1
|
Cong Z, Liu W, Song Z, Zhu M, Zhang Y, Yao W, Wu S, Gao E. A Zn‐based metal–organic framework for the irreversible determination of trace biomarkers of styrene and ethylbenzene in urine. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenzhong Cong
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Wei Liu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Zhenfeng Song
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Wei Yao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Shuangyan Wu
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- The Key Laboratory of the Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| |
Collapse
|
2
|
Honório TCDD, Oliveira Neto JRD, Oliveira FNM, Salazar VCR, Cruz ADC, Cunha LCD. Occupational exposure evaluation of Brazil university community to the volatile organic compounds. J Pharm Biomed Anal 2020; 191:113637. [PMID: 32980796 DOI: 10.1016/j.jpba.2020.113637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Occupational exposure to volatile organic compounds (VOC) might generate serious worker health damages. Therefore, biological monitoring is essential to evaluate exposure biomarkers from highly toxic chemicals, ensuring better attention to the worker health. In this study was developed and validated a bioanalytical method based on high-performance liquid chromatography coupled to photodiode array (HPLC-PDA) for the quantification of VOC biomarkers in urine samples from Federal University of Goias (UFG) workers. Samples were collected from 30 occupationally exposed subjects after application of a questionnaire survey. The following biomarkers hippuric acid, methyl-hippuric acid, mandelic acid, phenylglyoxylic acid and phenol were quantified, representing exposition to toluene, xylene, styrene, ethylbenzene, benzene and phenol solvents, respectively. Hippuric acid levels were found close to or above the reference values, although a subject had levels higher than preconized by Biological Limit Values (BLV) guideline of 4.0 mg/g creatinine. Five subjects had 3 and 4-methylhippuric acid ranging from 0.1 to 1.0 mg/g creatinine. These results indicate a moderate to high VOC exposure from UFG workers. Multivariate analysis generated four clusters and indicated that histotechnicians and graphic workers need especial attention on occupational VOC exposure. The results from this study reinforce the need for reliable methods able to the biological monitoring as an important tool for assessing occupational exposure.
Collapse
Affiliation(s)
- Tereza Cristina de Deus Honório
- Nucleus of Toxicopharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, 74605-170, Brazil
| | - Jerônimo Raimundo de Oliveira Neto
- Nucleus of Toxicopharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, 74605-170, Brazil.
| | | | | | - Alessandro de Carvalho Cruz
- Nucleus of Toxicopharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, 74605-170, Brazil
| | - Luiz Carlos da Cunha
- Nucleus of Toxicopharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, 74605-170, Brazil
| |
Collapse
|
3
|
A review of recent advances in microsampling techniques of biological fluids for therapeutic drug monitoring. J Chromatogr A 2020; 1635:461731. [PMID: 33285415 DOI: 10.1016/j.chroma.2020.461731] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Conventional sampling of biological fluids often involves a bulk quantity of samples that are tedious to collect, deliver and process. Miniaturized sampling approaches have emerged as promising tools for sample collection due to numerous advantages such as minute sample size, patient friendliness and ease of shipment. This article reviews the applications and advances of microsampling techniques in therapeutic drug monitoring (TDM), covering the period January 2015 - August 2020. As whole blood is the gold standard sampling matrix for TDM, this article comprehensively highlights the most historical microsampling technique, the dried blood spot (DBS), and its development. Advanced developments of DBS, ranging from various automation DBS, paper spray mass spectrometry (PS-MS), 3D dried blood spheroids and volumetric absorptive paper disc (VAPD) and mini-disc (VAPDmini) are discussed. The volumetric absorptive microsampling (VAMS) approach, which overcomes the hematocrit effect associated with the DBS sample, has been employed in recent TDM. The sample collection and sample preparation details in DBS and VAMS are outlined and summarized. This review also delineates the involvement of other biological fluids (plasma, urine, breast milk and saliva) and their miniaturized dried matrix forms in TDM. Specific features and challenges of each microsampling technique are identified and comparison studies are reviewed.
