1
|
Zhong Q, Reyes-Jurado F, Calumba KF. Structured soft particulate matters for delivery of bioactive compounds in foods and functioning in the colon. SOFT MATTER 2024; 20:277-293. [PMID: 38090993 DOI: 10.1039/d3sm00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The present review discusses challenges, perspectives, and current needs of delivering bioactive compounds (BCs) using soft particulate matters (SPMs) for gut health. SPMs can entrap BCs for incorporation in foods, preserve their bioactivities during processing, storage, and gastrointestinal digestion, and deliver BCs to functioning sites in the colon. To enable these functions, physical, chemical, and biological properties of BCs are integrated in designing various types of SPMs to overcome environmental factors reducing the bioavailability and bioactivity of BCs. The design principles are applied using food grade molecules with the desired properties to produce SPMs by additionally considering the cost, sustainability, and scalability of manufacturing processes. Lastly, to make delivery systems practical, impacts of SPMs on food quality are to be evaluated case by case, and health benefits of functional foods incorporated with delivery systems are to be confirmed and must outweigh the cost of preparing SPMs.
Collapse
Affiliation(s)
- Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| | | | - Kriza Faye Calumba
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
2
|
Farasati Far B, Naimi-Jamal MR, Safaei M, Zarei K, Moradi M, Yazdani Nezhad H. A Review on Biomedical Application of Polysaccharide-Based Hydrogels with a Focus on Drug Delivery Systems. Polymers (Basel) 2022; 14:5432. [PMID: 36559799 PMCID: PMC9784417 DOI: 10.3390/polym14245432] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Over the last years of research on drug delivery systems (DDSs), natural polymer-based hydrogels have shown many scientific advances due to their intrinsic properties and a wide variety of potential applications. While drug efficacy and cytotoxicity play a key role, adopting a proper DDS is crucial to preserve the drug along the route of administration and possess desired therapeutic effect at the targeted site. Thus, drug delivery technology can be used to overcome the difficulties of maintaining drugs at a physiologically related serum concentration for prolonged periods. Due to their outstanding biocompatibility, polysaccharides have been thoroughly researched as a biological material for DDS advancement. To formulate a modified DDS, polysaccharides can cross-link with different molecules, resulting in hydrogels. According to our recent findings, targeted drug delivery at a certain spot occurs due to external stimulation such as temperature, pH, glucose, or light. As an adjustable biomedical device, the hydrogel has tremendous potential for nanotech applications in involved health areas such as pharmaceutical and biomedical engineering. An overview of hydrogel characteristics and functionalities is provided in this review. We focus on discussing the various kinds of hydrogel-based systems on their potential for effectively delivering drugs that are made of polysaccharides.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, Turkey
| | - Kimia Zarei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Marzieh Moradi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hamed Yazdani Nezhad
- Department of Mechanical Engineering & Aeronautics, City University of London, London EC1V 0HB, UK
| |
Collapse
|
3
|
Optimization of the Preformulation and Formulation Parameters in the Development of New Extended-Release Tablets Containing Felodipine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, new extended-release tablets containing felodipine were developed. For the orally administered formulations, optimization of the preformulation and formulation parameters was performed to assess the performance of the dosage form. Initially, the morphological and physical characterization of two forms of felodipine (microcrystalline and macrocrystalline) using Fourier transform infrared spectroscopy, differential scanning calorimetry and optical microscopy was performed. The pharmaco-technical properties of the two felodipine forms were also determined. Subsequently, formulation studies for felodipine extended-release tablets were performed. Mathematical modelling of release kinetics of felodipine from developed formulations using a power law model was also performed. Based on the influence of formulation factors on the in vitro availability of felodipine in experimental tablets, a new extended-release tablet formulation was established.
