1
|
Clemence BF, Xiao L, Yang G. Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel. Polymers (Basel) 2024; 16:2368. [PMID: 39204588 PMCID: PMC11360765 DOI: 10.3390/polym16162368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, a novel oral formulation of berberine hydrochloride (BBH) hydrogel was successfully synthesized through physical cross-linking using chitosan (CS) and carboxymethyl-β-cyclodextrin (CMCD). The characterization results confirmed the successful synthesis of the CS/CMCD hydrogel and the subsequent loading of BBH into this composite (CS/CMCD/BBH) was effectively accomplished. The BBH was used as a model drug and the resulting hydrogel demonstrated a sustained drug release profile. In addition to its improved solubility and sustained release characteristics, the hydrogel exhibited excellent antibacterial activity against common pathogens such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans). Additionally, in vitro studies indicated that the hydrogel was not cytotoxic to NIH3T3 and HaCaT cells, suggesting its safety for biomedical applications. This lack of cytotoxic effects, combined with the mechanical strength, solubility improvements, and antibacterial properties of the hydrogel, positions the CS/CMCD/BBH hydrogel as a promising candidate for the effective oral delivery of BBH. By addressing the solubility and delivery challenges of BBH, this hydrogel offers a viable solution for the oral administration of BBH, with potential applications in various biomedical fields.
Collapse
Affiliation(s)
- Bukatuka Futila Clemence
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-Set University, Shenzhen 518107, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
2
|
Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ, Longhi MR, Dhas N, Naik JB, Surana SJ, Garcia MC. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr Polym 2022; 301:120347. [DOI: 10.1016/j.carbpol.2022.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
3
|
Manne ASN, Hegde AR, Raut SY, Rao RR, Kulkarni VI, Mutalik S. Hot liquid extrusion assisted drug-cyclodextrin complexation: a novel continuous manufacturing method for solubility and bioavailability enhancement of drugs. Drug Deliv Transl Res 2020; 11:1273-1287. [PMID: 32959332 PMCID: PMC8096738 DOI: 10.1007/s13346-020-00854-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
In this study, drug-cyclodextrin (CD) complexes were prepared using hot liquid extrusion (HLE) process with an aim to improve solubility and bioavailability of carbamazepine. Saturation solubility studies of CBZ in water and different pH media showed a pH-independent solubility. Phase solubility studies of CBZ at different molar concentrations of beta-cyclodextrin (β-CD) and hydroxypropyl beta-cyclodextrin (HP-β-CD) indicated AL-type solubility profile with stability constants of 574 M−1 and 899 M−1 for β-CD and HP-β-CD. Drug-β-CD and drug-HP-β-CD complexes were prepared using HLE process and conventional methods (such as physical mixture, kneading method, and solvent evaporation) as well. Optimized complexes prepared using HLE viz. CBP-4 and CHP-2 showed a solubility of 4.27 ± 0.09 mg/mL and 6.39 ± 0.09 mg/mL as compared to plain CBZ (0.140 ± 0.007 mg/mL). Formation of drug-CD inclusion complexes was confirmed using DSC, FTIR, and XRD studies. Drug release studies indicated highest release of CBZ from CHP-2 (98.69 ± 2.96%) compared to CBP-4 (82.64 ± 2.45%) and plain drug (13.47 ± 0.54%). Complexes prepared using kneading showed significantly lesser drug release (KMB 75.52 ± 2.68% and KMH 85.59 ± 2.80%) as that of CHP-2 and CBP-4. Pre-clinical pharmacokinetic studies in Wistar rats indicated a significant increase in Cmax, Tmax, AUC, and mean residence time for CHP-2 compared to KMH and plain CBZ. All these results suggest that HLE is an effective method to increase the solubility of poorly water-soluble drugs. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Alekhya Sri Nagini Manne
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Aswathi R Hegde
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sushil Yadaorao Raut
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- STEER Life India Private Limited, No. 290, 4th Main, 4th Phase, Peenya Industrial Area, Bangalore, 560058, Karnataka, India
| | - Rajat Radhakrishna Rao
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- STEER Life India Private Limited, No. 290, 4th Main, 4th Phase, Peenya Industrial Area, Bangalore, 560058, Karnataka, India
| | - Vijay Induvadan Kulkarni
- STEER Life India Private Limited, No. 290, 4th Main, 4th Phase, Peenya Industrial Area, Bangalore, 560058, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Raut SY, Manne AS, Kalthur G, Jain S, Mutalik S. Cyclodextrins as Carriers in Targeted Delivery of Therapeutic Agents: Focused Review on Traditional and Inimitable Applications. Curr Pharm Des 2019; 25:444-454. [DOI: 10.2174/1381612825666190306163602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/25/2019] [Indexed: 11/22/2022]
Abstract
The objective of the article is to provide a comprehensive review on the application of cyclodextrin
complexation in the delivery of drugs, bioactive molecules or macromolecules, with more emphasis on targeted
drug delivery. Classically the cyclodextrins have been considered only as a means of improving the solubility of
drugs; however, many attempts have been made to use cyclodextrins as drug delivery carriers. The cyclodextrin
surface can be modified with various ligands for active targeting of drugs. It can also be passively targeted
through various triggering mechanisms like thermal, magnetic, pH dependent, light dependent, ultrasound, etc. A
comprehensive literature review has been done in the area of drug delivery using cyclodextrins. Applications of
inclusion complexes in the drug delivery through various routes with examples are discussed. This review focuses
on receptor mediated active targeting as well as stimuli responsive passive targeting of drugs/genes by using
cyclodextrins. The article provides a detailed insight of the use of cyclodextrins and their derivatives on the targeted
delivery of the drugs/genes.
