1
|
Grumann HD, Kleinebudde P. Investigating the heat sensitivity of frequently used excipients with varying particle sizes. Eur J Pharm Biopharm 2023; 192:1-12. [PMID: 37716476 DOI: 10.1016/j.ejpb.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
During tablet manufacturing an increase in the production temperature can lead to an alteration of tablet characteristics. In the present study, the influence of the initial particle size on the tableting behavior of ductile polymers upon temperature rise was investigated. Different grades of the respective materials were tableted at temperatures ranging from 22 to 70 °C. Alterations in tableting behavior were affected by the initial particle size. Smaller particle sizes led to a more pronounced decrease in yield pressure and net work of compaction during compressibility analysis. The results were confirmed in the tabletability studies. Tablets from binary mixtures with lactose containing smaller polymer particles yielded a stronger increase in tensile strength. Differences in the tensile strength increase of two grades from the same material correlated with the ratio of their median particle sizes. The alteration of compactibility profiles was also particle size dependent. The increase in solid fraction was more prominent for binary mixtures containing polymers with smaller particle sizes. However, the ratio of the median particle sizes of the compared grades showed no systematic effect. The results underline the importance of controlling the structural properties of a material carefully during formulation development and production. If a formulation responds to temperature variations, an increase in particle size might be beneficial to decrease its heat sensitivity.
Collapse
Affiliation(s)
- Hanna Dorothea Grumann
- Heinrich Heine University, Institute of Pharmaceutics and Biopharmaceutics, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Peter Kleinebudde
- Heinrich Heine University, Institute of Pharmaceutics and Biopharmaceutics, Universitaetsstraße 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
2
|
Osei-Yeboah F, Sun CC. Effect of drug loading and relative humidity on the mechanical properties and tableting performance of Celecoxib-PVP/VA 64 amorphous solid dispersions. Int J Pharm 2023; 644:123337. [PMID: 37611855 DOI: 10.1016/j.ijpharm.2023.123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The mechanical properties of polymer-based amorphous solid dispersions (ASDs) are susceptible to changes in relative humidity (RH) conditions. The purpose of this study is to understand the impact of RH on both the mechanical properties and tableting performance of Celecoxib-polyvinyl pyrrolidone vinyl acetate co-polymer (PVP/VA 64) ASDs. The ASDs were prepared by solvent evaporation technique to obtain films for nanoindentation, which were also pulverized to obtain powder for compaction. Our results show that higher RH corresponds to lower Hardness, H, and Elastic Modulus, E. At a given RH, both the E and H increase with drug loading to a maximum and decrease with further drug loading. Using ASD powders with a narrow particle size range (d50 = 9-14 µm), we have demonstrated that increasing RH from 11% to 67% leads to improved tablet tensile strength for pure PVP/VA 64 and the ASDs. However, the extent of the increase in tablet tensile strength depends on their mechanical properties, H and E, and drug loading. At a higher compaction pressure and a higher RH, the effect of ASD mechanical properties on tabletability is less because the particles are nearly fully deformed so that bonding areas are approximately the same. Thus, difference in tablet strength is mainly contributed by the inter-particulate forces of attraction. Understanding the impact of these key processing conditions, i.e., RH and compaction pressure, will guide the design of an ASD tablet formulation with robust manufacturability.
Collapse
Affiliation(s)
- Frederick Osei-Yeboah
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Wang Z, Wang C, Bahl D, Sun CC. The ubiquity of the tabletability flip phenomenon. Int J Pharm 2023; 643:123262. [PMID: 37495026 DOI: 10.1016/j.ijpharm.2023.123262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
The plasticity of materials plays a critical role in adequate powder tabletability, which is required in developing a successful tablet product. Generally, a more plastic material can develop larger bonding areas when other factors are the same, leading to higher tabletability than less plastic materials. However, it was observed that, for a solid form of a compound with poorer tabletability, a mixture with microcrystalline cellulose (MCC) can actually exhibit better tabletability, a phenomenon termed tabletability flip. Hence, there is a chance that a solid form with poor tabletability could have been erroneously eliminated based on the expected tabletability challenges during tablet manufacturing. This study was conducted to investigate the generality of this phenomenon using two polymorph pairs, a salt and free acid pair, a crystalline and amorphous solid dispersion pair, and a pair of chemically distinct crystals. Results show that tabletability flip occurred in all six systems tested, including five pairs of binary mixtures with MCC and one pair in a realistic generic tablet formulation, suggesting the broad occurrence of the tabletability flip phenomenon, where both compaction pressure and the difference in plasticity between the pair of materials play important roles.
