein kinases (MAPKs) during the first 6 h of maturation. Moreover, ALA overcame the suppressive effects of the prostaglandin-endoperoxide synthase 2 inhibitor (NS-398) on oocyte maturation and partially improved the maturation rate in the presence of the MAPK kinase inhibitor (U-0126). Linolenic acid could not, however, recover maturation in the presence of both inhibitors. In conclusion, treatment of bovine COCs with ALA during oocyte maturation affects the molecular mechanisms controlling oocyte nuclear maturation, leading to an increased number of MII-stage oocytes and improved subsequent early embryo development. This effect is mediated both directly through MAPK pathway and indirectly through PGE(2) synthesis.
Collapse
Affiliation(s)
- Waleed F Marei
- Reproduction, Genes and Development Research Group, Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, UK
| | | | | |
Collapse
|
26
|
Setiadi MA, Trumpa M, Rath D, Meinecke B. Elevated histone H1 (MPF) and mitogen-activated protein kinase activities in pig oocytes following in vitro maturation do not indicate cytoplasmic maturation. Reprod Domest Anim 2009; 44:235-40. [PMID: 19323796 DOI: 10.1111/j.1439-0531.2007.01041.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effects of different media (TCM 199 + BSA, TCM 199 + FCS, TCM 199 + NBCS, Whitten's medium + BSA) supplemented with estradiol-17beta and two isolated and everted follicle shells on MPF and MAP kinase activities and the sensitivity to parthenogenetic activation of pig oocytes were examined at the end of culture (48 h). Elevated (P < 0.05) activities of MAP kinase were recorded in metaphase II oocytes following culture in Whitten's medium, whereas MPF levels were lowest (P < 0.05) in MII oocytes matured in TCM 199 supplemented with BSA. Oocytes matured in TCM 199 based media showed higher (P < 0.05) activation rates when compared to oocytes incubated in Whitten's medium. Whitten's medium supplemented with different protein sources (amino acids, FCS, BSA) was used to study the effects of different exposure periods to eCG/hCG stimulation on MPF and MAP kinase activities and in vivo fertilisability following culture for 48 h. MPF and MAP kinase activities were significantly increased by eCG/hCG stimulation of COCs during maturation. Further, the continuous presence of eCG/hCG during culture (48 h) significantly increased the levels of both kinases in comparison to stimulation by gonadotrophins alone during the first 24 h of incubation. In vivo fertilisation of oocytes matured in Whitten's medium supplemented with eCG/hCG for 24 or 48 h led to a significant retardation of early embryonic development compared to ovulated oocytes. In conclusion, media composition and gonadotrophin stimulation affect MPF/MAP kinase activities and the susceptibility to parthenogenetic activation of IVM oocytes. However, elevated kinase levels in pig oocytes following culture do not indicate complete cytoplasmic maturation.
Collapse
Affiliation(s)
- M A Setiadi
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University, Campus IPB Darmaga, Bogor, Indonesia
| | | | | | | |
Collapse
|
27
|
Hölzenspies JJ, Stoorvogel W, Colenbrander B, Roelen BAJ, Gutknecht DR, van Haeften T. CDC2/SPDY transiently associates with endoplasmic reticulum exit sites during oocyte maturation. BMC DEVELOPMENTAL BIOLOGY 2009; 9:8. [PMID: 19187565 PMCID: PMC2644288 DOI: 10.1186/1471-213x-9-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/03/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mammalian oocytes acquire competence to be fertilized during meiotic maturation. The protein kinase CDC2 plays a pivotal role in several key maturation events, in part through controlled changes in CDC2 localization. Although CDC2 is involved in initiation of maturation, a detailed analysis of CDC2 localization at the onset of maturation is lacking. In this study, the subcellular distribution of CDC2 and its regulatory proteins cyclin B and SPDY in combination with several organelle markers at the onset of pig oocyte maturation has been investigated. RESULTS Our results demonstrate that CDC2 transiently associates with a single domain, identified as a cluster of endoplasmic reticulum (ER) exit sites (ERES) by the presence of SEC23, in the cortex of maturing porcine oocytes prior to germinal vesicle break down. Inhibition of meiosis resumption by forskolin treatment prevented translocation of CDC2 to this ERES cluster. Phosphorylated GM130 (P-GM130), which is a marker for fragmented Golgi, localized to ERES in almost all immature oocytes and was not affected by forskolin treatment. After removal of forskolin from the culture media, the transient translocation of CDC2 to ERES was accompanied by a transient dispersion of P-GM130 into the ER suggesting a role for CDC2 in redistributing Golgi components that have collapsed into ERES further into the ER during meiosis. Finally, we show that SPDY, rather than cyclin B, colocalizes with CDC2 at ERES, suggesting a role for the CDC2/SPDY complex in regulating the secretory pathway during oocyte maturation. CONCLUSION Our data demonstrate the presence of a novel structure in the cortex of porcine oocytes that comprises ERES and transiently accumulates CDC2 prior to germinal vesicle breakdown. In addition, we show that SPDY, but not cyclin B, localizes to this ERES cluster together with CDC2.
