1
|
Li Z, Jiang Z, Luo Y, Ge C, Wang X, Hu C. Study on the role of alkali halides on the mutarotation and dehydration of d-xylose in aqueous solution. Carbohydr Res 2024; 545:109258. [PMID: 39278155 DOI: 10.1016/j.carres.2024.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Although the xylose mutarotation and transformation have been investigated largely separately, their relationship has been rarely systematically elaborated. The effect of several factors such as xylose concentration, temperature, and salt concentration, affecting the mutarotation of xylose are discussed. Nine alkali halides (LiCl, NaCl, KCl, LiBr, NaBr, KBr, LiI, NaI, and KI) are used to test salt effects. The relationship between xylose rotation rate constant (kM), specific optical rotation at equilibrium ([α]eqm), α/β ratio, H chemical shift difference (ΔΔδ), Gibbs free energy difference (ΔG), hydrogen ion or hydroxide ion concentration ([H+] or [OH-]), and xylose conversion is discussed. Different salts dissolved in water result in different pH of the solutions, which affect the mutarotation of xylose, with the nature of both cation and anion. Shortly, the smaller the cation radius is and the larger the anion radius is, the greater the mutarotation rate is. In the dehydration of xylose to furfural in salty solutions, xylose conversion is positively correlated to mutarotation rate, H+ or OH- concentration, and the energy difference between α-xylopyranose and β-xylopyranose. Although the [α]eqm of xylose is positively correlated with α/β configuration ratio, there is no obvious correlation with xylose dehydration. The conversion to furfural in chlorides is superior to that in bromines and iodides, which is due to the fact that the pH of chloride salts is smaller than that of the corresponding bromide and iodized salts. Higher H+ concentration prefers to accelerate the formation of furfural. In basic salt solutions, the xylulose selectivity is higher than that of furfural at the initial stage of reaction. The furfural selectivity and carbon balance are better in acidic condition rather than in basic condition. In H2O-MTHF (2-Methyltetrahydrofuran) biphasic system, the optimal furfural selectivity of 81.0 % is achieved at 190 °C in 1 h with the assistance of LiI and a little HCl (0.2 mmol, 8 mmol/L in aqueous phase). A high mutarotation rate represents rapid xylose conversion, but a high furfural selectivity prefers in acidic solutions, which would be perfect if organic solvents were available to form biphasic systems.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhicheng Jiang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Yiping Luo
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, PR China
| | - Chenyu Ge
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Xiaoyan Wang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
2
|
Gong SY, Wang P, Wei ZY, Xu HG, Xu XL, Zheng WJ. Structures of (NaSCN) 2(H 2O) n -/0 (n = 0-7) and solvation induced ion pair separation: Gas phase anion photoelectron spectroscopy and theoretical calculations. J Chem Phys 2021; 154:204301. [PMID: 34241176 DOI: 10.1063/5.0049567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We studied (NaSCN)2(H2O)n - clusters in the gas phase using size-selected anion photoelectron spectroscopy. The photoelectron spectra and vertical detachment energies of (NaSCN)2(H2O)n - (n = 0-5) were obtained in the experiment. The structures of (NaSCN)2(H2O)n -/0 up to n = 7 were investigated with density functional theory calculations. Two series of peaks are observed in the spectra, indicating that two types of structures coexist, the high electron binding energy peaks correspond to the chain style structures, and the low electron binding energy peaks correspond to the Na-N-Na-N rhombic structures or their derivatives. For the (NaSCN)2(H2O)n - clusters at n = 3-5, the Na-N-Na-N rhombic structures are the dominant structures, the rhombic four-membered rings start to open at n = 4, and the solvent separated ion pair (SSIP) type of structures start to appear at n = 6. For the neutral (NaSCN)2(H2O)n clusters, the Na-N-Na-N rhombic isomers become the dominant starting at n = 3, and the SSIP type of structures start to appear at n = 5 and become dominant at n = 6. The structural evolution of (NaSCN)2(H2O)n -/0 (n = 0-7) confirms the possible existence of ionic clusters such as Na(SCN)2 - and Na2(SCN)+ in NaSCN aqueous solutions.