Collapse
Affiliation(s)
- Zijian Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Deepak Bahl
- Bristol-Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Kreiser MJ, Wabel C, Wagner KG. Direct Tableting on a Continuous Manufacturing Line-Impact of Mixing Parameters, Material Densities, and Drug Load on Subsequent Process Parameters and Tablet Quality. AAPS PharmSciTech 2023; 24:70. [PMID: 36805870 DOI: 10.1208/s12249-023-02525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
The continuous manufacturing (CM) of solid oral dosage forms has received increased attention in recent years and has become a leading technology in the pharmaceutical industry. A model has been developed based on process data from two design of experiments (DoEs), where the impact of the mixer process parameters, throughput (THR), hold up mass (HUM), impeller speed (IMP), and the input raw material bulk density (BDi), on the continuous process and the resulting drug product has been investigated. These statistical models revealed equations, describing process parameter interactions for optimization purposes. For the exit valve opening width (EV) at the bottom of the continuous mixer (CMT), the combination of high throughput (30 kg/h) and low impeller speed (300 rpm) resulted in optimal process conditions. Apparent bulk density of the blend (BD) within the process, fill depth (FD), and tensile strength (TS) were mainly impacted by input bulk density (BDi) of the tableting mixture, emphasizing the role of material attributes on the continuous manufacturing process. The apparent bulk density itself was, other than from the input bulk density, equally dependent from THR and IMP in opposite deflections. However, process parameters (THR and IMP) revealed a minor impact on the apparent BD compared to the input bulk density. FD was impacted mainly by THR ahead of IMP and the TS by IMP and THR to a similar extend, in opposite deflections. A simplified linear model to estimate the input bulk density revealed satisfactory prediction quality when included in the derived statistical model equations.
Collapse
Affiliation(s)
- Marius J Kreiser
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108, Freiburg, Germany.,Department of Pharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Christoph Wabel
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108, Freiburg, Germany
| | - Karl G Wagner
- Department of Pharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany.
| |
Collapse
|
5
|
Wang C, Sun CC. Mechanisms of Crystal Plasticization by Lattice Water. Pharm Res 2022; 39:3113-3122. [PMID: 35301669 DOI: 10.1007/s11095-022-03221-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/26/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Water of crystallization has been observed to increase plasticity, decrease crystal hardness, and improve powder compressibility and tabletability of organic crystals. This work is aimed at gaining a molecular level insight into this observation. METHOD We systematically analyzed crystal structures of five stoichiometric hydrate systems, using several complementary techniques of analysis, including energy framework, water environment, overall packing change, hydrate stability, and slip plane identification. RESULTS The plasticizing effect by lattice water is always accompanied by an introduction of more facile slip planes, lower packing efficiency, and lower density in all hydrate systems examined in this work. Three distinct mechanisms include 1) changing the distribution of intermolecular interactions without significantly changing the packing of molecules to introduce more facile slip planes; 2) changing packing feature into a flat layered structure so that more facile slip planes are introduced; 3) reducing the interlayer interaction energies and increasing the anisotropy. CONCLUSION Although the specific mechanisms for these five systems differ, all five hydrates are featured with more facile slip planes, lower packing efficiency, and lower density.
Collapse
Affiliation(s)
- Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E, Minneapolis, MN, 55455, USA.,Evelo Biosciences, Cambridge, MA, 02139 , USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Liu F, Luo W, Qiu J, Guo Y, Zhao S, Bao B. Continuous Antisolvent Crystallization of Dolutegravir Sodium Using Microfluidics. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fen Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Luo
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junjie Qiu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaohao Guo
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Bo Bao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
How can single particle compression and nanoindentation contribute to the understanding of pharmaceutical powder compression? Eur J Pharm Biopharm 2021; 165:203-218. [PMID: 34010689 DOI: 10.1016/j.ejpb.2021.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
The deformation behaviour of a powder and, thus, of the individual particles is a crucial parameter in powder compaction and affects powder compressibility and compactibility. The classical approach for the characterization of the deformation behaviour is the performance of powder compression experiments combined with the application of mathematical models, such as the Heckel-Model, for the derivation of characteristic compression parameters. However, the correlation of these parameters with the deformation behaviour is physically often not well understood. Single particle compression and nanoindentation enables the in-depth investigation of the deformation behaviour of particulate materials. In this study, single particle compression experiments were performed for the characterization of the deformation behaviour of common pharmaceutical excipients and active pharmaceutical ingredients (APIs) with various, irregular particle morphologies of industrial relevance and the findings are compared with the results from powder compression. The technique was found useful for the characterization and clarification of the qualitative deformation behaviour. However, the derivation of a quantitative functional relationship between single particle deformation behavior and powder compression is limited. Nanoindentation was performed as complementary technique for the characterization of the micromechanical behavior of the APIs. A linear relationship between median indentation hardness and material densification strength as characteristic parameter derived by in-die powder compression analysis is found.
Collapse
|
8
|
Veronica N, Valeria Liew C, Wan Sia Heng P. Investigation on the impact of different proportions of components in formulations on stability of a moisture sensitive drug. Int J Pharm 2021; 603:120690. [PMID: 33965543 DOI: 10.1016/j.ijpharm.2021.120690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Physicochemical and mechanical properties of tablets are largely dictated by formulation compositions. Different excipients possess different tableting and moisture sorption behaviors. Therefore, this study was designed to elucidate the relative influence of the proportion of components in formulations on tablet properties. Acetylsalicylic acid (ASA) tablets containing different proportions of starch, microcrystalline cellulose (MCC) and calcium hydrogen phosphate dihydrate (DCP) were prepared. The excipients were evaluated for their moisture sorption properties. Mechanical strength of the tablets was determined alongside with ASA stability, by storing the tablets at 75% RH, 25 °C. The stability study showed the importance of drug loading level on its stability. For a fixed ASA proportion, formulations with more starch were able to absorb more moisture and possessed larger areas of hysteresis loop in their moisture sorption isotherms. The presence of starch contributed positively to ASA stability although increasing proportions of starch compromised the tablet mechanical properties. Contrastingly, MCC produced mechanically stronger tablets as its plastically deforming and fibrous properties contributed to a good structural network. The findings provide a deeper understanding of the dichotomous effect by the proportion of components in formulations containing a moisture sensitive drug on drug stability and mechanical strength of the resultant tablets.