Collapse
|
4
|
Wang Q, Jiao J, Cai Q, Wang Q, Zhou W. Design and evaluation of a zero-order controlled release system based on pre-hydrated constant release area prepared by compression coating technology. Pharm Dev Technol 2021; 26:1120-1129. [PMID: 34698603 DOI: 10.1080/10837450.2021.1998912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The main aim of this research work was to develop and evaluate a drug delivery system with compression coating technology to control drug release at a constant rate. The compression coated tablets (CCTs) consist of the hydrophilic matrix core and the hydrophobic waxy coating. The presence of hydrophobic waxy coating could provide sufficient time for hydration of the core to prevent initial burst release. The mechanism research revealed that erosion was the main way of drug release and the releasing area was constant during the entire release process because the core tablet was located in the cup-shaped coating after one side cover was dropped at the lag time. This made the release behavior exhibit zero-order kinetics (R2>0.99). The coating rupture strength and the core swelling force at the lag time influenced erosion rate thus affecting release rate. Different solubility of drugs (propranolol hydrochloride, melatonin, and nifedipine) was selected as model drugs and the properties of the prepared CCTs in terms of formulations and in vitro release were evaluated. The release rate was independent of solubility, medium pH, and osmotic pressure. This zero-order controlled system could be applied to both controlled drug delivery and chrono pharmaceutical drug delivery.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jie Jiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Qingchun Cai
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Qiaochu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Wei Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Sriram A, Tangirala S, Atmakuri S, Hoque S, Modani S, Srivastava S, Mahajan S, Maji I, Kumar R, Khatri D, Madan J, Singh PK. Budding Multi-matrix Technology-a Retrospective Approach, Deep Insights, and Future Perspectives. AAPS PharmSciTech 2021; 22:264. [PMID: 34734325 DOI: 10.1208/s12249-021-02133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The human race is consistently striving for achieving good health and eliminate disease-causing factors. For the last few decades, scientists have been endeavoring to invent and innovate technologies that can substitute the conventional dosage forms and enable targeted and prolonged drug release at a particular site. The novel multi-matrix technology is a type of matrix formulation where the formulation is embraced to have a matrix system with multiple number of matrices. The MMX technology embraces with a combination of outer hydrophilic layer and amphiphilic/lipophilic core layer, within which drug is encapsulated followed by enteric coating for extended/targeted release at the required site. In comparison to conventional oral drug delivery systems and other drug delivery systems, multi-matrix (MMX) technology formulations afford many advantages. Additionally, it attributes for targeting strategy aimed at the colon and offers modified prolonged drug release. Thus, it has emerged rapidly as a potential alternative option in targeted oral drug delivery. However, the development of this MMX technology formulations is a exigent task and also has its own set of limitations. Due to its promising advantages and colon targeting strategy over the other colon targeted drug delivery systems, premier global companies are exploiting its potential. This article review deep insights into the formulation procedures, drug delivery mechanism, advantages, limitations, safety and efficacy studies of various marketed drug formulations of MMX technology including regulatory perspectives and future perspectives.
Collapse
|
6
|
Obireddy SR, Lai WF. Preparation and characterization of 2-hydroxyethyl starch microparticles for co-delivery of multiple bioactive agents. Drug Deliv 2021; 28:1562-1568. [PMID: 34286634 PMCID: PMC8297403 DOI: 10.1080/10717544.2021.1955043] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The present study reports the generation of 2-hydroxyethyl starch microparticles for co-delivery and controlled release of multiple agents. The obtained microparticles are characterized by using Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. By using ofloxacin and ketoprofen as drug models, the release sustainability of the microparticles is examined at pH 1.2, 5.4, and 6.8 at 37 °C, with Fickian diffusion being found to be the major mechanism controlling the kinetics of drug release. Upon being loaded with the drug models, the microparticles show high efficiency in acting against Escherichia coli and Bacillus cereus. The results suggest that our reported microparticles warrant further development for applications in which co-administration of multiple bioactive agents is required.
Collapse
Affiliation(s)
| | - Wing-Fu Lai
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China.,School of Education, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Toxicology of Blister Agents: Is Melatonin a Potential Therapeutic Option? Diseases 2021; 9:diseases9020027. [PMID: 33920224 PMCID: PMC8167553 DOI: 10.3390/diseases9020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Blister or vesicant chemical warfare agents (CWAs) have been widely used in different military conflicts, including World War I and the Iran-Iraq War. However, their mechanism of action is not fully understood. Sulfur and nitrogen mustard exert toxic effects not only through the alkylation of thiol-bearing macromolecules, such as DNA and proteins, but also produce free radicals that can develop direct toxic effects in target organs such as the eyes, skin, and respiratory system. The lack of effective treatments against vesicant CWAs-induced injury makes us consider, in this complex scenario, the use and development of melatonin-based therapeutic strategies. This multifunctional indoleamine could facilitate neutralization of the oxidative stress, modulate the inflammatory response, and prevent the DNA damage, as well as the long-term health consequences mediated by vesicant CWAs-induced epigenetic mechanisms. In this context, it would be essential to develop new galenic formulations for the use of orally and/or topically applied melatonin for the prophylaxis against vesicant CWAs, as well as the development of post-exposure treatments in the near future.