Collapse
Affiliation(s)
- Jurriaan J Hölzenspies
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Willem Stoorvogel
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Ben Colenbrander
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bernard AJ Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Dagmar R Gutknecht
- Department of Reproductive Medicine, University Medical Centre, Utrecht, the Netherlands
| | - Theo van Haeften
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
28
|
The use of R-roscovitine to fit the ‘time frame’ on in vitro porcine embryo production by intracytoplasmic sperm injection. ZYGOTE 2009; 17:63-70. [DOI: 10.1017/s0967199408005017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryMicromanipulation of oocytes is time consuming during ICSI experiments; however the ‘time frame’ to manipulate oocytes without a drop in efficiency is not very wide due to the use of not completely matured and/or aged MII oocytes. Therefore, the aim of this work was to study the effect of a short roscovitine pretreatment for 5 h and two different IVM periods (5R + 40IVM or 5R + 45IVM) and a prolonged IVM time from 45 h (45IVM) to 50 h (50IVM) on parthenogenetic and ICSI embryo development, in order to fit the time frame to manipulate pig oocytes to the whole labour day session. In the first experiment, oocytes, pretreated with roscovitine and IVM cultured for 5 h, showed a similar nuclear stage as non-cultured oocytes and a significantly higher percentage of GVI-GVII oocytes compared with non-roscovitine treated oocytes cultured for 5 h in IVM conditions. When COC were cultured under the 5R + 40IVM system, nuclear maturation and cleavage rates after electrical activation were significantly lower than when COC were cultured under the 45IVM, 50IVM and 5R + 45IVM culture systems (54.2% vs. 72.6–76.8% and 58.8% vs. 81.4–88.3%, respectively). However, this difference was not statistically significant for parthenogenote blastocyst rate. No differences were observed in MII and in parthenogenote and ICSI embryo development among 45IVM, 50IVM and 5R + 45IVM experimental groups. In conclusion, under our conditions and using parthenogenetic and ICSI embryos, we observed that it is feasible to prolong the pig oocyte manipulation ‘time frame’ by at least 5 h with no significant drop in blastocyst rate.
Collapse
|
29
|
Nguyen NT, Lin DPC, Yen SY, Tseng JK, Chuang JF, Chen BY, Lin TA, Chang HH, Ju JC. Sonic hedgehog promotes porcine oocyte maturation and early embryo development. Reprod Fertil Dev 2009; 21:805-15. [DOI: 10.1071/rd08277] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 05/13/2009] [Indexed: 12/28/2022] Open
Abstract
In the present study, we investigated the effects of the Sonic hedgehog (Shh) protein on porcine oocyte maturation and early embryo development. Immunohistochemistry showed activation of Shh signalling in cumulus–oocyte complexes (COCs), as reflected by Patched (Ptc), Smoothened (Smo) and Gli1 expression in oocytes, cumulus cells and granulosa cells, particularly those of small follicles (<2 mm in diameter). Western blot analysis showed Smo expression in COCs and in denuded oocytes derived from small and medium (3–7 mm)-sized follicles. Small follicles contained the highest concentration of Shh in follicular fluid compared with medium-sized and large (>7 mm in diameter) follicles. Supplementation with Shh (0.5 or 1 μg mL–1) enhanced oocyte maturation compared with the control group (92.4% and 90.4% v. 81.9%, respectively; P < 0.05). This effect was reversed by the simultaneous addition of cyclopamine (1–2 μm), an Shh inhibitor. Similar to intact COCs, denuded COCs showed enhanced maturation following Shh supplementation. Furthermore, cyclin B1 content, extracellular signal-regulated kinase 1/2 phosphorylation, intracellular calcium release, blastocyst rate and total cell numbers were greater (P < 0.05) in oocytes matured in the presence of 0.5 and 1 μg mL–1 Shh compared with control oocytes. The findings of the present study provide the first evidence that the Shh signalling pathway is active, or at least partially activated, in the porcine ovary and is likely to promote oocyte cytoplasmic and nuclear maturation, as well as subsequent in vitro development, although the underlying mechanisms remain to be elucidated.
Collapse
|
30
|
Ding LJ, Tian HB, Wang JJ, Chen J, Sha HY, Chen JQ, Cheng GX. Different intervals of ovum pick-up affect the competence of oocytes to support the preimplantation development of cloned bovine embryos. Mol Reprod Dev 2008; 75:1710-5. [DOI: 10.1002/mrd.20922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Li M, Ai JS, Xu BZ, Xiong B, Yin S, Lin SL, Hou Y, Chen DY, Schatten H, Sun QY. Testosterone potentially triggers meiotic resumption by activation of intra-oocyte SRC and MAPK in porcine oocytes. Biol Reprod 2008; 79:897-905. [PMID: 18667751 DOI: 10.1095/biolreprod.108.069245] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The role of androgen and androgen receptors (ARs) in males has been well established. This steroid and its receptor also exist in follicles, but their functions are still unclear. In this study, using a culture system containing a low dose of hypoxanthine, we revealed the positive contribution of testosterone to oocyte meiotic resumption. By performing ultracentrifugation to allow clear visualization of porcine germinal vesicles, our results provide evidence that mitogen-activated protein kinase (MAPK) in the oocyte itself but not in cumulus cells was activated before germinal vesicle breakdown (GVBD) after testosterone treatment. We further explored the signal cascade of testosterone-triggered GVBD and showed significant contributions of AR to testosterone-induced MAPK activation and GVBD. By using a potent and selective inhibitor of SRC and detecting activation of the kinase, we found that testosterone activated SRC in oocytes but not in cumulus cells and that SRC (as an essential upstream molecule of MAPK) mediated this testosterone- and AR-promoted reinitiation of meiosis. The present findings propose an undefined signaling pathway and suggest the potential competence of testosterone for meiotic resumption in mammalian oocytes.