Collapse
Affiliation(s)
- Sushil Y. Raut
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| | - Alekhya S.N. Manne
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka State, India
| |
Collapse
|
5
|
Arima H, Hayashi Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 2015; 12:1425-41. [DOI: 10.1517/17425247.2015.1026893] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Fu Y, Wang X, Zhang Y, Liu Z, Xue W. Effect of cyclodextrins on the structure and functions of blood components in vitro. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515585184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cyclodextrins have been extensively used in various biomedical and pharmaceutical applications. In these applications, cyclodextrins administered in vivo would inevitably enter blood stream. However, there is not enough information on the hemocompatibility of cyclodextrins until now. In this study, we investigated the influences of cyclodextrins (α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin) on human blood components and functions in vitro, that is, morphology and lysis of red blood cells, structure and conformation of fibrinogen, complement activation, and blood coagulation. It was found that 10 mg/mL of α- or β-cyclodextrins caused abnormal red blood cell morphology and serious hemolysis, while γ-cyclodextrin at 10 mg/mL did not impair red blood cell membrane morphology and integrity. The three cyclodextrins at up to 10 mg/mL affected the local microstructure but did not change the conformation of fibrinogen. The three cyclodextrins from 0.01 to 1 mg/mL all significantly activated the complement system in a concentration-dependent way. The three cyclodextrins at up to 5 mg/mL in blood plasma did not cause significantly different coagulation times compared with the negative control. In addition, the three cyclodextrins at up to 5 mg/mL in whole blood did not cause abnormal coagulation parameters. These results provide significant information on blood safety of the three cyclodextrins for their biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Yeyun Fu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Xiaoyan Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Yu Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Semcheddine F, Guissi NEI, Liu X, Wu Z, Wang B. Effects of the Preparation Method on the Formation of True Nimodipine SBE-β-CD/HP-β-CD Inclusion Complexes and Their Dissolution Rates Enhancement. AAPS PharmSciTech 2015; 16:704-15. [PMID: 25511809 PMCID: PMC4444620 DOI: 10.1208/s12249-014-0257-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 11/25/2014] [Indexed: 11/30/2022] Open
Abstract
The aims of this study were to enhance the solubility and dissolution rate of nimodipine (ND) by preparing the inclusion complexes of ND with sulfobutylether-b-cyclodextrin (SBE-β-CD) and 2-hydroxypropyl-b-cyclodextrin (HP-β-CD) and to study the effect of the preparation method on the in vitro dissolution profile in different media (0.1 N HCl pH 1.2, phosphate buffer pH 7.4, and distilled water). Thus, the inclusion complexes were prepared by kneading, coprecipitation, and freeze-drying methods. Phase solubility studies were conducted to characterize the complexes in the liquid state. The inclusion complexes in the solid state were investigated with differential scanning calorimetry (DSC), X-ray diffractometry (X-RD), and Fourier transform infrared spectroscopy (FT-IR). Stable complexes of ND/SBE-β-CD and ND/HP-β-CD were formed in distilled water in a 1:1 stoichiometric inclusion complex as indicated by an AL-type diagram. The apparent stability constants (Ks) were 1334.4 and 464.1 M(-1) for ND/SBE-β-CD and ND/HP-β-CD, respectively. The water-solubility of ND was significantly increased in an average of 22- and 8-fold for SBE-β-CD and HP-β-CD, respectively. DSC results showed the formation of true inclusion complexes between the drug and both SBE-β-CD and HP-β-CD prepared by the kneading method. In contrast, crystalline drug was detectable in all other products. The dissolution studies showed that all the products exhibited higher dissolution rate than those of the physical mixtures and ND alone, in all mediums. However, the kneading complexes displayed the maximum dissolution rate in comparison with drug and other complexes, confirming the influence of the preparation method on the physicochemical properties of the products.
Collapse
Affiliation(s)
- Farouk Semcheddine
- Department of Pharmaceutics, China Pharmaceutical University, Tongjiaxiang 24#, Nanjing, 210009, China,
| | | | | | | | | |
Collapse
|
8
|
The use of captisol (SBE7-β-CD) in oral solubility-enabling formulations: Comparison to HPβCD and the solubility-permeability interplay. Eur J Pharm Sci 2015; 77:73-8. [PMID: 26006306 DOI: 10.1016/j.ejps.2015.05.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/06/2015] [Accepted: 05/21/2015] [Indexed: 12/27/2022]
Abstract
The aim of this research was to study the interaction of sulfobutyl ether7 β-cyclodextrin (captisol) and 2-hydroxypropyl-β-cyclodextrin (HPβCD) with the poorly soluble antiarrhythmic drug amiodarone, and to investigate the consequent solubility-permeability interplay. Phase-solubility studies of amiodarone with the two cyclodextrins, followed by PAMPA and rat intestinal permeability experiments, were carried out, and the solubility-permeability interplay was then illustrated as a function of increasing cyclodextrin content. Equimolar levels of captisol allowed ∼10-fold higher amiodarone solubility than HPβCD, as well as binding constant. With both captisol and HPβCD, decreased in vitro and in vivo amiodarone apparent permeability was evident with increasing CD levels and increased apparent solubility. A theoretical model assuming direct proportionality between the apparent solubility increase allowed by the CD and permeability decrease was able to accurately predict the solubility-permeability tradeoff as a function of CD levels. In conclusion, the addition of ionic interactions (e.g. amiodarone-captisol) to hydrophobic interactions of the inclusion complex formation may result in synergic effect on solubilization; however, it is not merely the solubility that should be examined when formulating an oral poorly soluble compound, but the solubility-permeability balance, in order to maximize the overall drug exposure.
