1
|
Bhatia S, Blotra A, Vasudevan K. Evaluating Antivenom Efficacy against Echis carinatus Venoms—Screening for In Vitro Alternatives. Toxins (Basel) 2022; 14:toxins14070481. [PMID: 35878219 PMCID: PMC9322380 DOI: 10.3390/toxins14070481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
In India, polyvalent antivenom is the mainstay treatment for snakebite envenoming. Due to batch-to-batch variation in antivenom production, manufacturers have to estimate its efficacy at each stage of IgG purification using the median effective dose which involves 100–120 mice for each batch. There is an urgent need to replace the excessive use of animals in snake antivenom production using in vitro alternatives. We tested the efficacy of a single batch of polyvalent antivenom from VINS bioproducts limited on Echis carinatus venom collected from three different locations—Tamil Nadu (ECVTN), Goa (ECVGO) and Rajasthan (ECVRAJ)—using different in vitro assays. Firstly, size-exclusion chromatography (SEC-HPLC) was used to quantify antivenom–venom complexes to assess the binding efficiency of the antivenom. Secondly, clotting, proteolytic and PLA2 activity assays were performed to quantify the ability of the antivenom to neutralize venom effects. The use of both binding and functional assays allowed us to measure the efficacy of the antivenom, as they represent multiple impacts of snake envenomation. The response from the assays was recorded for different antivenom–venom ratios and the dose–response curves were plotted. Based on the parameters that explained the curves, the efficacy scores (ES) of antivenom were computed. The binding assay revealed that ECVTN had more antivenom–venom complexes formed compared to the other venoms. The capacity of antivenom to neutralize proteolytic and PLA2 effects was lowest against ECVRAJ. The mean efficacy score of antivenom against ECVTN was the greatest, which was expected, as ECVTN is mainly used by antivenom manufacturers. These findings pave a way for the development of in vitro alternatives in antivenom efficacy assessment.
Collapse
|
2
|
Bondarenko P, Nichols AC, Xiao G, Shi RL, Chan PK, Dillon TM, Garces F, Semin DJ, Ricci MS. Identification of critical chemical modifications and paratope mapping by size exclusion chromatography of stressed antibody-target complexes. MAbs 2021; 13:1887629. [PMID: 33615991 PMCID: PMC7899697 DOI: 10.1080/19420862.2021.1887629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Therapeutic proteins including antibodies and Fc-fusion proteins undergo a large number of chemical modifications during cell culture, purification, storage and in human circulation. They are also exposed to harsh conditions during stress studies, including elevated temperature, extremes of pH, forced oxidation, physiological pH, UV light to assess the possible degradation pathways and suitability of methods for detecting them. Some of these modifications are located on residues in binding regions, leading to loss of binding and potency and classified as critical quality attributes. Currently, criticality of modifications is assessed by a laborious process of collecting antibody fractions from the soft chromatography techniques ion exchange and hydrophobic interaction chromatography and characterizing the fractions one-by-one for potency and chemical modifications. Here, we describe a method for large-scale, parallel identification of all critical chemical modifications in one experiment. In the first step, the antibody is stressed by one or several stress methods. It is then mixed with target protein and separated by size-exclusion chromatography (SEC) on bound antibody-target complex and unbound antibody. Peptide mapping of fractions and statistical analysis are performed to identify modifications on amino acid residues that affect binding. To identify the modifications leading to slight decreases in binding, competitive SEC of antibody and antigen mixtures was developed and described in a companion study by Shi et al, where target protein is provided at lower level, below the stoichiometry. The newly described method was successfully correlated to crystallography for assessing criticality of chemical modifications and paratope mapping. It is more sensitive to low-level modifications, better streamlined and platform ready.
