1
|
Forest V, Pourchez J. Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient? Adv Drug Deliv Rev 2022; 183:114173. [PMID: 35217112 DOI: 10.1016/j.addr.2022.114173] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022]
Abstract
Respiratory diseases gather a wide range of disorders which are generally difficult to treat, partly due to a poor delivery of drugs to the lung with adequate dose and minimum side effects. With the recent developments of nanotechnology, nano-delivery systems have raised interest. In this review, we detail the main types of nanocarriers that have been developed presenting their respective advantages and limitations. We also discuss the route of administration (systemic versus by inhalation), also considering technical aspects (different types of aerosol devices) with concrete examples of applications. Finally, we propose some perspectives of development in the field such as the nano-in-micro approaches, the emergence of drug vaping to generate airborne carriers in the submicron size range, the development of innovative respiratory models to assess regional aerosol deposition of nanoparticles or the application of nano-delivery to the lung in the treatment of other diseases.
Collapse
|
2
|
Ponkshe P, Feng S, Tan C. Inhalable liposomes for treating lung diseases: clinical development and challenges. Biomed Mater 2021; 16. [PMID: 34134097 DOI: 10.1088/1748-605x/ac0c0c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Inhalation delivery of liposomal drugs has distinct advantages for the treatment of pulmonary diseases. Inhalable liposomes of several drugs are currently undergoing clinical trials for a range of indications in the lungs. Herein, general principles of pulmonary delivery as well as the clinical development of inhalable liposomal drugs are reviewed.
Collapse
Affiliation(s)
- Pranav Ponkshe
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| | - Sheng Feng
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University, Mississippi 38655, The United States
| |
Collapse
|
3
|
Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 2014; 75:81-91. [PMID: 24915637 DOI: 10.1016/j.addr.2014.05.017] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Drug delivery to the lungs by inhalation offers a targeted drug therapy for respiratory diseases. However, the therapeutic efficacy of inhaled drugs is limited by their rapid clearance in the lungs. Carriers providing sustained drug release in the lungs can improve therapeutic outcomes of inhaled medicines because they can retain the drug load within the lungs and progressively release the drug locally at therapeutic levels. This review presents the different formulation strategies developed to control drug release in the lungs including microparticles and the wide array of nanomedicines. Large and porous microparticles offer excellent aerodynamic properties. Their large geometric size reduces their uptake by alveolar macrophages, making them a suitable carrier for sustained drug release in the lungs. Similarly, nanocarriers present significant potential for prolonged drug release in the lungs because they largely escape uptake by lung-surface macrophages and can remain in the pulmonary tissue for weeks. They can be embedded in large and porous microparticles in order to facilitate their delivery to the lungs. Conjugation of drugs to polymers as polyethylene glycol can be particularly beneficial to sustain the release of proteins in the lungs as it allows high protein loading. Drug conjugates can be readily delivered to respiratory airways by any current nebulizer device. Nonetheless, liposomes represent the formulation most advanced in clinical development. Liposomes can be prepared with lipids endogenous to the lungs and are particularly safe. Their composition can be adjusted to modulate drug release and they can encapsulate both hydrophilic and lipophilic compounds with high drug loading.
Collapse
Affiliation(s)
- Cristina Loira-Pastoriza
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Todoroff
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Rita Vanbever
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
4
|
Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev 2014; 75:53-80. [PMID: 24819218 DOI: 10.1016/j.addr.2014.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
A number of lipid-based technologies have been applied to pharmaceuticals to modify their drug release characteristics, and additionally, to improve the drug loading for poorly soluble drugs. These technologies, including solid-state lipid microparticles, many of which are porous in nature, liposomes, solid lipid nanoparticles and nanostructured lipid carriers, are increasingly being developed for inhalation applications. This article provides a review of the rationale for the use of these technologies in the pulmonary delivery of drugs, and summarizes the manufacturing processes and their limitations, the in vitro and in vivo performance of these systems, the safety of these lipid-based systems in the lung, and their promise for commercialization.