Collapse
Affiliation(s)
- Natalia Veronica
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Celine Valeria Liew
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
9
|
Yu D, Seelam RR, Zhang F, Byrn SR, Hoag SW. Evaluation of tableting performance of Poly (ethylene oxide) in abuse-deterrent formulations using compaction simulation studies. J Pharm Sci 2021; 110:2789-2799. [PMID: 33737019 DOI: 10.1016/j.xphs.2021.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/02/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Poly (ethylene oxide) (PEO) has been widely used in abuse-deterrent formulations (ADFs) to increase tablet hardness. Previous studies have shown that formulation variables such as processing conditions and particle size of PEO can affect ADF performance in drug extraction efficiency. This work aims to understand the effect of PEO grades and sources on the compaction characteristics of model ADFs. PEOs from Dow Chemical and Sumitomo Chemical with different molecular weights were examined using a Styl'One compaction simulator at slow, medium, and fast tableting speeds. Particle-size distribution, thermal behavior, tabletability, compressibility using the Heckel model, compactibility, and elastic recovery were determined and compared between the neat PEOs and model ADFs. Multivariate linear regression was performed to understand the effect of compression conditions and PEO grades and sources. Our results show that neat PEOs with high molecular weight exhibit high tabletability. The source of neat PEOs contributes to the difference in tabletability, out-die compressibility, compactibility, and elastic recovery. However, the influence of the PEO source on tabletability and compactibility decreases after adding the model drug. In our model ADFs, tablets using PEOs with high molecular weight have high crushing strength, and tablets using PEOs from Dow Chemical display low elastic recovery.
Collapse
Affiliation(s)
- Dongyue Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, United States
| | - Raghunadha Reddy Seelam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, United States
| | - Feng Zhang
- College of Pharmacy, the University of Texas at Austin, 2409 University Avenue, PHR 4.214, Austin, TX, 78712, United States
| | - Stephen R Byrn
- College of Pharmacy, Purdue University, 3495 Kent Ave, Ross Enterprise Center, Suite Q, West Lafayette, IN, 47906, United States
| | - Stephen W Hoag
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, United States.
| |
Collapse
|
10
|
Wünsch I, Finke JH, John E, Juhnke M, Kwade A. The influence of particle size on the application of compression and compaction models for tableting. Int J Pharm 2021; 599:120424. [PMID: 33647406 DOI: 10.1016/j.ijpharm.2021.120424] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
The physical characteristics of raw materials determine powder compression and compaction performance as relevant in pharmaceutical processes. For instance, the influence of initial particle size on powder compression and the resulting strength of specimen are highly complex and are still not sufficiently understood. Existing studies are often limited to materials with well-defined deformation behaviour, such as purely brittle or ductile. However, the deformation behaviour of active pharmaceutical ingredients (APIs) is often more complex. In this study, the influence of initial particle size on powder compressibility and compactibility is systematically characterized by consideration of in-die compressibility, specific energies, quick elastic recovery, tablet porosity and, tensile strength for the binder microcrystalline cellulose and three APIs. The decrease of particle size leads to an increase of the resistance against compression by trend and probably to a different contribution of the acting deformation mechanisms. The compactibility is increased with decreasing particle size because of the increasing number of bonds in a cross-sectional area of the tablet, as found by the application of the model of Rumpf. Furthermore, it is found that the model of Rumpf combined with the JKR model provides a meaningful property function to estimate tablet tensile strength.
Collapse
Affiliation(s)
- Isabell Wünsch
- Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Jan Henrik Finke
- Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
| | | | | | - Arno Kwade
- Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
11
|
Cabiscol R, Shi H, Wünsch I, Magnanimo V, Finke JH, Luding S, Kwade A. Effect of particle size on powder compaction and tablet strength using limestone. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Elkomy MH, El-Gazayerly ON, Abdelrahman AA. The Influence of Solid/Solvent Interfacial Interactions on Physicochemical and Mechanical Properties of Ofloxacin. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09431-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Roy P, Ghosh A. Mechanochemical cocrystallization to improve the physicochemical properties of chlorzoxazone. CrystEngComm 2020. [DOI: 10.1039/d0ce00635a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cocrystals of chlorzoxazone prepared by mechanochemical cocrystallization with picolinic acid to improve the physicochemical properties.