Collapse
Affiliation(s)
- Mo Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, and Graduate School, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ebeling S, Schuon C, Meinecke B. Mitogen-activated protein kinase phosphorylation patterns in pig oocytes and cumulus cells during gonadotrophin-induced resumption of meiosis in vitro. ZYGOTE 2008; 15:139-47. [PMID: 17462106 DOI: 10.1017/s0967199406004011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The present study investigated the phosphorylation pattern of mitogen-activated protein kinase (MAPK) in cumulus-oocyte complexes (COCs) during spontaneous and FSH/LH-induced in vitro maturation (IVM). Both isoforms of MAPK were unphosphorylated in oocytes recovered immediately after liberation from follicles and became phosphorylated following 25 h incubation, corresponding to the time of germinal vesicle breakdown (GVBD). In contrast, MAPK was already phosphorylated in minimal amounts in cumulus cells at the time of liberation from follicles and phosphorylation of MAPK increased after 0.5 h incubation. Supplementation of medium with gonadotrophins intensified phosphorylation at 0.5 h incubation, demonstrating the early and rapid action of FSH/LH on MAPK phosphorylation. Phosphorylation of MAPK in cumulus cells peaked after 21 h of incubation, whereas MAPK was almost completely dephosphorylated at the end of incubation (45 h). During subsequent incubation in the absence of added gonadotrophins, between 5 and 10 h exposure to FSH/LH-supplemented medium was required to induce resumption of meiosis in COCs. Phosphorylation of MAPK in oocytes was prevented by the MEK inhibitor U0126, but the inhibitor reduced phosphorylation of MAPK in cumulus cells only during the first 2 h of IVM. The data support the hypothesis that two different MAPK phosphorylation events occurred following gonadotrophin stimulation, one in cumulus cells and the other in oocytes. In cumulus cells, FSH/LH induced early and rapid U0126-insensitive phosphorylation of MAPK, whereas U0126-susceptible MAPK phosphorylation took place in the oocyte itself around the time of GVBD.
Collapse
Affiliation(s)
- S Ebeling
- Department of Reproductive Biology, University of Veterinary Medicine, Hannover, Germany
| | | | | |
Collapse
|
33
|
Pelech S, Jelinkova L, Susor A, Zhang H, Shi X, Pavlok A, Kubelka M, Kovarova H. Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation. J Proteome Res 2008; 7:2860-71. [DOI: 10.1021/pr800082a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven Pelech
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Lucie Jelinkova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Andrej Susor
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hong Zhang
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Xiaoqing Shi
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Antonin Pavlok
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Michal Kubelka
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hana Kovarova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| |
Collapse
|
34
|
Samartzi F, Tsakmakidis I, Theodosiadou E, Vainas E. Effect of porcine and ovine FSH on nuclear maturation of pig oocytes in vitro. Reprod Domest Anim 2008; 43:153-6. [PMID: 18325004 DOI: 10.1111/j.1439-0531.2007.00868.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of porcine or ovine FSH on the maturation rate of porcine oocytes and on the time course of meiotic progression was studied. Groups of 20 grade-A cumulus oocyte complexes, aspirated from slaughterhouse cycling-gilt ovaries, were cultured in vitro in 400 mul of Modified Parker's Medium supplemented with oestrous cow serum and porcine FSH (Folltropin(R)-V, 0.50 mg/ml) or ovine FSH (Ovagen(TM), 0.44 iu/ml), in four-well dishes under mineral oil, at 38.5 degrees C, 5% CO(2) in humidified air. At the end of each 3-h interval, from 3 to 42 h of culture, the nuclear status of oocytes was assessed microscopically (1000x), after fixation (methanol/acetic acid: 3/1) and orcein (2%) staining. Oocytes were classified as (i) immature (IMM), i.e. oocytes at germinal vesicle stage, germinal vesicle break down and prophase I, (ii) metaphase I (MI) and (iii) metaphase II (MII), i.e. oocytes at anaphase I, telophase I and metaphase II. Data were analysed using regression analysis, chi-square and t-test. Nuclear status was assessed in 1610 oocytes (porcine FSH: 787, ovine FSH: 823). Most of the oocytes were at MI from 24 to 33 h (porcine FSH 60.27%, ovine FSH 42.80%, p < 0.001) and at MII from 36 to 42 h (porcine FSH 80.38%, ovine FSH 67.45%, p < 0.01) of culture. Significantly higher maturation rate was observed in porcine FSH than in ovine FSH treated oocytes (86.69 +/- 12.97%, 71.34 +/- 9.86%, mean +/- SD, p < 0.05), after 42 h of culture. In conclusion, under the specific culture conditions, porcine FSH seems to support pig oocyte maturation better than ovine FSH.
Collapse
Affiliation(s)
- F Samartzi
- National Agricultural Research Foundation, Veterinary Research Institute, Thessaloniki, Greece.
| | | | | | | |
Collapse
|
35
|
Racedo SE, Wrenzycki C, Herrmann D, Salamone D, Niemann H. Effects of follicle size and stages of maturation on mRNA expression in bovine in vitro matured oocytes. Mol Reprod Dev 2008; 75:17-25. [PMID: 17546584 DOI: 10.1002/mrd.20770] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcription in bovine oocytes: The goal of this study was to unravel the dynamics of transcripts thought to be critically involved in oocyte maturation. The relative abundance (RA) of DYNLL1 (cytoplasmic dynein light chain LC8), DYNC1I1 (cytoplasmic dynein 1 intermediate chain), DCTN1 (dynactin 1; pGlued homolog, the activator of the cytoplasmic dynein complex 1), PMSB1 (proteasome beta subunit 1), PMSA4 (proteasome alfa subunit 4), PAP (poly-A polymerase) and Cx43 (connexin 43) were determined by semi-quantitative endpoint RT-PCR at different stages of IVM, that is, GV, GVBD, MI and MII in oocytes collected from follicles of two different size categories, that is, <2 mm and 2-8 mm. The RA of DYNLL1 and DYNC1I1 were significantly higher in immature oocytes from bigger follicles than in oocytes from small follicles. Messenger RNA expression levels were similar for DCTN1, PMSB1, PMSA4, PAP, and Cx43 in the two groups during the maturation process. RA of DYNLL1, DYNC1I1 and PMSB1 decreased significantly during IVM in oocytes from follicles 2 to 8 mm. The RA for DYNLL1 was significantly higher in GVBD and MI in the oocytes from follicles 2 to 8 mm in size compared to the other group. The higher mRNA expression of DYNLL1 and DYNC1I1 and the diverging dynamics of DYNLL1, DYNC1I1, and PMSB1 mRNA expression during IVM in oocytes from the different follicle categories could be related to the developmental capacity, that is, development to blastocysts after IVF. The differences found between groups of oocytes could serve as a marker to assess the developmental capacity of bovine oocytes.