Collapse
|
8
|
Roy SK, Das P, Mondal A, Mandal A, Kuotsu K. Design, formulation and evaluation of multiparticulate time programmed system of ramipril for pulsed release: An approach in the management of early morning surge in blood pressure. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Oral hydrophilic matrices having non uniform drug distribution for zero-order release: A literature review. J Control Release 2020; 325:72-83. [DOI: 10.1016/j.jconrel.2020.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023]
|
10
|
Evaluation of the Drug Release Kinetics in Assembled Modular Systems Based on the Dome Matrix Technology. J Pharm Sci 2020; 109:2819-2826. [DOI: 10.1016/j.xphs.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022]
|
11
|
Drop-by-drop solvent hot antisolvent interaction method for engineering nanocrystallization of sulfamethoxazole to enhanced water solubility and bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Damera DP, Kaja S, Janardhanam LSL, Alim S, Venuganti VVK, Nag A. Synthesis, Detailed Characterization, and Dual Drug Delivery Application of BSA Loaded Aquasomes. ACS APPLIED BIO MATERIALS 2019; 2:4471-4484. [DOI: 10.1021/acsabm.9b00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Sk Alim
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
13
|
pH-independent controlled release tablets containing nanonizing valsartan solid dispersions for less variable bioavailability in humans. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Kumar R, Siril PF. Enhancing the Solubility of Fenofibrate by Nanocrystal Formation and Encapsulation. AAPS PharmSciTech 2018; 19:284-292. [PMID: 28702816 DOI: 10.1208/s12249-017-0840-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/22/2017] [Indexed: 12/20/2022] Open
Abstract
Development of techniques to enhance bioavailability of drugs having poor water solubility is a big challenge for pharmaceutical industry. Solubility can be enhanced by particle size reduction and encapsulation using hydrophilic polymers. Fenofibrate (FF) is a drug for regulating lipids. Multi-fold enhancement in solubility of FF has been achieved by nanocrystal formation in the present study. Nanoparticles were prepared by an evaporation-assisted solvent-antisolvent interaction (EASAI) approach. Water-soluble polymers, viz. polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and hydroxypropyl methylcellulose (HPMC), were used to encapsulate and thus control the particle size of FF nanocrystals. Spherical particles having average particle size well below 30 nm could be prepared under optimum conditions. Almost complete release of the drug molecules from the polymer-stabilized nanocrystals within 2 h was clearly evident from the in vitro drug release studies. Infrared (FTIR) spectroscopy indicated the absence of solvent impurities and any strong interaction between the drug and stabilizers. The polymorphic form of raw-FF was retained in the nanoparticles as per the X-ray diffraction (XRD) patterns. Lower crystallinity of the nanoformulated samples compared to raw-FF was confirmed by differential scanning calorimetric (DSC) studies.
Collapse
|
15
|
Patel M, Kaneko T, Matsumura K. Switchable release nano-reservoirs for co-delivery of drugs via a facile micelle–hydrogel composite. J Mater Chem B 2017; 5:3488-3497. [DOI: 10.1039/c7tb00701a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Kumar R, Siril PF, Javid F. Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1335-44. [DOI: 10.1016/j.msec.2016.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 01/10/2023]
|
17
|
Phaechamud T, Choncheewa CE. Double-Layered Matrix of Shellac Wax-Lutrol in Controlled Dual Drug Release. AAPS PharmSciTech 2016; 17:1326-1335. [PMID: 26694059 DOI: 10.1208/s12249-015-0468-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
Double-layered matrix tablets prepared from shellac wax-lutrol were fabricated using a molding technique, and the release of hydrochlorothiazide and propranolol HCl from the inner tablet or outer layer was studied. The simultaneous determination of dual drug release was measured with first derivative UV spectrophotometry. The tablet containing shellac wax as the outer tablet and lutrol as the inner tablet showed more appropriate drug release and the size of the inner layer influenced the rate of drug release. In addition, the aqueous solubility of the drug and the components of the inner tablet or outer layer affected the drug release behavior. Most of the double-layered tablets exhibited the drug-release pattern which fitted well with zero-order kinetic due to the restriction of the release surface. Biphasic drug release pattern was found in the tablet of which the outer layer rapidly eroded. The drug dissolution data from drug-loaded-outer layer could predict the dissolution time for the outer layer of drug-loaded inner part of double-layered matrix tablet. Incorporation of lutrol increased the drug release from shellac wax matrix, and the zero-order release was attained by fabricating it into a double-layered tablet.
Collapse
|
18
|
Kaur S, Harjai K, Chhibber S. Bacteriophage mediated killing of Staphylococcus aureus in vitro on orthopaedic K wires in presence of linezolid prevents implant colonization. PLoS One 2014; 9:e90411. [PMID: 24594764 PMCID: PMC3940871 DOI: 10.1371/journal.pone.0090411] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023] Open
Abstract
Background Infections of bone and joint tissues following arthroplasty surgeries remain a major challenge in orthopaedic settings. Methicillin resistant Staphylococcus aureus (MRSA) is recognised as an established pathogen in such infections. Combination therapy using linezolid and bacteriophage impregnated in biopolymer was investigated in the present study as an alternative strategy to prevent MRSA colonisation on the orthopaedic implant surface. Methodology Coating of stainless steel orthopaedic grade K-wires was achieved using hydroxypropylmethlycellulose (HPMC) mixed with phage alone, linezolid alone and phage and linezolid together. The potential of these agents to inhibit adhesion of S.aureus (MRSA) 43300 on K-wires was assessed. Coated and naked wires were analysed by scanning electron microscopy (SEM) and fluorescent staining. Result Significant reduction in bacterial adhesion was achieved on phage/linezolid wires in comparison to naked as well as HPMC coated wires. However, maximum reduction in bacterial adherence (∼4 log cycles) was observed on the wires coated with phage-linezolid combination. The frequency of emergence of resistant mutants was also negligible in presence of both the agents. Conclusion This study provides evidence to confirm that local delivery system employing linezolid (a potent protein synthesis inhibitor) along with a broad spectrum lytic bacteriophage (capable of self-multiplication) is able to attack the adhered as well as surrounding bacteria present near the implant site. Unlike other antibiotic based therapies, this combination has the potential to significantly restrict the emergence of resistant mutants, thus paving the way for effective treatment of MRSA associated infection of medical implants.