Collapse
|
9
|
Rudrangi SRS, Bhomia R, Trivedi V, Vine GJ, Mitchell JC, Alexander BD, Wicks SR. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes. Int J Pharm 2015; 479:381-90. [DOI: 10.1016/j.ijpharm.2015.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
10
|
Inoue Y, Sekiya N, Yamamoto M, Iohara D, Hirayama F, Uekama K. Formation of the Ternary Inclusion Complex of Limaprost with α- and β-Cyclodextrins in Aqueous Solution. Chem Pharm Bull (Tokyo) 2015; 63:318-25. [DOI: 10.1248/cpb.c14-00733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuo Inoue
- CMC Regulatory and Analytical R&D, Ono Pharmaceutical Co., Ltd
| | | | | | | | | | | |
Collapse
|
11
|
Inoue Y, Watanabe S, Suzuki R, Murata I, Kanamoto I. Evaluation of actarit/γ-cyclodextrin complex prepared by different methods. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0445-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Ren L, Jing J, Chen G, Miao Y, Wei P. Preparation, characteristic and pharmacological study on inclusion complex of sulfobutylether-β-cyclodextrin with glaucocalyxin A. J Pharm Pharmacol 2014; 66:927-34. [DOI: 10.1111/jphp.12219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/15/2013] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The objective of this study was to improve the water solubility and solubility of glaucocalyxin A (GLA) by producing its inclusion complex with sulfobutylether-β-cyclodextrin (SBE-β-CD).
Methods
The formation of its 1 : 1 complex with SBE-β-CD in solution was confirmed by phase-solution and spectral-shift studies. The interaction of GLA and SBE-β-CD was examined by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and ultraviolet-visible spectroscopy to determine the formation of the GLA–SBE-β-CD inclusion complex.
Key findings
The solubilities of GLA and its complexes were 2.38 × 102 and 1.82 × 104 μg/ml, respectively, and the values of the inclusion complexes were significantly improved by 76-fold compared with the solubility of free GLA. Moreover, a higher area under the curve0–∞ after inclusion technique was observed in the pharmacokinetics study.
Conclusions
The aforementioned results indicate that GLA–SBE-β-CD could be useful with a better solubility and sustained function in drug delivery.
Collapse
Affiliation(s)
- Lili Ren
- School of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing, China
| | - Jianghui Jing
- School of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing, China
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing, China
| | - Yanfei Miao
- School of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing, China
| | - Ping Wei
- School of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China
| |
Collapse
|
13
|
Holm R, Østergaard J, Schönbeck C, Jensen H, Shi W, Peters GH, Westh P. Determination of stability constants of tauro- and glyco-conjugated bile salts with the negatively charged sulfobutylether-β-cyclodextrin: comparison of affinity capillary electrophoresis and isothermal titration calorimetry and thermodynamic analysis of the interaction. J INCL PHENOM MACRO 2013. [DOI: 10.1007/s10847-013-0287-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Østergaard J, Jensen H, Holm R. Affinity capillary electrophoresis method for investigation of bile salts complexation with sulfobutyl ether-β-cyclodextrin. J Sep Sci 2012; 35:2764-72. [DOI: 10.1002/jssc.201200502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Jesper Østergaard
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Henrik Jensen
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - René Holm
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Preformulation; H. Lundbeck A/S Valby Denmark
| |
Collapse
|
15
|
|
16
|
Singh A, Worku ZA, Van den Mooter G. Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv 2011; 8:1361-78. [DOI: 10.1517/17425247.2011.606808] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Merzlikine A, Abramov YA, Kowsz SJ, Thomas VH, Mano T. Development of machine learning models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies. Int J Pharm 2011; 418:207-16. [PMID: 21497190 DOI: 10.1016/j.ijpharm.2011.03.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/16/2011] [Accepted: 03/24/2011] [Indexed: 12/13/2022]
Abstract
A new set of 142 experimentally determined complexation constants between sulfobutylether-β-cyclodextrin and diverse organic guest molecules, and 78 observations reported in literature, were used for the development of the QSPR models by the two machine learning regression methods - Cubist and Random Forest. Similar models were built for β-cyclodextrin using the 233-compound dataset available in the literature. These results demonstrate that the machine learning regression methods can successfully describe the complex formation between organic molecules and β-cyclodextrin or sulfobutylether-β-cyclodextrin. In particular, the root mean square errors for the test sets predictions by the best models are low, 1.9 and 2.7kJ/mol, respectively. The developed QSPR models can be used to predict the solubilizing effect of cyclodextrins and to help prioritizing experimental work in drug discovery.