Collapse
Affiliation(s)
- Silvia E Racedo
- Department of Biotechnology, Institute for Animal Breeding (FAL), Mariensee, Neustadt, Germany
| | | | | | | | | |
Collapse
|
36
|
Uzbekova S, Arlot-Bonnemains Y, Dupont J, Dalbiès-Tran R, Papillier P, Pennetier S, Thélie A, Perreau C, Mermillod P, Prigent C, Uzbekov R. Spatio-Temporal Expression Patterns of Aurora Kinases A, B, and C and Cytoplasmic Polyadenylation-Element-Binding Protein in Bovine Oocytes During Meiotic Maturation1. Biol Reprod 2008; 78:218-33. [PMID: 17687118 DOI: 10.1095/biolreprod.107.061036] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Maturation of immature bovine oocytes requires cytoplasmic polyadenylation and synthesis of a number of proteins involved in meiotic progression and metaphase-II arrest. Aurora serine-threonine kinases--localized in centrosomes, chromosomes, and midbody--regulate chromosome segregation and cytokinesis in somatic cells. In frog and mouse oocytes, Aurora A regulates polyadenylation-dependent translation of several mRNAs such as MOS and CCNB1, presumably by phosphorylating CPEB, and Aurora B phosphorylates histone H3 during meiosis. We analyzed the expression of three Aurora kinase genes--AURKA, AURKB, and AURKC--in bovine oocytes during meiosis by reverse transcription followed by quantitative real-time PCR and immunodetection. Aurora A was the most abundant form in oocytes, both at mRNA and protein levels. AURKA protein progressively accumulated in the oocyte cytoplasm during antral follicle growth and in vitro maturation. AURKB associated with metaphase chromosomes. AURKB, AURKC, and Thr-phosphorylated AURKA were detected at a contractile ring/midbody during the first polar body extrusion. CPEB, localized in oocyte cytoplasm, was hyperphosphorylated during prophase/metaphase-I transition. Most CPEB degraded in metaphase-II oocytes and remnants remained localized in a contractile ring. Roscovitine, U0126, and metformin inhibited meiotic divisions; they all induced a decrease of CCNB1 and phospho-MAPK3/1 levels and prevented CPEB degradation. However, only metformin depleted AURKA. The Aurora kinase inhibitor VX680 at 100 nmol/L did not inhibit meiosis but led to multinuclear oocytes due to the failure of the polar body extrusion. Thus, in bovine oocyte meiosis, massive destruction of CPEB accompanies metaphase-I/II transition, and Aurora kinases participate in regulating segregation of the chromosomes, maintenance of metaphase-II, and formation of the first polar body.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- INRA, UMR85 Physiologie de Reproduction et des Comportements, CNRS, UMR6175, Université de Tours, Haras Nationaux, 37380 Nouzilly, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol Endocrinol 2007; 21:2037-55. [PMID: 17536005 DOI: 10.1210/me.2006-0408] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractOocyte meiotic maturation is one of the important physiological requirements for species survival. However, little is known about the detailed events occurring during this process. A number of studies have demonstrated that MAPK plays a pivotal role in the regulation of meiotic cell cycle progression in oocytes, but controversial findings have been reported in both lower vertebrates and mammals. In this review, we summarized the roles of MAPK cascade and related signal pathways in oocyte meiotic reinitiation in both lower vertebrates and mammals. We also tried to reconcile the paradoxical results and highlight the new findings concerning the function of MAPK in both oocytes and the surrounding follicular somatic cells. The unresolved questions and future research directions regarding the role of MAPK in meiotic resumption are addressed.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang Beijing 100101, China
| | | | | | | | | |
Collapse
|
38
|
Linher K, Wu D, Li J. Glial cell line-derived neurotrophic factor: an intraovarian factor that enhances oocyte developmental competence in vitro. Endocrinology 2007; 148:4292-301. [PMID: 17540724 DOI: 10.1210/en.2007-0021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The success of early embryonic development depends on oocyte nuclear and cytoplasmic maturation. We have investigated whether glial cell line-derived neurotrophic factor (GDNF) affects the in vitro maturation (IVM) of porcine oocytes and their subsequent ability to sustain preimplantation embryo development. GDNF and both its coreceptors, GDNF family receptor alpha-1 (GFR alpha-1) and the rearranged during transformation (RET) receptor, were expressed in oocytes and their surrounding cumulus cells derived from small and large follicles. When included in IVM medium, GDNF significantly enhanced cumulus cell expansion of both small and large cumulus-oocyte complexes and increased the percentage of small follicle-derived oocytes maturing to the metaphase II stage, although nuclear maturation of large oocytes was not significantly affected. Examination of cyclin B1 protein expression as a measure of cytoplasmic maturation revealed that in the presence of GDNF, cyclin B1 levels were significantly increased in large follicle-derived oocytes, as well as in oocytes from small follicles to a level comparable to the untreated large group. After activation, a significantly higher percentage of both small and large oocytes that were matured in the presence of GDNF developed to the blastocyst stage compared with untreated controls. Indeed, GDNF enhanced the blastocyst rate of small oocytes to levels comparable to those obtained for large oocytes matured without GDNF. The effect of GDNF was specific; this was evident because its enhancement of nuclear maturation and embryo developmental potential was blocked by an antibody against GFR alpha-1. Our study provides the first functional evidence that GDNF affects oocyte maturation and preimplantation embryo developmental competence in a follicular stage-dependent manner. This finding may provide insights for improving the formulation of IVM culture systems, especially for oocytes from small follicles.