Collapse
Affiliation(s)
- David Cipolla
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA.
| | - Boris Shekunov
- Shire Corporation, 725 Chesterbrook Blvd, Wayne, PA 19087, USA
| | - Jim Blanchard
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA
| | - Anthony Hickey
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
5
|
Sahib MN, Darwis Y, Peh KK, Abdulameer SA, Fung Tan YT. Incorporation of Beclomethasone Dipropionate into Polyethylene Glycol-Diacyl Lipid Micelles as a Pulmonary Delivery System. Drug Dev Res 2012. [DOI: 10.1002/ddr.21000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohanad Naji Sahib
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| | - Yusrida Darwis
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| | - Kok Khiang Peh
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| | | | - Yvonne Tze Fung Tan
- School of Pharmaceutical Sciences; Universiti Sains Malaysia; Penang; Malaysia
| |
Collapse
|
6
|
Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung 2012; 190:251-62. [PMID: 22274758 DOI: 10.1007/s00408-011-9360-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Therapeutic liposomal powders (i.e., lipospheres and proliposomes) for dry powder inhalation aerosol delivery, formulated with phospholipids similar to endogenous lung surfactant, offer unique opportunities in pulmonary nanomedicine while offering controlled release and enhanced stability. Many pulmonary diseases such as lung cancer, tuberculosis (TB), cystic fibrosis (CF), bacterial and fungal lung infections, asthma, and chronic obstructive pulmonary disease (COPD) could greatly benefit from this type of pulmonary nanomedicine approach that can be delivered in a targeted manner by dry powder inhalers (DPIs). These delivery systems may require smaller doses for efficacy, exhibit reduced toxicity, fewer side effects, controlled drug release over a prolonged time period, and increased formulation stability as inhaled powders. This state-of-the-art review presents these novel aspects in depth.
Collapse
|
7
|
Gaur PK, Mishra S, Gupta VB, Rathod MS, Purohit S, Savla BA. Targeted drug delivery of Rifampicin to the lungs: formulation, characterization, and stability studies of preformed aerosolized liposome and in situ formed aerosolized liposome. Drug Dev Ind Pharm 2011; 36:638-46. [PMID: 20136485 DOI: 10.3109/03639040903410300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE This study aimed at the preparation and characterization of preformed and in situ formed liposomes for sustained delivery to the lungs. METHODS Two different liposome formulations were prepared and subjected to characterization of physical parameters and drug release profile (% cumulative drug release and % drug retained). Formulations were then subjected to accelerated stability studies as per ICH guidelines. RESULTS In situ formed liposome showed better sustained release profile than the preformed liposome as it released sufficient amount of drug while retaining considerable amount of drug. Upon subjection to accelerated conditions for 60 days, preformed liposome lost the objective of being controlled release formulation.
Collapse
Affiliation(s)
- Praveen Kumar Gaur
- Department of Pharmaceutics, I.T.S. Paramedical (Pharmacy) College, Muradnagar, Uttar Pradesh, India.
| | | | | | | | | | | |
Collapse
|
8
|
Andrade F, Videira M, Ferreira D, Sarmento B. Nanocarriers for pulmonary administration of peptides and therapeutic proteins. Nanomedicine (Lond) 2011; 6:123-41. [DOI: 10.2217/nnm.10.143] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peptides and therapeutic proteins have been the target of intense research and development in recent years by the pharmaceutical and biotechnology industry. Preferably, they are administered through the parenteral route, which is associated with reduced patient compliance. Formulations for noninvasive administration of peptides and therapeutic proteins are currently being developed. Among them, inhalation appears as a promising alternative for the administration of such products. Several formulations for pulmonary delivery are in various stages of development. Despite positive results, conventional formulations have some limitations such as reduced bioavailability and side effects. Nanocarriers may be an alternative way to overcome the problems of conventional formulations. Some nanocarrier-based formulations of peptides and therapeutic proteins are currently under development. The results obtained are promising, revealing the usefulness of these systems in the delivery of such drugs.