Collapse
Affiliation(s)
- Sandeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
- * E-mail:
| |
Collapse
|
19
|
Kumar R, Siril PF. Ultrafine carbamazepine nanoparticles with enhanced water solubility and rate of dissolution. RSC Adv 2014. [DOI: 10.1039/c4ra08495k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Solubility of carbamazepine (CBZ) nanoparticles and CBZ–PVP nanoparticles was 11.9 and 21.5 times higher than the raw–CBZ.
Collapse
Affiliation(s)
- Raj Kumar
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005, India
| | - Prem Felix Siril
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005, India
| |
Collapse
|
20
|
Peng HT, Bouak F, Vartanian O, Cheung B. A physiologically based pharmacokinetics model for melatonin--effects of light and routes of administration. Int J Pharm 2013; 458:156-68. [PMID: 24120727 DOI: 10.1016/j.ijpharm.2013.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/17/2013] [Accepted: 09/24/2013] [Indexed: 01/20/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models were developed using MATLAB Simulink(®) to predict diurnal variations of endogenous melatonin with light as well as pharmacokinetics of exogenous melatonin via different routes of administration. The model was structured using whole body, including pineal and saliva compartments, and parameterized based on the literature values for endogenous melatonin. It was then optimized by including various intensities of light and various dosage and formulation of melatonin. The model predictions generally have a good fit with available experimental data as evaluated by mean squared errors and ratios between model-predicted and observed values considering large variations in melatonin secretion and pharmacokinetics as reported in the literature. It also demonstrates the capability and usefulness in simulating plasma and salivary concentrations of melatonin under different light conditions and the interaction of endogenous melatonin with the pharmacokinetics of exogenous melatonin. Given the mechanistic approach and programming flexibility of MATLAB Simulink(®), the PBPK model could provide predictions of endogenous melatonin rhythms and pharmacokinetic changes in response to environmental (light) and experimental (dosage and route of administration) conditions. Furthermore, the model may be used to optimize the combined treatment using light exposure and exogenous melatonin for maximal phase advances or delays.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada - Toronto, 1133 Sheppard Avenue West, Toronto, Ontario, Canada M3K 2C9.
| | | | | | | |
Collapse
|
21
|
Cao QR, Choi JS, Liu Y, Xu WJ, Yang M, Lee BJ, Cui JH. A formulation approach for development of HPMC-based sustained release tablets for tolterodine tartrate with a low release variation. Drug Dev Ind Pharm 2012; 39:1720-30. [DOI: 10.3109/03639045.2012.730528] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Dilnawaz F, Singh A, Mewar S, Sharma U, Jagannathan NR, Sahoo SK. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 2012; 33:2936-51. [PMID: 22264522 DOI: 10.1016/j.biomaterials.2011.12.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/26/2011] [Indexed: 11/29/2022]
Abstract
There is much interest in utilizing the intrinsic properties of magnetic nanoparticles (MNPs) for the theranostic approaches in medicine. With an aim to develop a potential therapeutics for glioma treatment, efficacy of aqueous dispersible paclitaxel loaded MNPs (Pac-MNPs) were studied in glioblastoma cell line (U-87). The identified potential receptor, glycoprotein non-metastatic melanoma protein B (GPNMB) overexpressed by glioblastoma cells, was actively targeted using GPNMB conjugated Pac-MNPs in U-87 cells. As blood brain barrier (BBB) is the primary impediment in the treatment of glioblastoma, therefore, an attempt was taken to evaluate the biodistribution and brain uptake of Pac-MNPs in rats. The bioavailability of Pac-MNPs illustrated a prolonged blood circulation in vivo, which demonstrated the presence of significant amounts of drug in rat brain tissues as compared to native paclitaxel. Further, the transmission electron microscopy (TEM) study revealed significant accumulation of the Pac-MNPs in the brain tissues. Being an effective contrast enhancement agent for magnetic resonance imaging (MRI) at tissue levels, the MNPs devoid of any surfactant demonstrated enhanced contrast effect in liver and brain imaging. Hence, the significant prevalence of drugs in the rat brain tissues, in vitro targeting potentiality as well as the augmented contrast effect elicit the non-invasive assessment and theranostic applications of MNPs for brain tumor therapy.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, Orissa, India
| | | | | | | | | | | |
Collapse
|
23
|