Collapse
Affiliation(s)
- Katja Linher
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
39
|
Schuon C, Ebeling S, Meinecke B. Phosphorylation pattern of the p90rsk and mitogen-activated protein kinase (MAPK) molecule: comparison of in vitro and in vivo matured porcine oocytes. ZYGOTE 2007; 15:215-23. [PMID: 17637102 DOI: 10.1017/s0967199407004170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The overall objective was to elucidate the phosphorylation pattern and activity of the kinase p90rsk, a substrate of mitogen-activated protein kinase (MAPK), during in vitro and in vivo maturation of pig oocytes. Cumulus-oocyte complexes were collected from slaughtered pigs and matured in vitro (0, 22, 26, 30, 34, 46 h) with and without the MEK inhibitor U0126. For in vivo maturation, gilts were stimulated with equine chorionic gonadotrophin (eCG) (600-800 IU). Maturation was induced 72 h later with hCG (500 IU). Oocytes were obtained surgically (0, 22, 30 h). The samples were submitted to electrophoresis and protein blotting analysis. Enhanced chemiluminescence was used for visualization. In vitro matured oocytes were further submitted to a commercially available radioactive kinase assay to determine kinase activity. It was shown that oocytes, as well as cumulus cells, already possess a partially phosphorylated p90rsk at the time of removal from follicles, with a further phosphorylation of the molecule occurring between 22-24 h after the initiation of culture, and in vivo maturation. The phosphorylation of p90rsk coincides with the phosphorylation of MAPK and can be prevented by U0126, indicating a MAPK-dependent phosphorylation of p90rsk. Phosphorylation of the in vivo matured oocytes occurred shown as a band of less than 200 kDa. This is presumably a molecule complex, with MAPK not being a component. Therefore, the p90rsk molecule in vivo exists as a dimer. Determination of kinase activity demonstrated decreasing enzyme activities. This led to the conclusion that the assay is not specific for p90rsk, instead measuring p70S6 kinase activities.
Collapse
Affiliation(s)
- C Schuon
- Department of Reproductive Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | | |
Collapse
|
40
|
Naruse K, Quan YS, Kim BC, Lee JH, Park CS, Jin DI. Brief exposure to cycloheximide prior to electrical activation improves in vitro blastocyst development of porcine parthenogenetic and reconstructed embryos. Theriogenology 2007; 68:709-16. [PMID: 17604096 DOI: 10.1016/j.theriogenology.2007.05.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 05/31/2007] [Indexed: 11/21/2022]
Abstract
To investigate the effects of cycloheximide exposure before electrical activation of in vitro-matured porcine oocytes on the subsequent development of parthenogenetic embryos, cumulus-free mature oocytes were exposed to NCSU-23 medium containing cycloheximide (10 microg/mL) for 0, 5, 10, 20, 30 and 60 min, activated by electrical pulse treatment (1.5 kV/cm, 100 micros) and then cultured in PZM-3 for 7 days. To evaluate the effects of cycloheximide on the activation of nuclear transfer embryos, reconstructed embryos were electrically activated by two DC pulses (1.2 kV/cm, 30 micros) before or after exposure to cycloheximide. The reconstructed embryos were allocated into four groups: electrical pulse treatment alone (Ele); exposure to cycloheximide for 10 min followed by electrical activation (CHX+Ele); electrical activation followed by exposure to cycloheximide for 6h (Ele+CHX); exposure to cycloheximide for 10 min, followed by electrical activation and a further exposure to cycloheximide for 6h (CHX+Ele+CHX). The activated reconstructed embryos were cultured in PZM-3 for 6 days. Oocytes treated with 10 min exposure to cycloheximide followed by electrical activation had a significantly higher percentage of blastocyst formation compared to control oocytes and oocytes exposed for > or =30 min. In the reconstructed embryos, the blastocyst development rates of embryos exposed to cycloheximide (CHX+Ele, Ele+CHX and CHX+Ele+CHX) were significantly higher than those of the control group (Ele). Among the cycloheximide-treated groups, the CHX+Ele group had increased development rate and total blastocyst cell number, though these values were not significantly different from those observed in the other cycloheximide-treated groups. To evaluate the quality of NT embryos treated with cycloheximide, apoptosis in blastocysts was analyzed by TUNEL assay. The 10 min exposure to cycloheximide prior to electrical activation significantly reduced cell death compared with longer exposure to cycloheximide after electrical fusion. In conclusion, brief exposure to cycloheximide prior to electrical activation may increase the subsequent blastocyst development rates in porcine parthenogenetic and reconstructed embryos.
Collapse
Affiliation(s)
- K Naruse
- Division of Animal Science and Resources, Research Center for Transgenic and Cloned Pigs, Chungnam National University, Daejeon City, South Korea
| | | | | | | | | | | |
Collapse
|
41
|
Barretto LSS, Caiado Castro VSD, Garcia JM, Mingoti GZ. Role of roscovitine and IBMX on kinetics of nuclear and cytoplasmic maturation of bovine oocytes in vitro. Anim Reprod Sci 2007; 99:202-7. [PMID: 16860950 DOI: 10.1016/j.anireprosci.2006.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
The 3-isobutyl-1-methylxanthine (IBMX) is able to prevent resumption of meiosis by maintaining elevated cyclic AMP (cAMP) concentrations in the oocyte, and roscovitine, a purine known to specifically inhibit MPF kinase activity, maintains bovine oocytes at the germinal vesicle (GV) stage. The present study was conducted to analyze whether cytoplasmic maturation (examined by the pattern of cortical granule (CG) distribution) of bovine oocytes is improved during meiotic arrest with IBMX and roscovitine. Oocytes were matured in vitro in a 10% Knockout(SR) supplemented TCM-199 medium (Control) with either 0.5 mM IBMX or 25 microM roscovitine (ROSC). Oocytes were stained with fluorescein isothiocyanate conjugated Lens culinaris agglutinin (FITC-LCA) for CG evaluation and with Hoechst 33342 for nuclear stage assessment. At 16 h of culture, the percentage of oocytes remaining in the GV stage was higher (P < 0.05) in the ROSC group (32.41%) compared with the Control and IBMX groups (8.61% and 9.73%, respectively). At 24 h of culture, progression of meiosis to M II stage was retarded (P < 0.05) in the ROSC group (24.05%) compared to the Control (60.20%), whereas the IBMX group (33.88%) showed no significant difference to the other two groups. At 16 h of maturation, the proportion of oocytes with CG in clusters (immature cytoplasm) was similar between the groups, as was the percentage of peripheral CG (mature) at 24 h of maturation. The results of the present study demonstrated that the meiotic inhibitors IBMX and roscovitine delay the progression of nuclear maturation without affecting cytoplasmic maturation, assessed by the analysis of CG repositioning.