Collapse
Affiliation(s)
- Fernanda Andrade
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha 164 4050-047, Portugal
| | - Mafalda Videira
- iMed.UL – Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Portugal
| | - Domingos Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha 164 4050-047, Portugal
| | - Bruno Sarmento
- Centro de Investigação em Ciências da Saúde (CICS), Department of Pharmaceutical Sciences, Instituto Superior de Ciências da Saúde – Norte, Gandra, Portugal
| |
Collapse
|
9
|
Tolman JA, Williams RO. Advances in the pulmonary delivery of poorly water-soluble drugs: influence of solubilization on pharmacokinetic properties. Drug Dev Ind Pharm 2010; 36:1-30. [DOI: 10.3109/03639040903092319] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Zaru M, Sinico C, De Logu A, Caddeo C, Lai F, Manca ML, Fadda AM. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: in vitro and in vivo evaluation. J Liposome Res 2009; 19:68-76. [PMID: 19515009 DOI: 10.1080/08982100802610835] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mycobacterium avium complex (MAC), the most frequent cause of opportunistic nontuberculous pulmonary infection, is made up of a group of intracellular pathogens that are able to survive and multiply inside lung alveolar macrophages. As nebulized liposomes are reported to be effective to target antibacterial agents to macrophages, in this work we have prepared and characterized re-dispersible freeze-dried rifampicin (RFP)-loaded vesicles by using soy lecithin (SL) and a commercial, enriched mixture of soy phosphatidylcholine (Phospholipon 90, P90) with or without cholesterol. The obtained results showed that RFP could be loaded stably in SL vesicles only when cholesterol was not present in the film preparation, whereas with P90 vesicles, the highest stability was obtained with formulations prepared with P90/cholesterol 7:1 or 4:1 molar ratios. RFP-liposome aerosols were generated using an efficient high-output continuous-flow nebulizer, driven by a compressor. After the experiments, nebulization efficiency (NE%) and nebulization efficiency of the encapsulated drug (NEED%) were evaluated. The results of our study indicated that nebulization properties and viscosity of formulations prepared with the low-transition-temperature phospholipids, SL and P90, are affected by vesicle composition. However, all formulations showed a good stability during nebulization and they were able to retain more than 65% of the incorporated drug. The effect of liposome encapsulation on lung levels of RFP following aerosol inhalation was determined in rats. The in vitro intracellular activity of RFP-loaded liposomes against MAC residing in macrophage-like J774 cells was also evaluated. Results indicated that liposomes are able to inhibit the growth of MAC in infected macrophages and to reach the lower airways in rats.
Collapse
Affiliation(s)
- Marco Zaru
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Cagliari, Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. J Pharm Sci 2008; 97:4915-33. [DOI: 10.1002/jps.21367] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Klyashchitsky BA, Owen AJ. Nebulizer-compatible liquid formulations for aerosol pulmonary delivery of hydrophobic drugs: glucocorticoids and cyclosporine. J Drug Target 2000; 7:79-99. [PMID: 10617295 DOI: 10.3109/10611869909085494] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review discusses pulmonary delivery of glucocorticoids and cyclosporine in pharmaceutically acceptable organic solvents and liposomes, as well as in micellar solutions and microemulsions, by means of liquid aerosols generated by nebulizers. The review points out the importance of a variety of parameters for successful treatment of immunologically mediated lung diseases by inhalation of drug containing aerosols with particular references to physico-chemical properties of formulations, aerosol parameters, pharmacokinetics, and lung deposition in experimental animals and humans. The prospects for the use of these types of formulations for clinical treatment of asthma, lung transplant rejection processes and other lung diseases are summarized.
Collapse
|
13
|
Hersperger R, Schuler W, Zenke G. Preparation and immunosuppressive activity of 32-(O)-acylated and 32-(O)-thioacylated analogues of ascomycin. Bioorg Med Chem Lett 1999; 9:227-32. [PMID: 10021934 DOI: 10.1016/s0960-894x(98)00702-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of 32-(O)-acylated and 32-(O)-thioacylated derivatives of the antibiotic ascomycin (1) have been synthesized. These readily accessible analogues exhibit potent immunosuppressive activity in vitro, as measured by an interleukin-2 reporter gene assay and the mixed lymphocyte reaction. Such molecules are expected to have a therapeutic potential in chronic inflammatory diseases of the airways such as asthma.
Collapse
Affiliation(s)
- R Hersperger
- Novartis Pharma AG, Research, Respiratory Disease Therapeutic Area, Basle, Switzerland.
| | | | | |
Collapse
|