Collapse
Affiliation(s)
- Alexei Merzlikine
- Department of Pharmaceutical Sciences, Pfizer Inc., Groton, CT, USA.
| | | | | | | | | |
Collapse
|
18
|
Rescifina A, Chiacchio U, Iannazzo D, Piperno A, Romeo G. β-cyclodextrin and caffeine complexes with natural polyphenols from olive and olive oils: NMR, thermodynamic, and molecular modeling studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11876-11882. [PMID: 21047064 DOI: 10.1021/jf1028366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Complexes of β-cyclodextrin (β-CD) and caffeine (Caf) with biophenols present in olive and olive oil (tyrosol, hydroxytyrosol, homovanillic acid, 3,4-dihydroxyphenylacetic acid, and protocatechuic acid) were investigated by NMR spectroscopy and thermodynamical-molecular dynamic studies to verify the formation of supermolecular aggregates. The obtained results indicated that the investigated biophenols form inclusion complexes with β-CD in a molar ratio of 1:1 in aqueous solution having binding constant values from 10- to 40-fold bigger than those of the corresponding complexes with Caf. Then, β-CD preferentially encloses the biophenol molecule, decreasing its bitter taste and, at the same time, preserving it against chemical and physical decomposition reactions that occur during storage.
Collapse
Affiliation(s)
- Antonio Rescifina
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | |
Collapse
|
19
|
Battu SK, Repka MA, Maddineni S, Chittiboyina AG, Avery MA, Majumdar S. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery. AAPS PharmSciTech 2010; 11:1466-75. [PMID: 20842541 DOI: 10.1208/s12249-010-9520-y] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/25/2010] [Indexed: 11/30/2022] Open
Abstract
The objective of the present research was to evaluate the physicochemical characteristics of berberine chloride and to assess the complexation of drug with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a first step towards solution dosage form development. The parameters such as log P value were determined experimentally and compared with predicted values. The pH-dependent aqueous solubility and stability were investigated following standard protocols at 25°C and 37°C. Drug solubility enhancement was attempted utilizing both surfactants and cyclodextrins (CDs), and the drug/CD complexation was studied employing various techniques such as differential scanning calorimetry, Fourier transform infrared, nuclear magnetic resonance, and scanning electron microscopy. The experimental log P value suggested that the compound is fairly hydrophilic. Berberine chloride was found to be very stable up to 6 months at all pH and temperature conditions tested. Aqueous solubility of the drug was temperature dependent and exhibited highest solubility of 4.05 ± 0.09 mM in phosphate buffer (pH 7.0) at 25°C, demonstrating the effect of buffer salts on drug solubility. Decreased drug solubility was observed with increasing concentrations of ionic surfactants such as sodium lauryl sulfate and cetyl trimethyl ammonium bromide. Phase solubility studies demonstrated the formation of berberine chloride-HPβCD inclusion complex with 1:1 stoichiometry, and the aqueous solubility of the drug improved almost 4.5-fold in the presence of 20% HPβCD. The complexation efficiency values indicated that the drug has at least threefold greater affinity for hydroxypropyl-β-CD compared to randomly methylated-β-CD. The characterization techniques confirmed inclusion complex formation between berberine chloride and HPβCD and demonstrated the feasibility of developing an oral solution dosage form of the drug.
Collapse
|
20
|
Zhou C, Gan L, Zhang Y, Zhang F, Wang G, Jin L, Geng R. Review on supermolecules as chemical drugs. SCIENCE IN CHINA. SERIES B, CHEMISTRY 2009; 52:415-458. [PMID: 38624300 PMCID: PMC7089408 DOI: 10.1007/s11426-009-0103-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 12/28/2008] [Indexed: 11/01/2022]
Abstract
Supramolecular medicinal chemistry field has been a quite rapidly developing, increasingly active and newly rising interdiscipline which is the new expansion of supramolecular chemistry in pharmaceutical sciences, and is gradually becoming a relatively independent scientific area. Supramolecular drugs could be defined as medicinal supermolecules formed by two or more molecules through non-covalent bonds. So far a lot of supermolecules as chemical drugs have been widely used in clinics. Supermolecules as chemical drugs, i.e. supramolecular chemical drugs or supramolecular drugs, which might have the excellences of lower cost, shorter period, higher potential as clinical drugs for their successful research and development, may possess higher bioavailability, better biocompatibility and drug-targeting, fewer multidrug-resistances, lower toxicity, less adverse effect, and better curative effects as well as safety, and therefore exhibit wide potential application. These overwhelming advantages have drawn enormous special attention. This paper gives the definition of supramolecular drugs, proposes the concept of supramolecular chemical drugs, and systematically reviews the recent advances in the research and development of supermolecules, including organic and inorganic complex ones as chemical drugs in the area of antitumor, anti-inflammatory, analgesic, antimalarial, antibacterial, antifungal, antivirus, anti-epileptic, cardiovascular agents and magnetic resonance imaging agents and so on. The perspectives of the foreseeable future and potential application of supramolecules as chemical drugs are also presented.
Collapse
Affiliation(s)
- ChengHe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 China
| | - LinLing Gan
- School of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 China
| | - YiYi Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 China
| | - FeiFei Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 China
| | - GuangZhou Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 China
| | - Lei Jin
- School of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 China
| | - RongXia Geng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 China
| |
Collapse
|
21
|
|
22
|
Abstract
The drug candidates coming from combinatorial chemistry research and/or the drugs selected from biologically based high-throughput screening are quite often very lipophilic, as these drug candidates exert their pharmacological action at or in biological membranes or membrane-associated proteins. This challenges drug delivery institutions in industry or academia to develop carrier systems for the optimal oral and parenteral administration of these drugs. To mention only a few of the challenges for this class of drugs: their oral bioavailability is poor and highly variable, and carrier development for parenteral administration is faced with problems, including the massive use of surface-active excipients for solubilisation. Formulation specialists are confronted with an even higher level of difficulties when these drugs have to be delivered site specifically. This article addresses the emerging formulation designs for delivering of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Alfred Fahr
- Friedrich-Schiller-Universität Jena, Institute for Pharmacy, Lessingstrasse 8, D-07743 Jena, Germany.