Collapse
Affiliation(s)
- Shi-Yan Gong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-You Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wei ZY, Yang LJ, Gong SY, Xu HG, Xu XL, Gao YQ, Zheng WJ. Comparison of the Microsolvation of CaX 2 (X = F, Cl, Br, I) in Water: Size-Selected Anion Photoelectron Spectroscopy and Theoretical Calculations. J Phys Chem A 2021; 125:3288-3306. [PMID: 33872010 DOI: 10.1021/acs.jpca.1c00573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the microsolvation of alkaline-earth dihalides in water and provide information about the dependence of solvation processes on different halides, we investigated CaBr2(H2O)n-, CaI2(H2O)n-, and CaF2(H2O)n- (n = 0-6) clusters using size-selected anion photoelectron spectroscopy and conducted theoretical calculations on these clusters and their neutrals. The results are compared with those of CaCl2(H2O)n-/0 clusters reported previously. It is found that the vertical detachment energies (VDEs) of CaCl2(H2O)n-, CaBr2(H2O)n-, and CaI2(H2O)n- show a similar trend with increasing cluster size, while the VDEs of CaF2(H2O)n- show a different trend. The VDEs of CaF2(H2O)n- are much lower than those of CaCl2(H2O)n-, CaBr2(H2O)n-, and CaI2(H2O)n-. A detailed probing of the structures shows that a significant increase of the Ca-X distance (separation of Ca2+-X- ion pair) in CaCl2(H2O)n-/0, CaBr2(H2O)n-/0, and CaI2(H2O)n-/0 clusters occurred at about n = 5. However, for CaF2(H2O)n-/0, no abrupt change of the Ca-F distance with the increasing cluster size has been observed. In CaCl2(H2O)6-/0, CaBr2(H2O)6-/0, and CaI2(H2O)6-/0, the Ca atom coordinates directly with 5 H2O molecules. However, in CaF2(H2O)n-/0, the Ca atom coordinates directly with only 2 or 3 H2O molecules. The similarity or differences in the structures and coordination numbers are consistent with the fact that CaCl2, CaBr2, and CaI2 have similar solubility, while CaF2 has much lower solubility.
Collapse
Affiliation(s)
- Zhi-You Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jiang Yang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shi-Yan Gong
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wei ZY, Yang LJ, Xu HG, Farooq U, Xu XL, Gao YQ, Zheng WJ. Hydration processes of barium chloride: Size-selected anion photoelectron spectroscopy and theoretical calculations of BaCl 2-water clusters. J Chem Phys 2020; 153:134301. [PMID: 33032412 DOI: 10.1063/5.0021991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to understand the hydration processes of BaCl2, we investigated BaCl2(H2O)n - (n = 0-5) clusters using size-selected anion photoelectron spectroscopy and theoretical calculations. The structures of neutral BaCl2(H2O)n clusters up to n = 8 were also investigated by theoretical calculations. It is found that in BaCl2(H2O)n -/0, the Ba-Cl distances increase very slowly with the cluster size. The hydration process is not able to induce the breaking of a Ba-Cl bond in the cluster size range (n = 0-8) studied in this work. In small BaCl2(H2O)n clusters with n ≤ 5, the Ba atom has a coordination number of n + 2; however, in BaCl2(H2O)6-8 clusters, the Ba atom coordinates with two Cl atoms and (n - 1) water molecules, and it has a coordination number of n + 1. Unlike the previously studied MgCl2(H2O)n - and CaCl2(H2O)n -, negative charge-transfer-to-solvent behavior has not been observed for BaCl2(H2O)n -, and the excess electron of BaCl2(H2O)n - is mainly localized on the Ba atom rather on the water molecules. No observation of Ba2+-Cl- separation in current work is consistent with the lower solubility of BaCl2 compared to MgCl2 and CaCl2. Considering the BaCl2/H2O mole ratio in the saturated solution, one would expect that about 20-30 H2O molecules are needed to break the first Ba-Cl bond in BaCl2.