Collapse
Affiliation(s)
- Pavel Bondarenko
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Andrew C Nichols
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Gang Xiao
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Rachel Liuqing Shi
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Pik Kay Chan
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Thomas M Dillon
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Fernando Garces
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc , Thousand Oaks, CA, USA
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| | - Margaret S Ricci
- Attribute Sciences, Process Development, Amgen Inc , Thousand Oaks, CA, USA
| |
Collapse
|
3
|
Sasaki Y, Sato Y, Takahashi T, Umetsu M, Iki N. Capillary electrophoretic reactor for estimation of spontaneous dissociation rate of Trypsin-Aprotinin complex. Anal Biochem 2019; 585:113406. [PMID: 31445899 DOI: 10.1016/j.ab.2019.113406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/25/2022]
Abstract
A capillary electrophoretic reactor was used to analyze the dissociation kinetics of an enzyme-inhibitor complex in a homogeneous solution without immobilization. The complex consisting of trypsin (Try) and aprotinin (Apr) was used as the model. Capillary electrophoresis provided a reaction field for Try-Apr complex to dissociate through the steady removal of free Try and Apr from the Try-Apr zone. By analyzing the dependence of peak height of Try-Apr on separation time, the dissociation rate kdH was obtained as 2.73 × 10-4 s-1 (298 K) at pH 2.46. The dependence of kdH on the proton concentration (pH = 2.09-3.12) revealed a first-order dependence of kdH on [H+]; kdH = kd + k1[H+], where kd is the spontaneous dissociation rate and was 5.65 × 10-5 s-1, and k1 is the second-order rate constant and was 5.07 × 10-2 M-1 s-1. From the kd value, the half-life of the Try-Apr complex at physiological pH was determined as 3.4 h. The presence of the proton-assisted dissociation can be explained by the protonation of -COO- of the Asp residue in Try, which breaks the salt bridge with the -NH3+ group of Lys in Apr.
Collapse
Affiliation(s)
- Yumiko Sasaki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba, Sendai, 980-8579, Japan
| | - Yosuke Sato
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba, Sendai, 980-8579, Japan
| | - Toru Takahashi
- Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Mitsuo Umetsu
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba, Sendai, 980-8579, Japan
| | - Nobuhiko Iki
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aramaki-Aoba, Aoba, Sendai, 980-8579, Japan.
| |
Collapse
|
4
|
Pla D, Rodríguez Y, Calvete JJ. Third Generation Antivenomics: Pushing the Limits of the In Vitro Preclinical Assessment of Antivenoms. Toxins (Basel) 2017; 9:toxins9050158. [PMID: 28489039 PMCID: PMC5450706 DOI: 10.3390/toxins9050158] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Second generation antivenomics is a translational venomics approach designed to complement in vivo preclinical neutralization assays. It provides qualitative and quantitative information on the set of homologous and heterologous venom proteins presenting antivenom-recognized epitopes and those exhibiting impaired immunoreactivity. In a situation of worrying antivenom shortage in many tropical and sub-tropical regions with high snakebite mortality and morbidity rates, such knowledge has the potential to facilitate the optimal deployment of currently existing antivenoms and to aid in the rational design of novel broad specificity antidotes. The aim of the present work was to expand the analytical capability of the immunoaffinity second-generation antivenomics platform, endowing it with the ability to determine the maximal binding capacity of an antivenom toward the different toxins present in a venom, and to quantify the fraction of venom-specific antibodies present in a given antivenom. The application of this new platform, termed third generation (3G) antivenomics, in the preclinical evaluation of antivenoms is illustrated in this paper for the case of antivenom EchiTAb-Plus-ICP® reactivity towards the toxins of homologous (B. arietans) and heterologous (N. melanoleuca) venoms.