Collapse
|
4
|
Facile and sensitive determination of urinary mandelic acid by combination of metal organic frameworks with microextraction by packed sorbents. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1114-1115:45-54. [DOI: 10.1016/j.jchromb.2019.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
|
5
|
Bahrami A, Ghamari F, Yamini Y, Ghorbani Shahna F, Koolivand A. Ion-pair-based hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography for the simultaneous determination of urinary benzene, toluene, and styrene metabolites. J Sep Sci 2017; 41:501-508. [DOI: 10.1002/jssc.201700685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Abdulrahman Bahrami
- Center of Excellence for Occupational Health; Occupational Health and Safety Research Center; School of Public health; Hamadan University of Medical Sciences; Hamadan Iran
| | - Farhad Ghamari
- Department of Occupational Health Engineering; Faculty of Health; Arak University of Medical Sciences; Arak Iran
| | - Yadollah Yamini
- Department of Chemistry; Faculty of Sciences; Tarbiat Modares University; Tehran Iran
| | - Farshid Ghorbani Shahna
- Center of Excellence for Occupational Health; Occupational Health and Safety Research Center; School of Public health; Hamadan University of Medical Sciences; Hamadan Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering; Faculty of Health; Arak University of Medical Sciences; Arak Iran
| |
Collapse
|
6
|
Bahrami A, Ghamari F, Yamini Y, Ghorbani Shahna F, Moghimbeigi A. Hollow Fiber Supported Liquid Membrane Extraction Combined with HPLC-UV for Simultaneous Preconcentration and Determination of Urinary Hippuric Acid and Mandelic Acid. MEMBRANES 2017; 7:membranes7010008. [PMID: 28208685 PMCID: PMC5371969 DOI: 10.3390/membranes7010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
Abstract
This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was 10 mL with pH 2 containing 0.5 mol·L−1 sodium chloride, liquid membrane containing 1-octanol with 20% (w/v) tributyl phosphate as the carrier, the time of extraction was 150 min, and stirring rate was 500 rpm. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing sodium carbonate with pH 11, which was placed inside the lumen of the fiber. Under optimized conditions, the high enrichment factors of 172 and 195 folds, detection limit of 0.007 and 0.009 µg·mL−1 were obtained. The relative standard deviation (RSD) (%) values for intra- and inter-day precisions were calculated at 2.5%–8.2% and 4.1%–10.7%, respectively. The proposed method was successfully applied to the analysis of these metabolites in real urine samples. The results indicated that hollow-fiber liquid-phase microextraction (HF-LPME) based on facilitated pH gradient transport can be used as a sensitive and effective method for the determination of mandelic acid and hippuric acid in urine specimens.
Collapse
Affiliation(s)
- Abdulrahman Bahrami
- Excellence Centre of Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran.
| | - Farhad Ghamari
- Department of Occupational Health, School of Public Health, Arak University of Medical Sciences, Arak 3819693345, Iran.
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 1411713116, Iran.
| | - Farshid Ghorbani Shahna
- Excellence Centre of Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran.
| | - Abbas Moghimbeigi
- Department of Biostatistics and Epidemiology, School of Public Health and Center of Health Research, Hamedan University of Medical Sciences, Hamedan 6517838736, Iran.
| |
Collapse
|
7
|
Vitali L, Gonçalves S, Rodrigues V, Fávere VT, Micke GA. Development of a fast method for simultaneous determination of hippuric acid, mandelic acid, and creatinine in urine by capillary zone electrophoresis using polymer multilayer-coated capillary. Anal Bioanal Chem 2016; 409:1943-1950. [DOI: 10.1007/s00216-016-0142-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
|
8
|
Strafella E, Bracci M, Staffolani S, Manzella N, Giantomasi D, Valentino M, Amati M, Tomasetti M, Santarelli L. Occupational styrene exposure induces stress-responsive genes involved in cytoprotective and cytotoxic activities. PLoS One 2013; 8:e75401. [PMID: 24086524 PMCID: PMC3781025 DOI: 10.1371/journal.pone.0075401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/13/2013] [Indexed: 11/25/2022] Open
Abstract
Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure.
Collapse
Affiliation(s)
- Elisabetta Strafella
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
- * E-mail:
| | - Sara Staffolani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nicola Manzella
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Daniele Giantomasi
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Valentino
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
9
|
Antunes MV, Niederauer CG, Linden R. Development, validation and clinical evaluation of a dried urine spot method for determination of hippuric acid and creatinine. Clin Biochem 2013; 46:1276-80. [DOI: 10.1016/j.clinbiochem.2013.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 01/03/2023]
|
10
|
Costa C, Costa S, Silva S, Coelho P, Botelho M, Gaspar J, Rueff J, Laffon B, Teixeira JP. DNA damage and susceptibility assessment in industrial workers exposed to styrene. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:735-746. [PMID: 22788361 DOI: 10.1080/15287394.2012.688488] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Styrene is a widely used chemical in the manufacture of synthetic rubber, resins, polyesters, and plastics. The highest levels of human exposure to styrene occur during the production of reinforced plastic products. The objective of this study was to examine occupational exposure to styrene in a multistage approach, in order to integrate the following endpoints: styrene in workplace air, mandelic and phenylglyoxylic acids (MA + PGA) in urine, sister chromatid exchanges (SCE), micronuclei (MN), DNA damage (comet assay), and genetic polymorphisms of metabolizing enzymes (CYP2E1, EPHX1, GSTM1, GSTT1, and GSTP1). Seventy-five workers from a fiberglass-reinforced plastics factory and 77 unexposed controls took part in the study. The mean air concentration of styrene in the breathing zone of workers (30.4 ppm) and the mean concentration of urinary metabolites (MA + PGA = 443 ± 44 mg/g creatinine) exceeded the threshold limit value (TLV) and the biological exposure index (BEI). Significantly higher SCE frequency rate and DNA damage were observed in exposed workers, but MN frequency was not markedly modified by exposure. With respect to the effect of genetic polymorphisms on different exposure and effect biomarkers studied, an increase in SCE levels with elevated microsomal epoxide hydrolase activity was noted in exposed workers, suggesting a possible exposure-genotype interaction.