Collapse
Affiliation(s)
- Zhi-You Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Jiang Yang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Umar Farooq
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi-Qin Gao
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Gong S, Wang P, Wei Z, Yang B, Xu X, Xu H, Zheng W. Microsolvation of Sodium Thiocyanate in Water: Gas Phase Anion Photoelectron Spectroscopy and Theoretical Calculations. J Phys Chem A 2020; 124:7816-7826. [DOI: 10.1021/acs.jpca.0c07071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiyan Gong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyou Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongguang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Hou GL, Liu CW, Li RZ, Xu HG, Gao YQ, Zheng WJ. Emergence of Solvent-Separated Na +-Cl - Ion Pair in Salt Water: Photoelectron Spectroscopy and Theoretical Calculations. J Phys Chem Lett 2017; 8:13-20. [PMID: 27935718 DOI: 10.1021/acs.jpclett.6b02670] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Solvation of salts in water is a fundamental physical chemical process, but the underlying mechanism remains unclear. We investigated the contact ion pair (CIP) to solvent-separated ion pair (SSIP) transition in NaCl(H2O)n clusters with anion photoelectron spectroscopy and ab initio calculations. It is found that the SSIP type of structures show up at n = 2 for NaCl-(H2O)n anions. For neutral NaCl(H2O)n, the CIP structures are dominant at n < 9. At n = 9-12, the CIP structures and SSIP structures of NaCl(H2O)n are nearly degenerate in energy, coincident to the H2O:NaCl molar ratio of NaCl saturated solution and implying that the CIP and SSIP structures can coexist in concentrated solutions. These results are useful for understanding the solvation of salts at the molecular level.
Collapse
Affiliation(s)
- Gao-Lei Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Cheng-Wen Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Ren-Zhong Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
7
|
Zeng Z, Hou GL, Song J, Feng G, Xu HG, Zheng WJ. Microsolvation of LiBO2 in water: anion photoelectron spectroscopy and ab initio calculations. Phys Chem Chem Phys 2015; 17:9135-47. [PMID: 25758204 DOI: 10.1039/c5cp00020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The microsolvation of LiBO2 in water was investigated by conducting anion photoelectron spectroscopy and ab initio studies on the LiBO2(H2O)n(-) (n = 0-5) clusters. By comparing calculations with experiments, the structures of these clusters and their corresponding neutrals were assigned, and their structural evolutions were revealed. During the anionic structural evolution with n increasing to 5, hydroxyborate and metaborate channels were identified and the metaborate channel is more favorable. For the hydroxyborate structures, the anionic Li(+)-BO2(-) ion pair reacts with a water molecule to produce the LiBO(OH)2(-) moiety and three water molecules tend to dissolve this moiety. In the metaborate channel, two types of solvent-separated ion pair (SSIP) geometries were determined as the ring-type and linear-type. The transition from the contact ion pair (CIP) to the ring-type of SSIP starts at n = 3, while that to the linear-type of SSIP occurs at n = 4. In neutral LiBO2(H2O)n clusters, the first water molecule prefers to react with the Li(+)-BO2(-) ion pair to generate the LiBO(OH)2 moiety, analogous to the bulk crystal phase of α-LiBO2 with two O atoms substituted by two OH groups. The Li-O distance in the LiBO(OH)2 moiety increases with the increasing number of water molecules and elongates abruptly at n = 4. Our studies provide new insight into the initial dissolution of LiBO2 salt in water at the molecular level and may be correlated to the bulk state.
Collapse
Affiliation(s)
- Zhen Zeng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
8
|
Feng G, Hou GL, Xu HG, Zeng Z, Zheng WJ. On the dissolution of lithium sulfate in water: anion photoelectron spectroscopy and density functional theory calculations. Phys Chem Chem Phys 2015; 17:5624-31. [PMID: 25623553 DOI: 10.1039/c4cp05698a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The initial dissolution steps of lithium sulfate (Li2SO4) in water were investigated by performing anion photoelectron spectroscopy and density functional theory calculations on the Li2SO4(H2O)n(-) (n = 0-5) clusters. The plausible structures of these clusters and the corresponding neutral clusters were obtained using LC-ωPBE/6-311++G(d,p) calculations by comparing the experimental and theoretical vertical electron detachment energies. Two types of structures for bare Li2SO4(-/0) were found: a turtle-shaped structure and a propeller-shaped structure. For Li2SO4(H2O)n(-) cluster anions with n = 1-3, two kinds of isomers derived from the turtle-shaped and propeller-shaped structures of bare Li2SO4(-) were identified. For n = 4-5, these two kinds of isomers present similar structural and energetic features and thus are not distinguishable. For the anionic clusters the water molecules prefer to firstly interact with one Li atom until fully coordinating it. While for the neutral clusters, the water molecules interact with the two Li atoms alternately, therefore, showing a pairwise solvation behavior. The Li-S distance increases smoothly upon addition of water molecules one by one. Addition of five water molecules to Li2SO4 cannot induce the dissociation of one Li(+) ion because the water molecules are shared by two Li(+) ions.