Collapse
Affiliation(s)
- Parag Roy
- Department of Pharmaceutical Sciences & Technology
- Birla Institute of Technology
- Ranchi
- India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences & Technology
- Birla Institute of Technology
- Ranchi
- India
| |
Collapse
|
14
|
Flow and Tableting Behaviors of Some Egyptian Kaolin Powders as Potential Pharmaceutical Excipients. MINERALS 2019. [DOI: 10.3390/min10010023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The present work aimed at assessing the pharmaceutical tableting properties of some Egyptian kaolin samples belong to the Abu Zenima kaolin deposits (estimated at 120 million tons). Four representative samples were selected based on kaolinite richness and their structural order-disorder degree, and after purification, they were dried at 70 °C and heated from room temperature up to 400 °C (10 °C/min). Mineralogy, micromorphology, microtexture, granulometry, porosimetry, moisture content, bulk and tapped density, direct and indirect flowability, and tableting characteristics are studied. Results indicated that purified kaolin samples were made up of 95–99% kaolinite, <3% illite, 1% quartz and 1% anatase. The powder showed mesoporous character (pore diameters from 2 to 38 nm and total pore volume from 0.064 to 0.136 cm3/g) with dominance of fine nanosized particles (<1 μm–10 nm). The powder flow characteristics of both the ordered (Hinckley Index HI > 0.7, crystallite size D001 > 30 nm) and disordered (HI < 0.7, D001 < 30 nm) kaolinite-rich samples have been improved (Hausner ratio between 1.24 and 1.09) as their densities were influenced by thermal treatment (with some observed changes in the kaolinite XRD reflection profiles) and by moisture content (variable between 2.98% and 5.82%). The obtained tablets exhibited hardness between 33 and 44 N only from the dehydrated powders at 400 °C, with elastic recovery (ER) between 21.74% and 25.61%, ejection stress (ES) between 7.85 and 11.45 MPa and tensile fracture stress (TFS) between 1.85 and 2.32 MPa, which are strongly correlated with crystallinity (HI) and flowability (HR) parameters. These findings on quality indicators showed the promising pharmaceutical tabletability of the studied Egyptian kaolin powders and the optimization factors for their manufacturability and compactability.
Collapse
|
15
|
Skelbæk-Pedersen AL, Vilhelmsen TK, Wallaert V, Rantanen J. Investigation of the effects of particle size on fragmentation during tableting. Int J Pharm 2019; 576:118985. [PMID: 31870957 DOI: 10.1016/j.ijpharm.2019.118985] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022]
Abstract
Particle size is a critical parameter during tablet production as it can impact tabletability, flowability, and dissolution rate of the final product. The purpose of this study was to investigate the effect of initial particle size on fragmentation of pharmaceutical materials during tableting. Initial particle size fractions ranging from 0-125 to 355-500 µm of dibasic calcium phosphate (DCP), lactose monohydrate, and agglomerated and non-agglomerated microcrystalline cellulose (MCC) were blended with magnesium stearate and compressed into tablets. Larger initial particle sizes were found to fragment more extensively than smaller initial particle sizes for all materials based on the particle size distributions determined by laser diffraction. DCP was found to fragment most extensively followed by lactose and both MCCs. The fragmentation degrees of DCP, lactose, agglomerated and non-agglomerated MCC reached 95, 81, 32, and 29%, respectively. These findings were further supported by an increase in specific surface area with increasing compression pressure of compressed particles. The NIR spectral baseline offset from tablets was found to increase with increasing compression pressure up to 50 MPa for all materials, which was the same compression pressure range where fragmentation was observed. The NIR spectral slope from tablets as a function of compression pressure furthermore showed a similar trend as the tabletability profiles. NIR spectroscopy can thereby potentially be used as a surrogate control strategy for assessing compression related particle size changes and possibly tablet density and deformation behavior during tablet production.
Collapse
Affiliation(s)
- Anne Linnet Skelbæk-Pedersen
- Oral Pilot & Process Development Department, Novo Nordisk A/S, Måløv, Denmark; Department of Pharmacy, University of Copenhagen, Denmark.
| | | | - Vibeke Wallaert
- Oral Pilot & Process Development Department, Novo Nordisk A/S, Måløv, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Denmark
| |
Collapse
|
16
|
Chang SY, Sun CC. Effect of particle size on interfacial bonding strength of bilayer tablets. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.07.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Hallam CN, Gabbott IP. Increasing tensile strength by reducing particle size for extrudate-based tablet formulations. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Machine Learning Modeling of Wet Granulation Scale-up Using Particle Size Distribution Characterization Parameters. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09398-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Tanner T, Antikainen O, Pollet A, Räikkönen H, Ehlers H, Juppo A, Yliruusi J. Predicting tablet tensile strength with a model derived from the gravitation-based high-velocity compaction analysis data. Int J Pharm 2019; 566:194-202. [PMID: 31100384 DOI: 10.1016/j.ijpharm.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/05/2019] [Accepted: 05/10/2019] [Indexed: 11/26/2022]
Abstract
In the present study, a model was developed to estimate tablet tensile strength utilizing the gravitation-based high-velocity (G-HVC) method introduced earlier. Three different formulations consisting of microcrystalline cellulose (MCC), dicalcium phosphate dihydrate (DCP), hydroxypropyl methylcellulose (HPMC), theophylline and magnesium stearate were prepared. The formulations were granulated using fluid bed granulation and the granules were compacted with the G-HVC method and an eccentric tableting machine. Compaction energy values defined from G-HVC data predicted tensile strength of the tablets surprisingly well. It was also shown, that fluid bed granulation improved the compaction energy intake of the granules in comparison to respective physical mixtures. In addition, general mechanical properties and elastic recovery were also examined for all samples. In this study it was finally concluded, that the data obtained by the method was of practical relevance in pharmaceutical formulation development.