A new application of lipid nanoemulsions as coating agent, providing zero-order hydrophilic drug release from tablets. JOURNAL OF DRUG DELIVERY 2012; 2012:271319. [PMID: 22272376 PMCID: PMC3261482 DOI: 10.1155/2012/271319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 11/18/2022]
Abstract
The objective of the present investigation was to evaluate potential of nanoemulsions as a coating material for the tablets. The nanoemulsion of size less than 100 nm was prepared using a simple and low-energy spontaneous emulsification method. Conventional tablets containing theophylline as a model hydrophilic drug were prepared. The theophylline tablets were coated with the nanoemulsion using a fluid bed coater. The effect of different levels of the nanoemulsion coating on the theophylline release was evaluated. The theophylline tablets containing different levels of the nanoemulsion coating could be successfully prepared. Interestingly, the coating of tablet with the nanoemulsion resulted in zero-order release of theophylline from the tablets. The noncoated theophylline tablets release the entire drug in less than 2 minutes, whereas nanoemulsion coating delayed the release of theophylline from tablets. This investigation establishes the proof of concept for the potential of nanoemulsions as a coating material for tablets.
Collapse
|
24
|
Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK. Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS APPLIED MATERIALS & INTERFACES 2011; 3:842-856. [PMID: 21370886 DOI: 10.1021/am101196v] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Exercising complementary roles of polymer-coated magnetic nanoparticles for precise drug delivery and image contrast agents has attracted significant attention in biomedical applications. The objective of this study was to prepare and characterize magnetic nanoparticles embedded in polylactide-co-glycolide matrixes (PLGA-MNPs) as a dual drug delivery and imaging system capable of encapsulating both hydrophilic and hydrophobic drugs. PLGA-MNPs were capable of encapsulating both hydrophobic and hydrophilic drugs in a 2:1 ratio. Biocompatibility, cellular uptake, cytotoxicity, membrane potential, and apoptosis were carried out in two different cancer cell lines (MCF-7 and PANC-1). The molecular basis of induction of apoptosis was validated by Western blotting analysis. For targeted delivery of drugs, targeting ligand such as Herceptin was used, and such a conjugated system demonstrated enhanced cellular uptake and an augmented synergistic effect in an in vitro system when compared with native drugs. Magnetic resonance imaging was carried out both in vitro and in vivo to assess the efficacy of PLGA-MNPs as contrast agents. PLGA-MNPs showed a better contrast effect than commercial contrast agents due to higher T(2) relaxivity with a blood circulation half-life ∼ 47 min in the rat model. Thus, our results demonstrated the dual usable purpose of formulated PLGA-MNPs toward either, in therapeutics by delivering different hydrophobic or hydrophilic drugs individually or in combination and imaging for cancer therapeutics in the near future.
Collapse
Affiliation(s)
- Abhalaxmi Singh
- Laboratory of Nanomedicine, Institute of Life Sciences, Nalco Square, Bhubaneswar -751023, Orissa
| | | | | | | | | | | |
Collapse
|
25
|
Tran PHL, Choe JS, Tran TTD, Park YM, Lee BJ. Design and mechanism of on-off pulsed drug release using nonenteric polymeric systems via pH modulation. AAPS PharmSciTech 2011; 12:46-55. [PMID: 21161457 DOI: 10.1208/s12249-010-9562-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/30/2010] [Indexed: 11/30/2022] Open
Abstract
The aim was to design a pH-sensitive pulsatile drug delivery system that allows for an on-off pulsed release of a drug using polyacrylic acid (PAA) blended with ethyl cellulose (EC) in different ratios. PAA, a polyelectrolyte polymer, exhibits a highly coiled conformation at low pH but a highly extended structure at high pH. Fumaric acid, which is an internal acidifying agent, was incorporated into the hydroxypropyl methylcellulose-based core tablets to create an acidic microenvironmental pH (pH(M)). The concentration of fumaric acid inside the core tablet and the ratio of PAA/EC in the coating layer were very crucial in modulating drug release behaviors. When the fumaric acid was retained in the core tablet, it gave a more acidic pH(M), so that the PAA was kept in a highly coiled state in the coated film, which hindered drug release ("off" release pattern). Interestingly, the release profiles of the drug and fumaric acid from coated tablets showed the on-off pulsed pattern upon dissolution. Imaging analyses using scanning electron microscopy, near-infrared imaging, confocal laser scanning microscopy, and Fourier transform infrared spectroscopy confirmed this on-off release behavior of the drug and fumaric acid from coated tablets.