| | | |
Collapse
|
23
|
Fukuda M, Miller DA, Peppas NA, McGinity JW. Influence of sulfobutyl ether beta-cyclodextrin (Captisol) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion. Int J Pharm 2007; 350:188-96. [PMID: 17920217 DOI: 10.1016/j.ijpharm.2007.08.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 07/25/2007] [Accepted: 08/26/2007] [Indexed: 11/24/2022]
Abstract
The aim of this study was to investigate the influence of sulfobutyl ether beta-cyclodextrin (SBE(7)-beta-CD; Captisol on the dissolution properties of a poorly water-soluble drug from extrudates prepared by hot-melt extrusion. Ketoprofen was employed as a model drug. Extrudates containing the parent beta-cyclodextrin (beta-CD) were also produced for comparative evaluation to assess the benefits of SBE(7)-beta-CD. Hot-melt extrudates were produced at 100 degrees C, which was close to the melting point of ketoprofen. The physiochemical properties and the in vitro drug release properties of ketoprofen from extrudates were investigated and compared with samples prepared by physical mixing, co-grinding, freeze-drying and heat-treatment. The solubilizing effects and the interactions of ketoprofen with SBE(7)-beta-CD and beta-CD were investigated using phase solubility and NMR studies, respectively. The dissolution rate of ketoprofen from samples prepared by hot-melt extrusion with SBE(7)-beta-CD was significantly faster than both the physical mixture and the hot-melt extrudates prepared with the parent beta-CD. Moisture absorption studies revealed that the hygroscopic nature of SBE(7)-beta-CD led to particle aggregation and a corresponding decrease in drug release rate for all samples. However, the samples prepared by melt extrusion were least affected by exposure to elevated humidity.
Collapse
Affiliation(s)
- Mamoru Fukuda
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
24
|
Fukunaga K, Han F, Shioda N, Moriguchi S, Kasahara J, Shirasaki Y. DY-9760e, a Novel Calmodulin Inhibitor, Exhibits Cardioprotective Effects in the Ischemic Heart. ACTA ACUST UNITED AC 2006; 24:88-100. [PMID: 16961723 DOI: 10.1111/j.1527-3466.2006.00088.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride-3.5 hydrate) inhibits Ca(2+)/CaM-dependent nitric oxide synthase (NOS), thereby inhibiting nitric oxide (NO) production. In cardiomyocytes from ischemic rat heart NO and superoxide levels are increased causing protein tyrosine nitration. In hearts subjected to ischemia/reperfusion DY-9760e totally abolishes protein tyrosine nitration. Notably, DY-9760e also inhibits calpain and cas-pase-3 activation that occurs prior to apoptosis in cardiomyocytes. In ischemic hearts fodrin is the substrate for calpain. DY-9760e inhibits fodrin breakdown in the peri-infarct area rather than in the infarct core. In the ischemic rat brain DY-9760e inhibits caspase-3-induced proteolysis of calpastatin, an endogenous calpain inhibitor, suggesting that crosstalk between calpain and caspase-3 is mediated by calpastatin breakdown. Thus, DY-9760e rescues neurons and cardiomyocytes from ischemic injury by inhibiting crosstalk between calpain and caspase-3 as well as protein tyrosine nitration.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Improvement in Solubility of Poorly Water Soluble Drug by Cogrinding with Highly Branched Cyclic Dextrin. J INCL PHENOM MACRO 2006. [DOI: 10.1007/s10847-006-9061-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 2005; 6:E329-57. [PMID: 16353992 PMCID: PMC2750546 DOI: 10.1208/pt060243] [Citation(s) in RCA: 760] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this review is to discuss and summarize some of the interesting findings and applications of cyclodextrins (CDs) and their derivatives in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important CD applications in the design of various novel delivery systems like liposomes, microspheres, microcapsules, and nanoparticles. In addition to their well-known effects on drug solubility and dissolution, bioavailability, safety, and stability, their use as excipients in drug formulation are also discussed in this article. The article also focuses on various factors influencing inclusion complex formation because an understanding of the same is necessary for proper handling of these versatile materials. Some important considerations in selecting CDs in drug formulation such as their commercial availability, regulatory status, and patent status are also summarized. CDs, because of their continuing ability to find several novel applications in drug delivery, are expected to solve many problems associated with the delivery of different novel drugs through different delivery routes.
Collapse
Affiliation(s)
- Rajeswari Challa
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, 110062 New Delhi, India
| | - Alka Ahuja
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, 110062 New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, 110062 New Delhi, India
| | - R. K. Khar
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, 110062 New Delhi, India
| |
Collapse
|
27
|
Blach P, Landy D, Fourmentin S, Surpateanu G, Bricout H, Ponchel A, Hapiot F, Monflier E. Sulfobutyl Ether-β-Cyclodextrins: Promising Supramolecular Carriers for Aqueous Organometallic Catalysis. Adv Synth Catal 2005. [DOI: 10.1002/adsc.200505051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Abstract
The pharmaceutically useful cyclodextrins (CyDs) are classified into hydrophilic, hydrophobic, and ionic derivatives. Because of the multi-functional characteristics and bioadaptability, these CyDs are capable of alleviating the undesirable properties of drug molecules through the formation of inclusion complexes or the form of CyD/drug conjugates. This review outlines the current application of CyDs in design and evaluation of CyD-based drug formulation, focusing on their ability to enhance the drug absorption across biological barriers, the ability to control the rate and time profiles of drug release, and the ability to deliver a drug to a targeted site.