Collapse
Affiliation(s)
- Davinia Pla
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain.
| | - Yania Rodríguez
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain.
| | - Juan J Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 Valencia, Spain.
| |
Collapse
|
5
|
Collaço RDCO, Randazzo-Moura P, Tamascia ML, da Silva IRF, Rocha T, Cogo JC, Hyslop S, Sanny CG, Rodrigues-Simioni L. Bothrops fonsecai snake venom activities and cross-reactivity with commercial bothropic venom. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:86-100. [PMID: 27590117 DOI: 10.1016/j.cbpc.2016.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/05/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
In this work, we examined some biochemical and biological activities of Bothrops fonsecai venom, a pitviper endemic to southeastern Brazil, and assessed their neutralization by commercial bothropic antivenom (CAv). Cross-reactivity of venom with CAv was also assessed by immunoblotting and size-exclusion high performance chromatography (SE-HPLC). Bothrops fonsecai venom had PLA2, proteolytic and esterase activities that were neutralized to varying extents by venom:antivenom ratios of 5:1 and 5:2 (PLA2 and esterase activities) or not significantly by either venom:antivenom ratio (proteolytic activity). The minimum hemorrhagic dose (69.2μg) was totally neutralized by both ratios. Clotting time in rat citrated plasma was 33±10.5s (mean±SD; n=5) and was completely neutralized by a 5:2 ratio. Edema formation was dose-dependent (1-30μg/site) and significantly inhibited by both ratios. Venom (10-300μg/mL) caused neuromuscular blockade in extensor digitorum longus preparations; this blockade was inhibited best by a 5:2 ratio. Venom caused myonecrosis and creatine kinase release in vivo (gastrocnemius muscle) and in vitro (extensor digitorum longus) that was effectively neutralized by both venom:antivenom ratios. Immunoblotting showed that venom components of ~25-100kDa interacted with CAv. SE-HPLC profiles for venom incubated with CAv or specific anti-B. fonsecai antivenom raised in rabbits (SAv) indicated that CAv had a higher binding capacity than SAv, whereas SAv had higher affinity than CAv. These findings indicate that B. fonsecai venom contains various activities that are neutralized to different extents by CAv and suggest that CAv could be used to treat envenoming by B. fonsecai.
Collapse
Affiliation(s)
- Rita de Cássia O Collaço
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - Priscila Randazzo-Moura
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil; Laboratório de Farmacologia, Faculdade de Ciências Médicas e da Saúde, Pontífica Universidade Católica de São Paulo (PUCSP), Praça Dr. José Ermirio de Moraes, 290, 18030-095, Sorocaba, SP, Brazil.
| | - Mariana L Tamascia
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - Igor Rapp F da Silva
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - Thalita Rocha
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco (USF), Avenida São Francisco de Assis, 281, Jardim São José, 12916-900, Bragança Paulista, SP, Brazil
| | - José C Cogo
- Serpentário do Centro de Estudos da Natureza, Universidade do Vale do Paraíba (UNIVAP), Avenida Shishima Hifumi, 2911, Urbanova, 12244-000, São José dos Campos, SP, Brazil
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| | - Charles G Sanny
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University (OSU), 1111 W. 17th Street, 74107, Tulsa, OK, USA
| | - Léa Rodrigues-Simioni
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, 13083-887, Campinas, SP, Brazil
| |
Collapse
|
6
|
Andrási M, Lehoczki G, Nagy Z, Gyémánt G, Pungor A, Gáspár A. A comparative study of capillary electrophoresis and isothermal titration calorimetry for the determination of binding constant of human serum albumin to monoclonal antibody. Electrophoresis 2015; 36:1274-81. [DOI: 10.1002/elps.201400513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/02/2014] [Accepted: 12/11/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Melinda Andrási
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| | - Gábor Lehoczki
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| | - Zoltán Nagy
- Department of Colloid and Environmental Chemistry; University of Debrecen; Debrecen Hungary
| | - Gyöngyi Gyémánt
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| | - András Pungor
- Department of Experimental Physics; University of Debrecen; Debrecen Hungary
| | - Attila Gáspár
- Department of Inorganic and Analytical Chemistry; University of Debrecen; Debrecen Hungary
| |
Collapse
|
7
|