Collapse
|
26
|
Piao ZZ, Lee KH, Kim DJ, Lee HG, Lee J, Oh KT, Lee BJ. Comparison of release-controlling efficiency of polymeric coating materials using matrix-type casted films and diffusion-controlled coated tablet. AAPS PharmSciTech 2010; 11:630-6. [PMID: 20373152 DOI: 10.1208/s12249-010-9377-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 12/29/2009] [Indexed: 11/30/2022] Open
Abstract
Polymeric coating materials have been widely used to modify release rate of drug. We compared physical properties and release-controlling efficiency of polymeric coating materials using matrix-type casted film and diffusion-controlled coated tablet. Hydroxypropylmethyl cellulose (HPMC) with low or high viscosity grade, ethylcellulose (EC) and Eudragit(R) RS100 as pH-independent polymers and Eudragit S100 for enteric coatings were chosen to prepare the casted film and coated tablet. Tensile strength and contact angle of matrix-type casted film were invariably in the decreasing order: EC> Eudragit S100> HPMC 100000> Eudragit RS100>HPMC 4000. There was a strong linear correlation between tensile strength and contact angle of the casted films. In contrast, weight loss (film solubility) of the matrix-type casted films in three release media (gastric, intestinal fluid and water) was invariably in the increasing order: EC < HPMC 100000 < Eudragit RS100 < HPMC 4000 with an exception of Eudragit S100. The order of release rate of matrix-type casted films was EC > HPMC 100000 > Eudragit RS100 > HPMC 4000 > Eudragit S100. Interestingly, diffusion-controlled coated tablet also followed this rank order except Eudragit S100 although release profiles and lag time were highly dependent on the coating levels and type of polymeric coating materials. EC and Eudragit RS100 produced sustained release while HPMC and Eudragit S100 produced pulsed release. No molecular interactions occurred between drug and coating materials using (1)H-NMR analysis. The current information on release-controlling power of five different coating materials as matrix carrier or diffusion-controlled film could be applicable in designing oral sustained drug delivery.
Collapse
|
27
|
Okuda T, Tominaga K, Kidoaki S. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Control Release 2010; 143:258-64. [DOI: 10.1016/j.jconrel.2009.12.029] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/07/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
|
28
|
Khan Z, Pillay V, Choonara YE, du Toit LC. Drug delivery technologies for chronotherapeutic applications. Pharm Dev Technol 2010; 14:602-12. [PMID: 19883249 DOI: 10.3109/10837450902922736] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has been proven that the body follows a 24-hour cycle called a circadian rhythm. This cycle is coordinated by the suprachiasmatic nucleus and controls nearly all bodily functions including those related to drug delivery. Knowledge of the body's circadian rhythm leads to an improved understanding of diseases and their treatment, known as chronotherapy, such that synchronizing drug application in accordance with the natural rhythm of the body leads to improved disease management and a greater patient therapeutic outcome. Chronotherapeutic diseases include asthma, cardiovascular diseases, glaucoma, rheumatoid arthritis and cancers. In order to treat these diseases numerous chronotherapeutic drug delivery systems have been developed, such that drug is released in the period when it is most needed. This review paper attempts to concisely explicate the role of circadian rhythms in various disease states and furthermore describes the various oral drug delivery technologies that have been employed for the treatment of chronotherapeutic diseases.
Collapse
Affiliation(s)
- Zaheeda Khan
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | |
Collapse
|
29
|
Sher P, Ingavle G, Ponrathnam S, Benson JR, Li NH, Pawar AP. Novel/conceptual floating pulsatile system using high internal phase emulsion based porous material intended for chronotherapy. AAPS PharmSciTech 2009; 10:1368-80. [PMID: 19936939 DOI: 10.1208/s12249-009-9331-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 10/13/2009] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to design a novel/conceptual delivery system using ibuprofen, anticipated for chronotherapy in arthritis with porous material to overcome the formulation limits (multiple steps, polymers, excipients) and to optimize drug loading for a desired release profile suitable for in vitro investigations. The objective of this delivery system lies in the availability of maximum drug amount for absorption in the wee hours as recommended. Drug loading using 3(2) factorial design on porous carrier, synthesized by high internal phase emulsion technique using styrene and divinylbenzene, was done via solvent evaporation using methanol and dichloromethane. The system was evaluated in vitro for drug loading, encapsulation efficiency, and surface characterization by scanning electron, atomic force microscopy, and customized drug release study. This study examined critical parameters such as solvent volume, drug amount, and solvent polarity on investigations related to drug adsorption and release mostly favoring low-polarity solvent dichloromethane. Overall release in all batches ranged 0.98-52% in acidic medium and 71-94% in basic medium. These results exhibit uniqueness in achieving the least drug release of 0.98%, an ideal one, without using any release modifiers, making it distinct from other approaches/technologies for time and controlled release and for chronotherapy.