Collapse
Affiliation(s)
- Timo Tanner
- Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Finland.
| | - Osmo Antikainen
- Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Finland
| | - Arne Pollet
- Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| | - Heikki Räikkönen
- Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Finland
| | - Henrik Ehlers
- Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Finland
| | - Anne Juppo
- Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Finland
| | - Jouko Yliruusi
- Faculty of Pharmacy, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Finland
| |
Collapse
|
20
|
Wang C, Sun CC. Computational Techniques for Predicting Mechanical Properties of Organic Crystals: A Systematic Evaluation. Mol Pharm 2019; 16:1732-1741. [DOI: 10.1021/acs.molpharmaceut.9b00082] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Investigation of powder flow within a pharmaceutical tablet press force feeder – A DEM approach. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Hou HH, Rajesh A, Pandya KM, Lubach JW, Muliadi A, Yost E, Jia W, Nagapudi K. Impact of Method of Preparation of Amorphous Solid Dispersions on Mechanical Properties: Comparison of Coprecipitation and Spray Drying. J Pharm Sci 2019; 108:870-879. [DOI: 10.1016/j.xphs.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/11/2018] [Accepted: 09/05/2018] [Indexed: 02/01/2023]
|
23
|
Charoo NA. Critical Excipient Attributes Relevant to Solid Dosage Formulation Manufacturing. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09372-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Audible acoustic emission data analysis for active pharmaceutical ingredient concentration prediction during tableting processes. Int J Pharm 2018; 548:721-727. [PMID: 30003947 DOI: 10.1016/j.ijpharm.2018.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 11/21/2022]
|
25
|
Upadhyay PP, Pudasaini N, Mishra MK, Ramamurty U, Rantanen J. Early assessment of bulk powder processability as a part of solid form screening. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Kishida M, Igarashi K, Azuma M, Ooshima H. Pharmaceutical Microcrystal Formation by Supersaturation Control with an Electrolyte. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muneki Kishida
- Process Development Department, Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Koichi Igarashi
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Masayuki Azuma
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
| | - Hiroshi Ooshima
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University
- R&D Center, Kansai Chemical Engineering Co., Ltd
| |
Collapse
|
27
|
Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties. Int J Pharm 2018; 546:125-136. [DOI: 10.1016/j.ijpharm.2018.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/22/2022]
|
28
|
Continuous Single-Step Wet Granulation with Integrated in-Barrel-Drying. Pharm Res 2018; 35:167. [DOI: 10.1007/s11095-018-2451-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/18/2018] [Indexed: 11/27/2022]
|
29
|
Upadhyay PP, Sun CC, Bond AD. Relating the tableting behavior of piroxicam polytypes to their crystal structures using energy-vector models. Int J Pharm 2018; 543:46-51. [PMID: 29588210 DOI: 10.1016/j.ijpharm.2018.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 11/28/2022]
Abstract
Piroxicam crystallises into two polytypes, α1 and α2, with crystal structures that contain identical molecular layers but differ in the way that these layers are stacked. In spite of having close structural similarity, the polytypes have significantly different powder tabletting behaviour: α2 forms only weak tablets at low pressures accompanied by extensive capping and lamination, which make it impossible to form intact tablets above 100 MPa, while α1 exhibits superior tabletability over the investigated pressure range (up to 140 MPa). The potential structural origin of the different behaviour is sought using energy-vector models, produced from pairwise intermolecular interaction energies calculated using the PIXEL method. The analysis reveals that the most stabilising intermolecular interactions define columns in both crystal structures. In α2, a strongly stabilising interaction between inversion-related molecules links these columns into a 2-D network, while no comparable interaction exists in α1. The higher dimensionality of the energy-vector model in α2 may be one contributor to its inferior tabletability. A consideration of probable slip planes in the structures identifies regions where the benzothiazine groups of the molecules meet. The energy-vector models in this region are geometrically similar for both structures, but the interactions are more stabilising in α2 compared to α1. This feature may also contribute to the inferior tabletability of α2.
Collapse
Affiliation(s)
- Pratik P Upadhyay
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Changquan C Sun
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Andrew D Bond
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
30
|
Yadav JPA, Bansal AK, Jain S. Molecular Understanding and Implication of Structural Integrity in the Deformation Behavior of Binary Drug-Drug Eutectic Systems. Mol Pharm 2018; 15:1917-1927. [PMID: 29620908 DOI: 10.1021/acs.molpharmaceut.8b00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In eutectic, a lamellar microstructure offers better tableting than that of the nonreacted physical mixture. However, bulk deformation remains elusive in two binary eutectics. We hypothesized that the binary eutectic of a drug with different components, having different H-bonding dimensionalities and crystal structure, shall allow the understanding of the structural integrity in the bulk deformation behavior. The shearing molecular solid (FXT Q) shared a common composition with the viscoelastic crystal (ASP I) and brittle (PCM I), forming EM-1 (ϕ1 = 41.27:58.73% w/w) and EM-2 (ϕ2 = 41.10:58.90% w/w), respectively. The excess thermodynamic functions were contributed by high energy microstructures (nonbonding interactions) along incoherent phase boundaries (visualized under CLSM). The energy dispersive analysis enabled the recognition of the relative distribution of higher atoms over the heterogeneous surface. EM-1 (FXT Q-ASP I) demonstrated higher compressibility, tensile strength, and compactibility (CTC profile) compared to those of EM-2 (FXT Q-PCM I) over a range of applied compaction pressures. The lower true yield strength (σ0(EM-1) = 138.66 MPa) of EM-1 as compared to that of EM-2 (σ0(EM-2) = 166.66 MPa) suggested a better deformation performance and incipient plasticity quantified from the "out-of-die" Heckel analysis. From Ryshkewitch analysis, the tensile strength at zero porosity (τ01 = 3.83 MPa) was predicted to be higher for EM-1 than EM-2 (τ02 = 2.54 MPa). The higher bonding strength of EM-1 was contributed to the additional influence of true density and isotropic van der Waals interactions of ASP I (0D). In contrast, EM-2 demonstrated lower compressibility and compactibility, having herringbone molecular packing of PCM I (1D) with a common shearing component (FXT Q (1D)). This study confirmed that the intrinsic deformational and chemical nature of the second component defined the compressibility and compactibility tendency to a greater extent in the tableting performance of conglomerates of crystalline solid solution.