Collapse
Affiliation(s)
- L S S Barretto
- School of Agricultural and Veterinary Sciences, UNESP, 14884-900 Jaboticabal, SP, Brazil
| | | | | | | |
Collapse
|
42
|
Suzuki H, Saito Y. Cumulus cells affect distribution and function of the cytoskeleton and organelles in porcine oocytes. Reprod Med Biol 2006; 5:183-194. [PMID: 29699248 DOI: 10.1111/j.1447-0578.2006.00140.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mammalian oocytes grow and undergo meiosis within ovarian follicles. Oocytes are arrested at the first meiotic prophase, being controlled or influenced by follicular somatic cells. Under the influence of gonadotropins, immature oocytes resume meiosis. During meiotic progression, some cytoplasmic changes occur, so-called cytoplasmic maturation. However, porcine follicular oocytes vary greatly in developmental competence. The present review summarizes recent studies highlighting the importance of cumulus cells in maintaining the developmental ability and in reorganizing the cytoskeleton and organelles of porcine oocytes. Factors affecting wide variation of the nuclear and cytoplasmic maturation observed in the porcine oocytes are discussed. (Reprod Med Biol 2006; 5: 183-194).
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Yosuke Saito
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
43
|
Liang CG, Huo LJ, Zhong ZS, Chen DY, Schatten H, Sun QY. Cyclic adenosine 3',5'-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes. Endocrinology 2005; 146:4437-44. [PMID: 16002524 DOI: 10.1210/en.2005-0309] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MAPK plays an important role during meiotic maturation in mammalian oocytes, whereas the necessity of MAPK during meiotic resumption in porcine oocytes is still controversial. Here, by applying the method of ultracentrifugation to move the opaque lipid droplets to the edge of the oocyte, therefore allowing clear visualization of porcine germinal vesicles, oocytes just before germinal vesicle breakdown (GVBD) and those that had just undergone GVBD were selected for the assay of MAPK activation. Our results showed that phosphorylation of MAPK in oocytes occurred after GVBD in all three different culture models: spontaneous maturation model, inhibition-induction maturation model, and normal maturation model. Moreover, we found that activation of MAPK in cumulus cells but not in oocytes was essential for GVBD in cumulus-enclosed oocytes. Then the cross-talk between cAMP and MAPK in cumulus cells was investigated by using cell-type-specific phosphodiesterase (PDE) isoenzyme inhibitors. Our results showed that PDE3 subtype existed in oocytes, whereas PDE4 subtype existed in cumulus cells. PDE3 inhibitor prevented meiotic resumption of oocytes, whereas PDE4 inhibitor enhanced the ability of FSH or forskolin to activate MAPK in cumulus cells. We propose that increased cAMP resulting from inhibition of PDE3 in oocytes blocks GVBD, whereas increased cAMP resulting from inhibition of PDE4 activates MAPK pathway in cumulus cells, which is essential for GVBD induction.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
44
|
Romar R, Funahashi H. In vitro maturation and fertilization of porcine oocytes after a 48 h culture in roscovitine, an inhibitor of p34cdc2/cyclin B kinase. Anim Reprod Sci 2005; 92:321-33. [PMID: 16054783 DOI: 10.1016/j.anireprosci.2005.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 04/16/2005] [Accepted: 04/28/2005] [Indexed: 11/26/2022]
Abstract
Maintaining oocytes at the germinal vesicle (GV) stage in vitro may permit enhanced acquisition of the developmental competence. The objective of the current study was to evaluate the nuclear and cytoplasmic maturation in vitro of porcine oocytes after pretreatment with S-roscovitine (ROS). Cumulus oocyte complexes (COC) were treated with 50 microM ROS for 48 h and then matured for various lengths of time in a conventional step-wise in vitro maturation (IVM) system by using dibutyryl cyclic AMP. The COC that were matured in the same system for 44 h without pretreatment with ROS were used as the control group. At various periods after the start of IVM, oocytes were assessed for the meiotic stages and subjected to in vitro fertilization (IVF) with fresh spermatozoa. The ROS treatment inhibited GV breakdown of 94.4% oocytes, with the majority arrested at the GV-I stage (67.4%). Maximum maturation rate to the metaphase-II stage after ROS treatment was achieved by 44 h of IVM (92.1%) and no differences were observed with control oocytes (95.0%). Penetration rate was correlated to the maturation rate. The duration of IVM had no effects on polyspermy and male pronuclear (MPN) formation rates at 8 h post insemination (hpi), whereas both rates increased at 22 hpi. Direct comparison with controls assessed at 22 hpi confirmed a lesser MPN formation in ROS-treated oocytes (73.7% compared with 53.6%). Glutathione (GSH) concentrations were less in oocytes treated with ROS than in control oocytes (5 compared with 7.7 pmol/oocyte) as well as blastocyst rate (22.0% compared with 38.1%, respectively). These results demonstrate that cytoplasmic maturation in porcine oocytes pretreated with ROS for 48 h did not equal that of control oocytes in the current IVM system.