Collapse
|
30
|
Sivak WN, Zhang J, Petoud S, Beckman EJ. Simultaneous drug release at different rates from biodegradable polyurethane foams. Acta Biomater 2009; 5:2398-408. [PMID: 19398389 DOI: 10.1016/j.actbio.2009.03.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 02/21/2009] [Accepted: 03/24/2009] [Indexed: 11/26/2022]
Abstract
In this study, we present an approach for the simultaneous release of multiple drug compounds at different rates from single-phase polyurethane foams constructed from lysine diisocyanate (LDI) and glycerol. The anti-cancer compounds DB-67 and doxorubicin were covalently incorporated into polyurethane foams, whereby drug release can then occur in concert with material degradation. To begin, the reactions of DB-67 and doxorubicin with LDI in the presence of a tertiary amine catalyst were monitored with infrared spectroscopy; each compound formed urethane linkages with LDI. Fluorescent spectra of DB-67 and doxorubicin were then recorded in phosphate-buffered saline, pH 7.4 (PBS), to ensure that each anti-cancer compound could be quantitatively detected alone and in combination. Doxorubicin and DB-67 were then incorporated into a series of degradable LDI-glycerol polyurethane foams alone and in combination with one another. The sol content, average porosity and drug distribution throughout each foam sample was measured and found to be similar amongst all foam samples. The stability of DB-67 and doxorubicin's fluorescent signal was then assessed over a 2-week period at 70 degrees C. Release rates of the compounds from the foams were assessed over a 10-week period at 4, 22, 37 and 70 degrees C by way of fluorescence spectroscopy. Release was found to be temperature-dependent, with rates related to the chemical structure of the incorporated drug. This study demonstrates that differential release of covalently bound drugs is possible from simple single-phase, degradable polyurethane foams.
Collapse
|
31
|
Sher P, Ingavle G, Ponrathnam S, Poddar P, Pawar AP. Modulation and optimization of drug release from uncoated low density porous carrier based delivery system. AAPS PharmSciTech 2009; 10:547-58. [PMID: 19424805 DOI: 10.1208/s12249-009-9239-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 04/09/2009] [Indexed: 11/30/2022] Open
Abstract
The purpose of this research work was to explore an application of uncoated porous drug carrier prepared by single-step drug adsorption for a delivery system based on integration of floating and pulsatile principles intended for chronotherapy. This objective was achieved by utilizing 3(2) factorial design, solvent volume (X(1)) and drug amount (X(2)) as selected variables, for drug adsorption using solvents, methanol, and dichloromethane (DCM), of varying polarity. Nitrogen adsorption (N(2)), scanning electron microscopy of cross-sections, and atomic force microscopy were done to study adsorption patterns and their effect on release pattern. Drug release study was customized by performing for 6 h in acidic environment to mimic gastroretention followed by basic environment akin to transit phase. Correlation between porous data from mercury and N(2) adsorption was probably studied for the first time. Observed regression analysis values for pore volume, surface area, and drug release indicated the influence of selected variables. Total release range in acidic medium was 12.77-24.57% for methanol, 8.79-15.26% for DCM, and final release of 69.45-92.23% for methanol, and 60.16-99.99% for DCM influenced by varying internal geometries was observed. Present form of drug delivery system devoid of any additives/excipients influencing drug release shows distinct behavior from other approaches/technologies in chronotherapy by (a) observing desired low drug release (8%) in acidic medium, (b) overcoming the limitations of process variables caused by multiple formulation steps and different characteristic polymers, (c) reducing time consumption due to single step process, and (d) extending as controlled/extended release.