Arthur KK, Gabrielson JP, Hawkins N, Anafi D, Wypych J, Nagi A, Sullivan JK, Bondarenko PV. In vitro stoichiometry of complexes between the soluble RANK ligand and the monoclonal antibody denosumab. Biochemistry 2012; 51:795-806. [PMID: 22242921 DOI: 10.1021/bi2007806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The in vitro binding stoichiometry of denosumab, an IgG2 fully human monoclonal therapeutic antibody, to RANK ligand was determined by multiple complementary size separation techniques with mass measuring detectors, including two solution-based techniques (size-exclusion chromatography with static light scattering detection and sedimentation velocity analytical ultracentrifugation) and a gas-phase analysis by electrospray ionization time-of-flight mass spectrometry from aqueous nondenaturing solutions. The stoichiometry was determined under defined conditions ranging from small excess RANK ligand to large excess denosumab (up to 40:1). High concentrations of denosumab relative to RANK ligand were studied because of their physiological relevance; a large excess of denosumab is anticipated in circulation for extended periods relative to much lower concentrations of free soluble RANKL. The studies revealed that an assembly including 3 denosumab antibody molecules bound to 2 RANKL trimers (3D2R) is the most stable complex in DPBS at 37 °C. This differs from the 1:1 binding stoichiometry reported for RANKL and osteoprotegerin (OPG), a soluble homodimeric decoy receptor which binds RANKL with high affinity. Denosumab and RANKL also formed smaller assemblies including 1 denosumab and 2 RANKL trimer molecules (1D2R) under conditions of excess RANKL, 3 denosumab molecules and 1 RANKL trimer (3D1R) under conditions of excess denosumab, and larger assemblies, but these intermediate species were only present at lower temperatures (4 °C), shortly after mixing denosumab and RANKL, and converted over time to the more stable 3D2R assembly.
Collapse
Affiliation(s)
- Kelly K Arthur
- Analytical Sciences Department, Amgen Inc., Longmont, Colorado 80503, United States
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sanny CG. In vitro evaluation of total venom–antivenin immune complex formation and binding parameters relevant to antivenin protection against venom toxicity and lethality based on size-exclusion high-performance liquid chromatography. Toxicon 2011; 57:871-81. [DOI: 10.1016/j.toxicon.2011.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
|
9
|
Terenghi M, Elviri L, Careri M, Mangia A, Lobinski R. Multiplexed Determination of Protein Biomarkers Using Metal-Tagged Antibodies and Size Exclusion Chromatography−Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2009; 81:9440-8. [DOI: 10.1021/ac901853g] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mattia Terenghi
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Lisa Elviri
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Maria Careri
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Alessandro Mangia
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ryszard Lobinski
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G. P. Usberti 17/A, I-43100 Parma, Italy, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, CNRS, Université de Pau et des Pays de l’Adour (UPPA), Hélioparc, 2, av. Pr. Angot, F-64053 Pau, France, and Department of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
10
|
Rehder DS, Chelius D, McAuley A, Dillon TM, Xiao G, Crouse-Zeineddini J, Vardanyan L, Perico N, Mukku V, Brems DN, Matsumura M, Bondarenko PV. Isomerization of a single aspartyl residue of anti-epidermal growth factor receptor immunoglobulin gamma2 antibody highlights the role avidity plays in antibody activity. Biochemistry 2008; 47:2518-30. [PMID: 18232715 DOI: 10.1021/bi7018223] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new isoform of the light chain of a fully human monoclonal immunoglobulin gamma2 (IgG2) antibody panitumumab against human epidermal growth factor receptor (EGFR) was generated by in vitro aging. The isoform was attributed to the isomerization of aspartate 92 located between phenylalanine 91 and histidine 93 residues in the antigen-binding region. The isomerization rate increased with increased temperature and decreased pH. A size-exclusion chromatography binding assay was used to show that one antibody molecule was able to bind two soluble extracellular EGFR molecules in solution, and isomerization of one or both Asp-92 residues deactivated one or both antigen-binding regions, respectively. In addition, isomerization of Asp-92 showed a decrease in in vitro potency as measured by a cell proliferation assay with a 32D cell line that expressed the full-length human EGFR. The data indicate that antibodies containing either one or two isomerized residues were not effective in inhibiting EGFR-mediated cell proliferation, and that two unmodified antigen binding regions were needed to achieve full efficacy. For comparison, the potency of an intact IgG1 antibody cetuximab against the same receptor was correlated with the bioactivity of its individual antigen-binding fragments. The intact IgG1 antibody with two antigen-binding fragments was also much more active in suppressing cell proliferation than the individual fragments, similar to the IgG2 results. These results indicated that avidity played a key role in the inhibition of cell proliferation by these antibodies against the human EGFR, suggesting that their mechanisms of action are similar.