Collapse
Affiliation(s)
- Raquel Romar
- Department of Animal Science and Technology, The Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | | |
Collapse
|
45
|
Traverso JM, Donnay I, Lequarre AS. Effects of polyadenylation inhibition on meiosis progression in relation to the polyadenylation status of cyclins A2 and B1 during in vitro maturation of bovine oocytes. Mol Reprod Dev 2005; 71:107-14. [PMID: 15736128 DOI: 10.1002/mrd.20247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The control of protein synthesis during maturation in oocytes is mainly exerted through cytoplasmic polyadenylation of stored mRNAs. We first analyzed the polyadenylation status of cyclins A2 and B1 during in vitro maturation (IVM) of bovine oocytes, using Rapid Amplification of cDNA Ends-Polyadenylation Technique (RACE-PAT). An inconstant elongation of the poly(A) tail was observed for cyclin A2 transcripts after maturation, while a constant lengthening was observed for cyclin B1, occurring during the first 12 hr of incubation. We then evaluated the effects of the polyadenylation inhibitor 3'-deoxyadenosine (3'-dA), on polyadenylation and nuclear maturation. The presence of 0.02 mM 3'-dA during the whole incubation period or from 6 hr after its beginning completely prevented meiosis progression in 100% of the oocytes. Polyadenylation of cyclin B1 was also completely prevented when 3'-dA was added at 0 hr, and greatly reduced when added at 6 hr. When 3'-dA was added at 12 hr, around metaphase I (MI), 46.9% of the oocytes have reached metaphase II (MII, vs. 78.8% in the control group) at 24 hr. The use of the same concentration of 3'-deoxyguanosine (3'-dG), that impairs transcription but not polyadenylation, did not affect cyclins polyadenylation, nor nuclear maturation, whatever was the timing of addition. These results suggest that the polyadenylation of cyclin B1 could be related to the first peak of activity of MPF, occurring around MI (10-12 hr after the onset of the maturation period). They also show that, in our culture conditions, inhibition of polyadenylation prevents meiosis progression, especially up to the MI stage, while inhibition of transcription does not.
Collapse
Affiliation(s)
- Juan M Traverso
- Veterinary Unit, Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | |
Collapse
|
46
|
LaRosa C, Downs SM. MEK inhibitors block AICAR-induced maturation in mouse oocytes by a MAPK-independent mechanism. Mol Reprod Dev 2005; 70:235-45. [PMID: 15570612 DOI: 10.1002/mrd.20200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study was carried out to assess the possible role of mitogen-activated protein kinase (MAPK) in the meiosis-inducing action of the AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured 4 hr in Eagle's minimum essential medium containing dbcAMP plus increasing concentrations of AICAR or okadaic acid (OA). OA is a phosphatase inhibitor known to stimulate both meiotic maturation and MAPK activation and served as a positive control. Both OA and AICAR were potent inducers of meiotic resumption in mouse oocytes and brought about the phosphorylation (and thus, activation) of MAPK, but by different kinetics: MAPK phosphorylation preceded GVB in OA-treated oocytes, while that resulting from AICAR treatment appeared only after GVB. The MEK inhibitors, PD98059 and U0126, blocked the meiotic resumption induced by AICAR but not that induced by OA. Although the MEK inhibitors suppressed MAPK phosphorylation in both OA- and AICAR-treated oocytes, meiotic resumption was not causally linked to MAPK phosphorylation in either group. Furthermore, AICAR-induced meiotic resumption in Mos-null oocytes (which are unable to stimulate MAPK) was also abrogated by PD98059 treatment. A non-specific effect of the MEK inhibitors on AICAR accessibility to the oocyte was discounted by showing that they failed to suppress either nucleoside uptake or AICAR-stimulated phosphorylation of acetyl CoA carboxylase (ACC), a substrate of AMPK. The suppression of AICAR-induced maturation by MEK inhibitors must, therefore, be occurring by actions unrelated to MEK stimulation of MAPK; consequently, it would be prudent to consider this possible non-specific action of the inhibitors when they are used to block MAPK activation in mouse oocytes.
Collapse
Affiliation(s)
- Cean LaRosa
- Biology Department, Marquette University, 530 N 15th Street, Milwaukee, WI 53233, USA
| | | |
Collapse
|
47
|
Combelles CMH, Fissore RA, Albertini DF, Racowsky C. In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Hum Reprod 2005; 20:1349-58. [PMID: 15695316 DOI: 10.1093/humrep/deh750] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Deficiencies remain in the ability of in vitro-matured human oocytes to acquire full developmental competence and give rise to a healthy pregnancy. A clear deficiency of current systems utilizing human oocytes has been the absence of cumulus cells. In the present study, a three-dimensional (3D) co-culture system exploiting an extracellular matrix was developed and compared to conventional methods for its ability to support maturation of human oocytes. METHODS AND RESULTS Cumulus cells were embedded into a 3D collagen gel matrix with individual oocytes added to each gel. Oocytes from the same patient cultured in the gel matrix matured to metaphase II at rates similar to those of cumulus-free oocytes cultured in individual microdrops. Following maturation of oocytes and fixation of intact gels, chromatin and cytoskeletal elements were assessed in oocytes and cumulus cells. The activities of the key cell cycle kinases, maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK), were compared in oocytes matured under the two culture conditions. Compared with denuded oocytes, co-cultured oocytes exhibited increased MAPK activity, but no difference in MPF levels. CONCLUSIONS This work characterizes a novel and efficacious culture system that takes advantage of the unique properties of the extracellular matrix, a 3D microenvironment, and the presence of cumulus cells for maturing human oocytes in vitro.