Collapse
Affiliation(s)
- Kaneto Uekama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
29
|
Abstract
Owing to the increasingly globalized nature of the cyclodextrin (CyD)-related science and technology, development of the CyD-based pharmaceutical formulation is rapidly progressing. The pharmaceutically useful CyDs are classified into hydrophilic, hydrophobic, and ionic derivatives. Because of the multi-functional characteristics and bioadaptability, these CyDs are capable of alleviating the undesirable properties of drug molecules through the formation of inclusion complexes or the form of CyD/drug conjugates. This review outlines the current application of CyDs in drug delivery and pharmaceutical formulation, focusing on the following evidences. 1) The hydrophilic CyDs enhance the rate and extent of bioavailability of poorly water-soluble drugs. 2) The amorphous CyDs such as 2-hydroxypropyl-beta-CyD are useful for inhibition of polymorphic transition and crystallization rates of drugs during storage. 3) The delayed release formulation can be obtained by the use of enteric type CyDs such as O-carboxymethyl-O-ethyl-beta-CyD. 4) The hydrophobic CyDs are useful for modification of the release site and/or time profile of water-soluble drugs with prolonged therapeutic effects. 5) The branched CyDs are particularly effective in inhibiting the adsorption to hydrophobic surface of containers and aggregation of polypeptide and protein drugs. 6) The combined use of different CyDs and/or pharmaceutical additives can serve as more functional drug carriers, improving efficacy and reducing side effects. 7) The CyD/drug conjugates may provide a versatile means for the constructions of not only colonic delivery system but also site-specific drug release system, including gene delivery. On the basis of the above-mentioned knowledge, the advantages and limitations of CyDs in the design of advanced dosage forms will be discussed.
Collapse
Affiliation(s)
- Kaneto Uekama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
30
|
Jacquet R, Pennanec R, Elfakir C, Lafosse M. Liquid chromatography analysis of monosubstituted sulfobutyl ether-β-cyclodextrin isomers on porous graphitic carbon. J Sep Sci 2004; 27:1221-8. [PMID: 15537080 DOI: 10.1002/jssc.200401758] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retention behaviour of the three positional isomers of monosubstituted sulfobutyl ether-beta-cyclodextrin was investigated on a porous graphitic carbon (PGC) column. The influence of the mobile phase composition (nature and concentration of organic and electronic modifiers) was studied as well as the effect of column temperature. These hydrophilic and anionic analytes were highly retained on the PGC stationary phase compared to octadecyl bonded phases. The retention is mainly governed by a reversed-phase mechanism with electronic interaction playing a secondary role. An increase in solute retention and efficiency with temperature was observed. Successful isocratic separation with satisfactory baseline resolution of the three isomers of monosubstituted sulfobutyl ether-beta-cyclodextrin was achieved at 75 degrees C on a Hypercarb column by using ammonium acetate as electronic modifier in water-acetonitrile (83:17). The chromatographic methodology developed can be easily used for relative quantification of each isomer within a mixture and can be applied for semi-preparative purification of each one. The evaporative light scattering detector allows the detection of these non UV-visible absorbing molecules.
Collapse
Affiliation(s)
- Romain Jacquet
- Institut de Chimie Organique et Analytique, UMR CNRS 6005, Université d'Orléans, BP 6759, 45067 Orleans Cedex 2, France
| | | | | | | |
Collapse
|
31
|
Babu MKM, Godiwala TN. Toward the Development of an Injectable Dosage Form of Propofol: Preparation and Evaluation of Propofol–Sulfobutyl Ether 7‐β‐Cyclodextrin Complex. Pharm Dev Technol 2004; 9:265-75. [PMID: 15458232 DOI: 10.1081/pdt-200031428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objectives of the present study were to undertake activities toward the development of an aqueous-based formulation of propofol (2,6-diisopropyl phenol), using sulfobutylether 7-beta-cyclodextrin (SBECD). Preformulation studies, including high performance liquid chromatography (HPLC) method development and phase-solubility evaluation in the presence of SBECD were conducted. It was determined that equilibrium solubility has been reached by 4-day and 7-day phase-solubility analysis at 30 degrees C and 37 degrees C. The apparent binding constants and various thermodynamic parameters were calculated from this data. These results suggest that "nonclassical hydrophobic effects" are the driving forces for inclusion complex formation. Compounding and lyophilization of the formulation with 20% SBECD yielded a product with propofol concentration of 10 mg/mL. The formulation properties were probed by using techniques that included modulated differential scanning calorimetry (MDSC) and Karl Fischer analysis. MDSC showed that propofol, SBECD, and the Propofol-SBECD complex displayed thermal properties at widely varying temperatures, suggesting the formation of a new solid form. The active pharmaceutical ingredient in the liquid formulation and lyophilized product was determined by the newly developed and qualified HPLC method. Short-term stability studies of the liquid formulation showed that they were stable for a month at 4 degrees C. Short-term stability studies of the freeze-dried cakes showed that the product was stable for over a month at 4 degrees C, 37 degrees C, and 50 degrees C. Based on these preliminary results, we believe that an aqueous based injectable formulation of propofol with sulfobutylether 7-beta-cyclodextrin can be successfully developed.