Collapse
Affiliation(s)
- Douglas S Rehder
- Department of Pharmaceutics, Process and Product Development, Amgen, Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vidal-Madjara C, Cañada-Cañada F, Jaulmes A, Pantazaki A, Taverna M. Numerical simulation of the chromatographic process for direct ligand-macromolecule binding studies. J Chromatogr A 2005; 1087:95-103. [PMID: 16130702 DOI: 10.1016/j.chroma.2005.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A numerical simulation of the direct zonal liquid chromatographic method is described for studying the binding of a ligand to a macromolecule by quantification of the interacting species present in a sample at equilibrium. The algorithm accounts for both the kinetic exchanges in solution and the dispersion effects depicted by the Fick law. Dimensionless variables are used for the concentrations which are expressed as a function of the equilibrium constant, KD. The free ligand concentration was varied in the injected samples from 0.1 to 20 KD, while that of the macromolecule was kept constant. An apparent binding isotherm was obtained from the total ligand chromatogram generated by the simulation run, when the amount emerging at almost column dead volume is plotted against that eluting at the free ligand retention time. As a continuous dissociation of the complex may occur during its migration, the apparent binding curve and the theoretical binding isotherm coincide at extremely low dissociating rates. At larger dissociation rates (0.001 s(-1) < kd <0.1 s(-1), for a first peak eluting in 1 min) the simulations were used to test various chromatographic conditions. The flow rate (or column volume) is the major effect which influences the on-column dissociation process as an exponential decay was found when the apparently bound fraction is plotted against the analysis time. The apparent equilibrium coefficient is close to the theoretical one for a binding curve generated with an initial solution containing a relatively low total concentration of binding sites (< or = KD). The apparent stoichiometric term is largely underestimated as its value decreases exponentially at increasing dissociation rates. An extrapolation at extremely short analysis times could be used to determine the stoichiometric coefficient characterizing the binding interaction.
Collapse
Affiliation(s)
- Claire Vidal-Madjara
- Laboratoire de Recherche sur les Polymères, CNRS, 2 rue Henry Dunant, 94320 Thiais, France.
| | | | | | | | | |
Collapse
|
12
|
Cserháti T, Forgács E, Deyl Z, Miksik I, Echardt A. Binding of low molecular mass compounds to proteins studied by liquid chromatographic techniques. Biomed Chromatogr 2003; 17:353-60. [PMID: 13680844 DOI: 10.1002/bmc.266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The newest achievements in the application of miscellaneous liquid chromatographic techniques such as size-exclusion, ion-exchange and reversed-phase high-performance liquid chromatography, and thin-layer chromatography for the elucidation of the various aspects of the binding of ligands to proteins are compiled and briefly discussed. Examples of employment in pharmaceutical and clinical chemistry, drug design, enzyme kinetic studies and environmental protection are presented.
Collapse
Affiliation(s)
- Tibor Cserháti
- Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, PO Box 17, 1525 Budapest, Hungary
| | | | | | | | | |
Collapse
|