Collapse
Affiliation(s)
- Jay Prakash A Yadav
- Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67 , S.A.S. Nagar 160 062 , Punjab , India
| | - Arvind K Bansal
- Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67 , S.A.S. Nagar 160 062 , Punjab , India
| | - Sanyog Jain
- Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67 , S.A.S. Nagar 160 062 , Punjab , India
| |
Collapse
|
31
|
Zhao Z, Liu G, Lin Q, Jiang Y. Co-Crystal of Paracetamol and Trimethylglycine Prepared by a Supercritical CO2
Anti-Solvent Process. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ziyi Zhao
- South China University of Technology; School of Chemistry and Chemical Engineering; 381 Wushan Street 510640 Guangzhou China
| | - Guijin Liu
- South China University of Technology; School of Chemistry and Chemical Engineering; 381 Wushan Street 510640 Guangzhou China
- Honz Pharmaceutical Co. Ltd.; 6 Yaogu 3rd Road 570311 Haikou China
| | - Qing Lin
- South China University of Technology; School of Chemistry and Chemical Engineering; 381 Wushan Street 510640 Guangzhou China
| | - Yanbin Jiang
- South China University of Technology; School of Chemistry and Chemical Engineering; 381 Wushan Street 510640 Guangzhou China
| |
Collapse
|
32
|
Simulation of particle size segregation in a pharmaceutical tablet press lab-scale gravity feeder. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2017.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Markl D, Bawuah P, Ridgway C, van den Ban S, Goodwin DJ, Ketolainen J, Gane P, Peiponen KE, Zeitler JA. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy. Int J Pharm 2017; 537:102-110. [PMID: 29247699 DOI: 10.1016/j.ijpharm.2017.12.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, Sa, to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectroscopy measurements. The Sa parameter analysis was applied to three different data sets including tablets with only one excipient (functionalised calcium carbonate), samples with one excipient (microcrystalline cellulose) and one drug (indomethacin), and a complex formulation (granulated product comprising several excipients and one drug). The overall porosity, tablet thickness, initial particle size distribution as well as the granule density were all found to affect the significant structural anisotropies that were observed in all investigated tablets. The Sa parameter provides new insights into the microstructure of a tablet and its potential was particularly demonstrated for the analysis of formulations comprising several components. The results clearly indicate that material attributes, such as particle size and granule density, cause a change of the pore structure, which, therefore, directly impacts the liquid imbibition that is part of the disintegration process. We show, for the first time, how the granule density impacts the pore structure, which will also affect the performance of the tablet. It is thus of great importance to gain a better understanding of the relationship of the physical properties of material attributes (e.g. intragranular porosity, particle shape), the compaction process and the microstructure of the finished product.
Collapse
Affiliation(s)
- Daniel Markl
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK.
| | - Prince Bawuah
- School of Pharmacy, Promis Centre, University of Eastern Finland, P.O. Box 1617, 70211 Kuopio, Finland
| | | | | | - Daniel J Goodwin
- GSK Research and Development, New Frontiers Science Park, 3rd Avenue, CM19 5AW Harlow, UK
| | - Jarkko Ketolainen
- School of Pharmacy, Promis Centre, University of Eastern Finland, P.O. Box 1617, 70211 Kuopio, Finland
| | - Patrick Gane
- Omya International AG, 4665 Oftringen Switzerland; School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Helsinki, Finland
| | - Kai-Erik Peiponen
- Institute of Photonics, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| |
Collapse
|
34
|
Worku ZA, Kumar D, Gomes JV, He Y, Glennon B, Ramisetty KA, Rasmuson ÅC, O’Connell P, Gallagher KH, Woods T, Shastri NR, Healy AM. Modelling and understanding powder flow properties and compactability of selected active pharmaceutical ingredients, excipients and physical mixtures from critical material properties. Int J Pharm 2017; 531:191-204. [DOI: 10.1016/j.ijpharm.2017.08.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
|
35
|
Yadav JA, Khomane KS, Modi SR, Ugale B, Yadav RN, Nagaraja CM, Kumar N, Bansal AK. Correlating Single Crystal Structure, Nanomechanical, and Bulk Compaction Behavior of Febuxostat Polymorphs. Mol Pharm 2017; 14:866-874. [DOI: 10.1021/acs.molpharmaceut.6b01075] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jayprakash A. Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar - 160 062, Punjab, India
| | - Kailas S. Khomane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar - 160 062, Punjab, India
| | - Sameer R. Modi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar - 160 062, Punjab, India
| | | | | | | | | | - Arvind K. Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar - 160 062, Punjab, India
| |
Collapse
|
36
|
Paul S, Taylor LJ, Murphy B, Krzyzaniak J, Dawson N, Mullarney MP, Meenan P, Sun CC. Mechanism and Kinetics of Punch Sticking of Pharmaceuticals. J Pharm Sci 2017; 106:151-158. [DOI: 10.1016/j.xphs.2016.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 11/27/2022]
|
37
|
Microstructure of Tablet—Pharmaceutical Significance, Assessment, and Engineering. Pharm Res 2016; 34:918-928. [DOI: 10.1007/s11095-016-1989-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
38
|
Resveratrol cocrystals with enhanced solubility and tabletability. Int J Pharm 2016; 509:391-399. [PMID: 27282539 DOI: 10.1016/j.ijpharm.2016.06.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 06/05/2016] [Indexed: 01/11/2023]
Abstract
Two new 1:1 cocrystals of resveratrol (RES) with 4-aminobenzamide (RES-4ABZ) and isoniazid (RES-ISN) were synthesized by liquid assisted grinding (LAG) and rapid solvent removal (RSR) methods using ethanol as solvent. Their physiochemical properties were characterized using PXRD, DSC, solid state and solution NMR, FT-IR, and HPLC. Pharmaceutically relevant properties, including tabletability, solubility, intrinsic dissolution rate, and hygroscopicity, were evaluated. Temperature-composition phase diagram for RES-ISN cocrystal system was constructed from DSC data. Both cocrystals show higher solubility than resveratrol over a broad range of pH. They are phase stable and non-hygroscopic even under high humidity conditions. Importantly, both cocrystals exhibit improved solubility and tabletability compared with RES, which make them more suitable candidates for tablet formulation development.