Collapse
Affiliation(s)
- Carla Costa
- Portuguese National Institute of Health, Environmental Health Department, Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wongvijitsuk S, Navasumrit P, Vattanasit U, Parnlob V, Ruchirawat M. Low level occupational exposure to styrene: Its effects on DNA damage and DNA repair. Int J Hyg Environ Health 2011; 214:127-37. [PMID: 21030303 DOI: 10.1016/j.ijheh.2010.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/10/2010] [Accepted: 09/27/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Sirilak Wongvijitsuk
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | | | | |
Collapse
|
12
|
Occupational risk assessment of oxidative stress and genotoxicity in workers exposed to paints during a working week. Int J Occup Med Environ Health 2011; 24:308-19. [DOI: 10.2478/s13382-011-0030-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/27/2011] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
13
|
Teixeira JP, Gaspar J, Coelho P, Costa C, Pinho-Silva S, Costa S, Da Silva S, Laffon B, Pásaro E, Rueff J, Farmer P. Cytogenetic and DNA damage on workers exposed to styrene. Mutagenesis 2010; 25:617-21. [PMID: 20729469 DOI: 10.1093/mutage/geq049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Styrene is a commercially important chemical widely used in the manufacture of synthetic rubber, resins, polyesters and plastics. The highest levels of human exposure to styrene occur during the production of reinforced plastic products. The objective of this work was to evaluate both DNA and cytogenetic damage in styrene-exposed workers, analysing only non-smoker individuals. Environmental levels of styrene and urinary concentrations of mandelic and phenylglyoxylic acids were determined, and genetic damage was studied by means of micronucleus (MN) test, sister chromatid exchanges (SCEs) and comet assay. Fifty-two fibreglass-reinforced plastics workers and 54 controls took part in the study. The mean air concentration of styrene in the breathing zone of workers exceeded the threshold limit value, and 24 workers exceeded the biological exposure index. A strong and significant correlation was found between styrene environmental concentrations and urinary metabolites. Higher SCE rate (P<0.01) was observed in exposed workers than in controls. Besides, significant correlations were obtained for SCE rate with both environmental and internal exposure parameters (r=0.496, P<0.01 and r=0.511, P<0.01, respectively). Results from MN test and comet assay showed slight and non-significant increases related to the exposure. Our data seem to support previous studies reporting genotoxicity associated with occupational exposure to styrene, excluding the confounding influence of smoking, although caution must be taken in the interpretation of these results since the significance of an increase in SCE rate is still unclear.
Collapse
Affiliation(s)
- João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Laffon B, Pásaro E, Méndez J. Evaluation of genotoxic effects in a group of workers exposed to low levels of styrene. Toxicology 2002; 171:175-86. [PMID: 11836023 DOI: 10.1016/s0300-483x(01)00572-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Occupational exposure to styrene was studied in a group of workers engaged in the production of fiberglass-reinforced plastics. Sister-chromatid exchanges (SCE), micronuclei (MN), and DNA damage (evaluated by means of comet assay) were measured in peripheral blood cells from the exposed workers and from a control population. Mandelic acid concentration, an indicator of styrene exposure level, was measured in urine samples collected at the end of the work shift. Average estimated values for styrene exposure were slightly below the threshold limit value (TLV) of 20 ppm recommended by the American Conference of Governmental Industrial Hygienists. Significant increases (P< or =0.01) have been found for SCE and MN frequencies and comet tail length among exposed individuals, as well as significant decreases (P< or =0.01) in the proliferation indices, as compared with control population. High correlation has been obtained between endpoints evaluated and exposure length, and increased values of SCE and MN frequencies and comet tail length have been found among smokers only in the exposed population. The high correlation obtained among SCE and MN frequencies and comet tail length, and the increase of these parameters in the exposed group with regard to control group justify the use of these three biomarkers in the evaluation of genotoxic effects in human populations exposed to styrene.
Collapse
Affiliation(s)
- Blanca Laffon
- Dpto. Biología Celular y Molecular, Facultad de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, 15071, La Coruna, Spain
| | | | | |
Collapse
|