Collapse
Affiliation(s)
- M K Manoj Babu
- DSM Pharmaceuticals Inc., Greenville, North Carolina 27834, USA.
| | | |
Collapse
|
32
|
Felton LA, Wiley CJ, Godwin DA. Influence of cyclodextrin complexation on the in vivo photoprotective effects of oxybenzone. Drug Dev Ind Pharm 2004; 30:95-102. [PMID: 15000434 DOI: 10.1081/ddc-120027516] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objective of the current study was to investigate the influence of cyclodextrin complexation on the in vivo photoprotective effects of a model ultraviolet (UV) absorber, oxybenzone, and to compare these novel sunscreens to a commercial SPF 30 sunscreen product. Aqueous-based solutions and suspensions containing 2.7 mg/mL oxybenzone and up to 20% (w/w) hydroxypropyl-beta-cyclodextrin (HPCD) were prepared. The sunscreens were applied to the dorsal skin of SKH-1 hairless mice and the animals were exposed to up to two minimal erythemal doses (MEDs) of UV radiation. Control animals received no sunscreen treatment. Lipid damage, as quantified by decreases in the lipid melting temperature of the epidermis, was determined using differential scanning calorimetry immediately after UV exposure. The number of sunburn cells (SBCs) and the extent of edema were measured 24 hours postexposure. Results showed that all oxybenzone-containing formulations decreased the number of SBCs formed, diminished swelling, and reduced the physical damage to the skin structure, in comparison to control. Thus, complexation did not prevent oxybenzone from reacting with light. The 20% HPCD formulation exhibited more substantial photoprotection at UV exposures of one or two MEDs, as evidenced by the formation of fewer SBCs. The 5% HPCD formulation also provided substantial protection against epidermal lipid damage. These studies demonstrate that inclusion of HPCD in sunscreen formulations may enhance the in vivo photoprotective effects of the UV absorbers. No single HPCD-containing sunscreen, however, was found to be equivalent to a commercially available sunscreen product for all biomarkers investigated.
Collapse
Affiliation(s)
- Linda A Felton
- Health Sciences Center, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | | | | |
Collapse
|
33
|
Fukami T, Mugishima A, Suzuki T, Hidaka S, Endo T, Ueda H, Tomono K. Enhancement of Water Solubility of Fullerene by Cogrinding with Mixture of Cycloamyloses, Novel Cyclic .ALPHA.-1,4-Glucans, via Solid-Solid Mechanochemical Reaction. Chem Pharm Bull (Tokyo) 2004; 52:961-4. [PMID: 15304990 DOI: 10.1248/cpb.52.961] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Improvement of solubility for fullerene (C60) was studied by cogrinding with cycloamyloses using a ball mill in the solid state. Cycloamylose is a novel cyclic alpha-1,4-glucan produced from synthetic amylose by enzymatic reaction. Although sample solutions showed a pale yellow for the initial period of cogrinding with cycloamyloses and C60, the color varied to brown after 48 h. Subsequently, the solubility of C60 was improved markedly to 560 (microg/ml) at 96 h. From powder X-ray diffraction analysis, the peak intensity of crystalline C60 decreased as the cogrinding time was extended. The UV-VIS absorption spectrum of C60 shows absorption bands at 262 and 340 nm in water with cycloamyloses, and 258 and 328 nm in n-hexane. These results suggested that C60 molecules were dispersed into cycloamyloses micellar system and the red-shift of the UV-VIS spectra was due to an intermolecular interaction between C60 and cycloamyloses.
Collapse
Affiliation(s)
- Toshiro Fukami
- Department of Pharmaceutics, College of Pharmacy, Nihon University; Funabashi, Chiba 274-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Nagase Y, Arima H, Wada K, Sugawara T, Satoh H, Hirayama F, Uekama K. Inhibitory Effect of Sulfobutyl Ether β‐cyclodextrin on DY‐9760e‐Induced Cellular Damage: In vitro and in vivo Studies. J Pharm Sci 2003; 92:2466-74. [PMID: 14603492 DOI: 10.1002/jps.10517] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of water-soluble beta-cyclodextrin derivatives (beta-CyDs), such as 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) and sulfobutyl ether beta-cyclodextrin (SBE7-beta-CyD) on cytotoxicity of DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) toward human umbilical vein endothelial cells (HUVECs) in vitro and vascular damage of the auricular vein of rabbits by DY-9760e in vivo were investigated. The spectroscopic study revealed that of the four beta-CyDs SBE7-beta-CyD forms the most stable inclusion complex in phosphate-buffered saline, probably because of a synergetic effect of hydrophobic and electrostatic interactions. beta-CyDs inhibited DY-9760e-induced cell death toward HUVECs in an order of G(2)-beta-CyD < beta-CyD < HP-beta-CyD < SBE7-beta-CyD, which was consistent with the order of the magnitude of stability constants. When the DY-9760e solution was infused into the auricular vein of rabbits for 24 h, SBE7-beta-CyD suppressed a DY-9760e-induced irritation such as thrombus, desquamation of the endothelium vasculitis, and perivasculitis. The present data indicated that SBE7-beta-CyD formed an inclusion complex with DY-9760e in a buffer solution and possessed the protective effect on DY-9760e-induced cytotoxicity toward HUVECs and vascular damage in rabbits. These results suggested potential use of SBE7-beta-CyD as a parenteral carrier for DY-9760e.