Collapse
|
39
|
Yassin S, Goodwin DJ, Anderson A, Sibik J, Wilson DI, Gladden LF, Zeitler JA. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants. J Pharm Sci 2015; 104:3440-50. [PMID: 26073446 PMCID: PMC4647644 DOI: 10.1002/jps.24544] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
Abstract
Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440-3450, 2015.
Collapse
Affiliation(s)
- Samy Yassin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Daniel J Goodwin
- GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, CM19 5AW, UK
| | - Andrew Anderson
- GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, CM19 5AW, UK
| | - Juraj Sibik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | - D Ian Wilson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Lynn F Gladden
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| |
Collapse
|
40
|
Obeidat WM, Nokhodchi A, Alkhatib H. Evaluation of Matrix Tablets Based on Eudragit®E100/Carbopol®971P Combinations for Controlled Release and Improved Compaction Properties of Water Soluble Model Drug Paracetamol. AAPS PharmSciTech 2015; 16:1169-79. [PMID: 25724162 PMCID: PMC4674641 DOI: 10.1208/s12249-015-0301-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/26/2015] [Indexed: 11/30/2022] Open
Abstract
The purpose of this work was to investigate the influence of Eudragit®E100 polymer in modifying the release rates and compaction properties of water soluble model drug paracetamol from Carbopol®971P NF polymer matrix tablets prepared by direct compression. The effects of the ratio of the two polymers, the total polymeric content, and the tablets mechanical strength on paracetamol release rates were investigated. Dissolution studies were conducted using USP XX Π rotating paddle apparatus at 50 rpm and 37°C at three different stages (pH 1.2, 4.8, and 6.8). Results showed that the polymers combination improved significantly the compaction properties of paracetamol tablets as evident by the higher crushing strengths (8.3 ± 0.4 Kp) compared to polymer-free tablets (3.4 ± 0.2 Kp) at intermediate compression pressure of 490 MPa. When combined with Carbopol®971P NF, Eudragit®E100 was found to be capable of extending paracetamol release for more than 12 h compared to 1 h for polymers-free tablets. The combined polymers were able to control paracetamol release in a pH independent pattern. The f2 (similarity factor) analysis showed that the ratio between the polymers and the total polymer concentration exhibited significant impact on drug release rates. In conclusion, Eudragit®E100 when combined with Carbopol®971P NF was capable of improving the compaction and sustained release properties of paracetamol. Korsmeyer-Peppas model was found to be the most suitable for fitting drug release data. The polymer combinations can potentially be used to control the release rates of highly water soluble drugs.
Collapse
Affiliation(s)
- Wasfy M Obeidat
- College of Pharmacy, Department of Pharmacy Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, P.O. Box 3030, Jordan.
| | - Ali Nokhodchi
- JMS Building, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Hatim Alkhatib
- College of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Amman, Jordan
| |
Collapse
|
41
|
Serrano DR, O'Connell P, Paluch KJ, Walsh D, Healy AM. Cocrystal habit engineering to improve drug dissolution and alter derived powder properties. J Pharm Pharmacol 2015; 68:665-77. [DOI: 10.1111/jphp.12476] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
Cocrystallization of sulfadimidine (SDM) with suitable coformers, such as 4-aminosalicylic acid (4-ASA), combined with changes in the crystal habit can favourably alter its physicochemical properties. The aim of this work was to engineer SDM : 4-ASA cocrystals with different habits to investigate the effect on dissolution, and the derived powder properties of flow and compaction.
Methods
Cocrystals were prepared in a 1 : 1 molar ratio by solvent evaporation using ethanol (habit I) or acetone (habit II), solvent evaporation followed by grinding (habit III) and spray drying (habit IV).
Key findings
Powder X-ray diffraction showed Bragg peak position was the same in all the solid products. The peak intensity varied, indicating different preferred crystal orientation confirmed by SEM micrographs: large prismatic crystals (habit I), large plate-like crystals (habit II), small cube-like crystals (habit III) and microspheres (habit IV). The habit III exhibited the fasted dissolution rate; however, it underwent a polymorphic transition during dissolution. Habits I and IV exhibited the highest Carr's compressibility index, indicating poor flowability. However, habits II and III demonstrated improved flow. Spray drying resulted in cocrystals with improved compaction properties.