Collapse
Affiliation(s)
- Catherine M H Combelles
- Brigham and Women's Hospital, Harvard Medical School, Department of Obstetrics and Gynecology, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
48
|
Lequarre AS, Vigneron C, Ribaucour F, Holm P, Donnay I, Dalbiès-Tran R, Callesen H, Mermillod P. Influence of antral follicle size on oocyte characteristics and embryo development in the bovine. Theriogenology 2005; 63:841-59. [PMID: 15629802 DOI: 10.1016/j.theriogenology.2004.05.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 05/07/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
The developmental competence of bovine oocytes isolated from antral follicles of different sizes was assessed in three European laboratories (Belgium, UCL; Denmark, DIAS; France, INRA). Using the same protocol for in vitro production of embryos, the oocytes isolated from follicles with a diameter > or = 6 mm always gave a higher blastocyst rate than oocytes from follicles < 4 mm (UCL: 42% versus 14%, DIAS: 50% versus 35%, INRA: 39% versus 22%; P < 0.05). Blastocyst cell number was not affected by follicle size. Several parameters were investigated for these oocytes. The energy metabolism of cumulus-oocyte-complexes and of denuded oocytes was assessed by the oxygen and pyruvate uptake and by lactate release both at the beginning and the end of the maturation. No effect of follicle size could be detected but lactate release increased after maturation. The global profile of transcripts, the pattern of protein neosynthesis and the kinetics of meiosis resumption were not affected by follicle size. The developmental kinetics of derived embryos was also analysed. Whatever the follicle size, viable embryos had a shorter first and third embryonic cell cycle. Among the viable embryos, the size of the follicle interfered with the fourth cell cycle duration. A higher percentage of blastocysts issued from large follicle presented a short fourth cell cycle (9h) (35% versus 6%; P < 0.05). Beside, blastocysts derived from small follicles had a delayed cavitation and expansion. Thereby, a higher developmental competence for oocytes from follicle > or = 6 mm versus < 4 mm was demonstrated in three laboratories although no differences could be displayed directly at the oocyte level.
Collapse
Affiliation(s)
- Anne-Sophie Lequarre
- Institut des Sciences de la Vie, Unité des Sciences Vétérinaires, Université Catholique de Louvain (UCL), Place Croix du Sud 5 Bte 10, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sutton-McDowall ML, Gilchrist RB, Thompson JG. Effect of hexoses and gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro maturation in a synthetic follicle fluid medium. Reprod Fertil Dev 2005; 17:407-15. [PMID: 15899152 DOI: 10.1071/rd04135] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 01/25/2005] [Indexed: 11/23/2022] Open
Abstract
In vitro oocyte maturation (IVM) culture conditions have been relatively unchanged over the past few decades and remain suboptimal. In contrast, studies of the in vivo environment have led to significant improvements to in vitro embryo culture technologies. The aim of the present study was to determine the effect of maturing bovine cumulus–oocyte complexes (COCs) in medium based on the composition of bovine follicular fluid (Bovine VitroMat; Cook Australia, Eight Mile Plain, Qld, Australia). In particular, the effect of different glucose concentrations and glucosamine supplementation on meiotic maturation was determined. Culturing COCs in the presence of gonadotrophins in Bovine VitroMat, containing either physiological glucose concentrations (2.3 mm) or 5.6 mm (equivalent to levels in Tissue Culture Medium 199 (TCM199)) supplemented with glucosamine resulted in comparable cumulus expansion to COCs cultured in TCM199 plus gonadotrophins. However, nuclear maturation was 1.3-fold lower in Bovine VitroMat cultures containing 2.3 mm glucose compared with 5.6 mm glucose and this effect was independent of glucosamine supplementation. Investigations into the effects of different glucose concentrations and gonadotrophin supplementation during the initial 6 h of maturation demonstrated that COCs cultured in Bovine VitroMat with 5.6 mm glucose without gonadotrophins had a twofold acceleration of the rate of meiotic resumption, yet the rate of polar body formation was decreased by approximately 20% compared with cultures in 2.3 mm glucose and TCM199. However, this effect was not seen when COCs were cultured for the initial 16 h in Bovine VitroMat + 5.6 mm minus gonadotrophins or in Bovine VitroMat + 2.3 mm glucose ± gonadotrophins. These data demonstrate that glucose concentrations and the timing of the introduction of gonadotrophin during IVM have variable effects on nuclear maturation. Manipulation of glucose concentrations may be a mechanism to influence oocyte meiotic progression and may lead to the development of improved IVM systems, allowing for an increased developmental capacity of bovine oocytes.
Collapse
Affiliation(s)
- Melanie L Sutton-McDowall
- Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, SA, Australia
| | | | | |
Collapse
|
50
|
Craig J, Zhu H, Dyce PW, Petrik J, Li J. Leptin enhances oocyte nuclear and cytoplasmic maturation via the mitogen-activated protein kinase pathway. Endocrinology 2004; 145:5355-63. [PMID: 15284194 DOI: 10.1210/en.2004-0783] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have suggested that leptin has a central role in female reproduction, including ovarian function. The leptin receptor (Ob-R) has six isoforms and can signal through either the MAPK or the Janus-activated kinase/signal transducer and activator of transcription signal-transduction pathway, depending on the isoform. Expression of Ob-R has been reported in human and mouse oocytes; however, the physiological role of leptin during follicular development and oocyte maturation is largely unknown. In the current study, expression of Ob-R during oocyte growth and maturation was investigated in porcine oocytes from small, medium, and large follicles and in oocytes in the germinal vesicle (GV), GV breakdown, and metaphase II (MII) stages at both the mRNA and protein levels. The proportion of oocytes expressing Ob-R was maximal in oocytes from medium follicles and at the GV breakdown stage (P < 0.05), whereas the proportion of oocytes expressing the long isoform, Ob-Rb, was found to be consistently low throughout growth and maturation. When included in oocyte maturation medium, leptin significantly increased the proportion of oocytes reaching MII (P < 0.01), elevated cyclin B1 protein content in MII-stage oocytes (P < 0.05), and enhanced embryo developmental potential (P < 0.05), suggesting that leptin plays a role in both nuclear and cytoplasmic maturation. During oocyte maturation, leptin increased phosphorylated MAPK content by 2.8-fold (P < 0.05), and leptin-stimulated oocyte maturation was blocked when leptin-induced MAPK phosphorylation was suppressed by a specific MAPK activation inhibitor, U0126 (P < 0.01), demonstrating that leptin enhances nuclear maturation via activation of the MAPK pathway.
Collapse
Affiliation(s)
- Jesse Craig
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|