Collapse
Affiliation(s)
- Gang Feng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
9
|
Liu CW, Wang F, Yang L, Li XZ, Zheng WJ, Gao YQ. Stable Salt–Water Cluster Structures Reflect the Delicate Competition between Ion–Water and Water–Water Interactions. J Phys Chem B 2014; 118:743-51. [DOI: 10.1021/jp408439j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cheng-Wen Liu
- Institute
of Theoretical and Computational Chemistry, College of Chemistry and
Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Feng Wang
- Department
of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Lijiang Yang
- Institute
of Theoretical and Computational Chemistry, College of Chemistry and
Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xin-Zheng Li
- School
of Physics, Peking University, Beijing 100871, China
| | - Wei-Jun Zheng
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Qin Gao
- Institute
of Theoretical and Computational Chemistry, College of Chemistry and
Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Li RZ, Liu CW, Gao YQ, Jiang H, Xu HG, Zheng WJ. Microsolvation of LiI and CsI in Water: Anion Photoelectron Spectroscopy and ab initio Calculations. J Am Chem Soc 2013; 135:5190-9. [PMID: 23432353 DOI: 10.1021/ja4006942] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ren-Zhong Li
- Beijing National Laboratory
for Molecular Sciences, State Key Laboratory of Molecular Reaction
Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cheng-Wen Liu
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hong Jiang
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hong-Guang Xu
- Beijing National Laboratory
for Molecular Sciences, State Key Laboratory of Molecular Reaction
Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei-Jun Zheng
- Beijing National Laboratory
for Molecular Sciences, State Key Laboratory of Molecular Reaction
Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Ghosh MK, Re S, Feig M, Sugita Y, Choi CH. Interionic Hydration Structures of NaCl in Aqueous Solution: A Combined Study of Quantum Mechanical Cluster Calculations and QM/EFP-MD Simulations. J Phys Chem B 2012; 117:289-95. [DOI: 10.1021/jp308731z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manik K. Ghosh
- Department of Chemistry and
Green-Nano Materials Research Center, College of Natural Sciences,
Kyungpook National University, Taegu 702-701, Korea
| | - Suyong Re
- RIKEN Advanced Science Institute,
2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Michael Feig
- Chemistry and Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuji Sugita
- RIKEN Advanced Science Institute,
2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Cheol Ho Choi
- Department of Chemistry and
Green-Nano Materials Research Center, College of Natural Sciences,
Kyungpook National University, Taegu 702-701, Korea
| |
Collapse
|
12
|
Feng Y, Cheng M, Kong XY, Xu HG, Zheng WJ. Microscopic solvation of NaBO2 in water: anion photoelectron spectroscopy and ab initio calculations. Phys Chem Chem Phys 2011; 13:15865-72. [PMID: 21814667 DOI: 10.1039/c1cp20831d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yuan Feng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | |
Collapse
|
13
|
Siu CK, Fox-Beyer BS, Beyer MK, Bondybey VE. Ab Initio Molecular Dynamics Studies of Ionic Dissolution and Precipitation of Sodium Chloride and Silver Chloride in Water Clusters, NaCl(H2O)n and AgCl(H2O)n,n = 6, 10, and 14. Chemistry 2006; 12:6382-92. [PMID: 16718727 DOI: 10.1002/chem.200501569] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.
Collapse
Affiliation(s)
- Chi-Kit Siu
- Department Chemie, Physikalische Chemie 2, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | | | | | |
Collapse
|