Conclusions
Even for cocrystals with poor pharmaceutical characteristics, a habit can be engineered to alter the dissolution, flowability and compaction behaviour.
Collapse
Affiliation(s)
- Dolores R Serrano
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Peter O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Krzysztof J Paluch
- School of Pharmacy, University of Bradford, Bradford, West Yorkshire, UK
| | - David Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Hoffmann M, Wray PS, Gamble JF, Tobyn M. Investigation into process-induced de-aggregation of cohesive micronised API particles. Int J Pharm 2015; 493:341-6. [DOI: 10.1016/j.ijpharm.2015.07.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022]
|
43
|
Šimek M, Grünwaldová V, Kratochvíl B. Hot-stage microscopy for determination of API fragmentation: comparison with other methods. Pharm Dev Technol 2015; 21:583-9. [PMID: 25996632 DOI: 10.3109/10837450.2015.1026608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the fragmentation of the active pharmaceutical ingredient (API) is a phenomenon that is mentioned in many literature sources, no well-suited analytical tools for its investigation are currently known. We used the hot-stage microscopy method, already presented in our previous work, and studied the real fragmentation of the tadalafil particles in model tablets which were prepared under different compaction pressures. The morphology, spectral imaging and evaluation of plastic and elastic energies were also analyzed to support the hot-stage method. The prepared blend of tadalafil and excipients was compacted under a several forces from 5 to 35 kN to reveal the trend of fragmentation. The exact fragmentation of tadalafil with increased compaction pressure was revealed by the hot-stage microscopic method and it was in good agreement with plastic and elastic energies. Conversely, spectral imaging, which is being used for this analysis, was considered to be inaccurate methodology as mainly agglomerates, not individual particles, were measured. The availability of the hot-stage microscopic method equips pharmaceutical scientists with an in vitro assessment technique that will more reliably determine the fragmentation of the API in finished tablets and the behavior of the particles when compacted.
Collapse
Affiliation(s)
- Michal Šimek
- a Department of Solid State Chemistry , University of Chemistry and Technology Prague , Prague , Czech Republic and.,b Zentiva k.s. , Prague , Czech Republic
| | | | - Bohumil Kratochvíl
- a Department of Solid State Chemistry , University of Chemistry and Technology Prague , Prague , Czech Republic and
| |
Collapse
|
44
|
Shamsudin IS, Anuar MS, Yusof YA, Hanif AHM, Tahir SM. Effect of Particle Size on Direct Compaction of Urea Fertilizer. PARTICULATE SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1080/02726351.2014.930942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Gamble JF, Hoffmann M, Hughes H, Hutchins P, Tobyn M. Monitoring process induced attrition of drug substance particles within formulated blends. Int J Pharm 2014; 470:77-87. [DOI: 10.1016/j.ijpharm.2014.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 11/25/2022]
|
46
|
Sun W, Ni R, Zhang X, Li LC, Mao S. Spray drying of a poorly water-soluble drug nanosuspension for tablet preparation: formulation and process optimization with bioavailability evaluation. Drug Dev Ind Pharm 2014; 41:927-33. [DOI: 10.3109/03639045.2014.914528] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Zhou Q, Shi L, Marinaro W, Lu Q, Sun CC. Improving manufacturability of an ibuprofen powder blend by surface coating with silica nanoparticles. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2013.08.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Trivedi MR, Dave RH. To study physical compatibility between dibasic calcium phosphate and cohesive actives using powder rheometer and thermal methods. Drug Dev Ind Pharm 2013; 40:1585-96. [DOI: 10.3109/03639045.2013.838576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Khomane KS, Bansal AK. Effect of particle size on in-die and out-of-die compaction behavior of ranitidine hydrochloride polymorphs. AAPS PharmSciTech 2013; 14:1169-77. [PMID: 23897036 DOI: 10.1208/s12249-013-0008-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022] Open
Abstract
The present study investigates the effect of particle size on compaction behavior of forms I and II of ranitidine hydrochloride. Compaction studies were performed using three particle size ranges [450-600 (A), 300-400 (B), and 150-180 (C) μm] of both the forms, using a fully instrumented rotary tableting machine. Compaction data were analyzed for out-of-die compressibility, tabletability, and compactibility profiles and in-die Heckel and Kawakita analysis. Tabletability of the studied size fractions followed the order; IB > IA > > IIC > IIB > IIA at all the compaction pressures. In both the polymorphs, decrease in particle size improved the tabletability. Form I showed greater tabletability over form II at a given compaction pressure and sized fraction. Compressibility plot and Heckel and Kawakita analysis revealed greater compressibility and deformation behavior of form II over form I at a given compaction pressure and sized fraction. Decrease in particle size increased the compressibility and plastic deformation of both the forms. For a given polymorph, improved tabletability of smaller sized particles was attributed to their increased compressibility. However, IA and IB, despite poor compressibility and deformation, showed increased tabletability over IIA, IIB, and IIC by virtue of their greater compactibility. Microtensile testing also revealed higher nominal fracture strength of form I particles over form II, thus, supporting greater compactibility of form I. Taken as a whole, though particle size exhibited a trend on tabletability of individual forms, better compactibility of form I over form II has an overwhelming impact on tabletability.
Collapse
|
50
|
Liu L, Marziano I, Bentham A, Litster J, White E, Howes T. Influence of particle size on the direct compression of ibuprofen and its binary mixtures. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|