Collapse
Affiliation(s)
- Yukihiko Nagase
- Analytical Research Center, Chemical Technology Research Laboratories, Daiichi Pharmaceutical Co. Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Choi HG, Kim DD, Jun HW, Yoo BK, Yong CS. Improvement of Dissolution and Bioavailability of Nitrendipine by Inclusion in Hydroxypropyl-β-cyclodextrin. Drug Dev Ind Pharm 2003; 29:1085-94. [PMID: 14677769 DOI: 10.1081/ddc-120025866] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A significant increase in solubility and dissolution rate of nitrendipine, a slightly soluble calcium channel blocker, was achieved by inclusion complexation with hydroxypropyl-beta-cyclodextrin (HP-beta-CD). The inclusion complex was prepared by solvent evaporation method and characterized by phase solubility method, x-ray diffractometry, infrared spectroscopy, and differential scanning calorimetry. The solubility of nitrendipine increased linearly as a function of HP-beta-CD concentration, resulting in AL-type phase solubility diagram which revealed a formation of inclusion complex in a molar ratio of 1:1, with the apparent association constant of 108.3M(-1). The in vitro dissolution rate of nitrendipine in pH 7.4 phosphate buffer was in the order of inclusion complex, physical mixture, and nitrendipine powder. These three different forms of nitrendipine were administered orally to rats with a dose of 10 mg/kg equivalent to nitrendipine. The AUC of inclusion complex was significantly larger than that of nitrendipine powder. Tmax of inclusion complex was significantly shorter and Cmax was significantly higher than those of nitrendipine powder. Cmax of physical mixture was higher than that of nitrendipine powder. Tmax of physical mixture, however, remained the same. The results indicated that the bioavailability of nitrendipine could be improved markedly by inclusion complexation, possibly due to an increased dissolution rate.
Collapse
Affiliation(s)
- Han-Gon Choi
- College of Pharmacy, Yeungnam University, Gyongsan, Korea
| | | | | | | | | |
Collapse
|
36
|
Nagase Y, Hirata M, Arima H, Tajiri S, Nishimoto Y, Hirayama F, Irie T, Uekama K. Protective effect of sulfobutyl ether beta-cyclodextrin on DY-9760e-induced hemolysis in vitro. J Pharm Sci 2002; 91:2382-9. [PMID: 12379923 DOI: 10.1002/jps.10236] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The hemolytic behavior of a novel cytoprotective agent, DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) was investigated using rabbit erythrocytes. Further, the effects of water-soluble cyclodextrin derivatives, such as 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) and sulfobutyl ether of beta-cyclodextrin (SBE-beta-CyD), on the hemolytic activity of DY-9760e were studied. DY-9760e induced hemolysis at concentrations >0.2-0.3 mM in phosphate buffered saline (PBS) of pH 4.0 and 6.0, where DY-9760e is predominantly in dicationic and monocationic forms, respectively. The hemolytic activity of the monocationic DY-9760e was higher than that of the dicationic species, and the hemolysis at pH 4.0 involved the formation of methemoglobin. DY9760e induced the morphological change of erythrocytes towards membrane invagination at both pH 4.0 and 6.0. SBE7-beta-CyD significantly suppressed the DY-9760e-induced hemolysis and morphological change at both pH 4.0 and 6.0, as well as the formation of methemoglobin at pH 4.0. On the other hand, HP-beta-CyD suppressed only the hemolysis, but neither the morphological change nor the formation of methemoglobin. In addition, the inhibitory effect of SBE7-beta-CyD on the hemolysis was greater than that of HP-beta-CyD. The superior inhibitory effect of SBE7-beta-CyD on the DY-9760-induced hemolysis, the morphological change, and the formation of methemoglobin may be attributable to the formation of a stable inclusion complex with DY-9760e and to the weaker hemolytic activity of SBE7beta-CyD than HP-beta-CyD. These results suggest potential use of SBE7-beta-CyD as a parenteral carrier for DY-9760e.
Collapse
Affiliation(s)
- Y Nagase
- Tokyo Pharmaceutical Research Center, Pharmaceutical Technology Research Laboratories, Daiichi Pharmaceutical Company, 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Felton LA, Wiley CJ, Godwin DA. Influence of hydroxypropyl-beta-cyclodextrin on the transdermal permeation and skin accumulation of oxybenzone. Drug Dev Ind Pharm 2002; 28:1117-24. [PMID: 12455470 DOI: 10.1081/ddc-120014578] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of the present study was to determine the effects of hydroxypropyl-beta-cyclodextrin (HPCD) concentration on the transdermal permeation and skin accumulation of a model ultraviolet (UV) absorber, oxybenzone. The concentration of oxybenzone was held constant at 2.67 mg/mL for all formulations, while the HPCD concentrations varied from 0 to 20% (w/w). Complexation of oxybenzone by HPCD was demonstrated by differential scanning calorimetry. A modified Franz cell apparatus was used in the transdermal experiments, with aliquots of the receptor fluid assayed for oxybenzone by high-performance liquid chromatography. From the permeation data, flux of the drug was calculated. Skins were removed from the diffusion cells at specified time points over a 24-hr period and the oxybenzone content in the skin determined. The aqueous solubility of oxybenzone increased linearly with increasing HPCD concentration, following a Higuchi AL-type complexation. The stability constant of the reaction was calculated from the phase-solubility diagram and found to be 2047 M-1. As the concentration of HPCD was increased from 0 to 10%, transdermal permeation and skin accumulation of oxybenzone increased. Maximum flux occurred at 10% HPCD, where sufficient cyclodextrin was added to completely solubilize all oxybenzone. When the concentration of HPCD was increased to 20%, both transdermal permeation and skin accumulation decreased. These data suggest the formation of a drug reservoir on the surface of the skin.
Collapse
Affiliation(s)
- Linda A Felton
- University of New Mexico, Health Sciences Center, College of Pharmacy, 2502 Marble NE, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|