Skuland IL, Andersen T, Trones R, Eriksen RB, Greibrokk T. Determination of polyethylene glycol in low-density polyethylene by large volume injection temperature gradient packed capillary liquid chromatography.
J Chromatogr A 2003;
1011:31-6. [PMID:
14518760 DOI:
10.1016/s0021-9673(03)01186-5]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyethylene glycol (PEG) 20000 in low-density polyethylene has been determined using column switching and inverse temperature programming in reversed-phase packed capillary liquid chromatography with evaporative light scattering detection. PEG 20000 was extracted into water from the polyethylene dissolved in toluene and PEG 35000 was added as an internal standard (I.S.). The samples in aliquots of 100 microl were reconcentrated on the enrichment column using a loading mobile phase of acetonitrile-water (3:97, v/v) at a flow-rate of 75 microl/min for 3 min, then back-flushed and separated on the analytical column with acetonitrile-THF-water (40:5:55, v/v) as mobile phase. The column temperature was reduced from 68 to 55 degrees C with a ramp of -1.5 degrees C/min, held constant for 3 min and then reduced further to 45 degrees C with a -1.5 degrees C/min ramp and kept constant for 1 min. The analysis runtime was 20 min. The recovery of PEG 20 000 was determined to 65.1% with 2.8% RSD and the mass limit of detection of PEG 20 000 was 1.25 microg. The within-assay and between day precision of the retention times of both PEG 20000 and PEG 35000 displayed RSD of less than 1.1% (n = 9), while the overall area ratio RSD of 100 microg/ml PEG 20000 over PEG 35000 was 1.3% (n = 9). The method was linear within the investigated concentration range 25-125 microg/ml (R2 = 0.9983). In addition, a mixture of PEG 4000, 8000, 10000, 20000 and 35000 was analysed on the system to demonstrate the possibility of analysing several PEGs in a sample with the use of temperature gradient elution.
Collapse