Collapse
|
32
|
Cantor SL, Hoag SW, Augsburger LL. Formulation and Characterization of a Compacted Multiparticulate System for Modified Release of Water-Soluble Drugs—Part II Theophylline and Cimetidine. Drug Dev Ind Pharm 2009; 35:568-82. [DOI: 10.1080/03639040802459460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Papadokostaki K, Stavropoulou A, Sanopoulou M, Petropoulos J. An advanced model for composite planar three-layer matrix-controlled release devices. J Memb Sci 2008. [DOI: 10.1016/j.memsci.2007.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Piao ZZ, Lee MK, Lee BJ. Colonic release and reduced intestinal tissue damage of coated tablets containing naproxen inclusion complex. Int J Pharm 2008; 350:205-11. [DOI: 10.1016/j.ijpharm.2007.08.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/26/2007] [Accepted: 08/26/2007] [Indexed: 11/16/2022]
|
35
|
Mercier GT, Nehete PN, Passeri MF, Nehete BN, Weaver EA, Templeton NS, Schluns K, Buchl SS, Sastry KJ, Barry MA. Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules. Vaccine 2007; 25:8687-701. [PMID: 18063450 DOI: 10.1016/j.vaccine.2007.10.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/08/2007] [Accepted: 10/15/2007] [Indexed: 11/27/2022]
Abstract
Targeted delivery of vaccine candidates to the gastrointestinal (GI) tract holds potential for mucosal immunization, particularly against mucosal pathogens like the human immunodeficiency virus (HIV). Among the different strategies for achieving targeted release in the GI tract, namely the small intestine, pH sensitive enteric coating polymers have been shown to protect solid oral dosage forms from the harsh digestive environment of the stomach and dissolve relatively rapidly in the small intestine by taking advantage of the luminal pH gradient. We developed an enteric polymethacrylate formulation for coating hydroxy-propyl-methyl-cellulose (HPMC) capsules containing lyophilized Adenoviral type 5 (Ad5) vectors expressing HIV-1 gag and a string of six highly-conserved HIV-1 envelope peptides representing broadly cross-reactive CD4(+) and CD8(+) T cell epitopes. Oral immunization of rhesus macaques with these capsules primed antigen-specific mucosal and systemic immune responses and subsequent intranasal delivery of the envelope peptide cocktail using a mutant cholera toxin adjuvant boosted cellular immune responses including, antigen-specific intracellular IFN-gamma-producing CD4(+) and CD8(+) effector memory T cells in the intestine. These results suggest that the combination of oral adenoviral vector priming followed by intranasal protein/peptide boosting may be an effective mucosal HIV vaccination strategy for targeting viral antigens to the GI tract and priming systemic and mucosal immunity.
Collapse
Affiliation(s)
- George T Mercier
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim TW, Ji CW, Shim SY, Lee BJ. Modified release of coated sugar spheres using drug-containing polymeric dispersions. Arch Pharm Res 2007; 30:124-30. [PMID: 17328252 DOI: 10.1007/bf02977788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A drug-containing polymeric dispersion was applied onto nonpareil sugar spheres (18/20 mesh) using a fluid-bed spray coater. Eudragit RS30D was selected as the polymeric coating material. Melatonin secreted by the pineal gland in a circadian rhythm was used as a model drug. The release behaviors of the coated sugar spheres were investigated in gastric fluid (pH 1.4) for 2 h, and then continuously in intestinal fluid (pH 7.4) for 14 h. The release rate of the coated sugar spheres decreased with increasing coating levels. The solvent (ethanol) in the coating dispersions significantly decreased the release of the drug due to the good dispersion of the low solubility melatonin in the polymeric films. The polymer (polyvinylpyrrolidone, PVP) and drug contents in the coating dispersions did not affect the release rate. Most of all, the release profiles were drastically changed according to the type and concentration of plasticizers used. The current coating methods that use drug-containing polymeric dispersions could be useful for simultaneous drug loadings and their modified release. The solubilization and controlled release of poorly water-soluble drugs can be achieved as both the solubilizers and drugs are present in the drug-containing polymeric dispersions.
Collapse
Affiliation(s)
- Tae-Wan Kim
- National Research Laboratory for Bioavailability Control, College of Pharmacy, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | |
Collapse
|
37
|
Cao QR, Choi YW, Cui JH, Lee BJ. Formulation, release characteristics and bioavailability of novel monolithic hydroxypropylmethylcellulose matrix tablets containing acetaminophen. J Control Release 2005; 108:351-61. [PMID: 16154656 DOI: 10.1016/j.jconrel.2005.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 08/03/2005] [Accepted: 08/08/2005] [Indexed: 11/30/2022]
Abstract
Effect of incorporating pharmaceutical excipients on the in vitro release profiles and the release mechanism of monolithic hydroxypropylmethylcellulose (4000 cps) matrix tablets (m-HPMC tablets) in terms of mimicking the dual drug release character of bi-layered Tylenol ER tablets was studied. We also compared the in vitro release profiles of optimized m-HPMC matrix tablet and Tylenol ER tablet in water, pH 1.2 gastric fluid, and pH 6.8 intestinal fluid, and in vivo drug bioavailabilities in healthy human volunteers. Acetaminophen was used as the model drug. The m-HPMC tablets were prepared using a wet granulation method followed by direct compression. Release profiles and swelling rates of m-HPMC tablets were found to be highly influenced by the types and amounts of pharmaceutical excipients incorporated. Starch 1500 (Prejel) and sodium lauryl sulfate (SLS) played a key role in determining the dissolution rate of m-HPMC tablets. Additional excipients, i.e., microcrystalline cellulose (Avicel PH101) and NaH2PO4 were used to tune the release profiles of m-HPMC tablets. The effect of pharmaceutical excipients on drug release from HPMC-based matrix tablets was found to be mainly due to a change in hydrophilic gel expansion and on physical interactions between the drug and HPMC. The optimized m-HPMC tablet with a balanced ratio of Prejel, SLS, Avicel PH101, and NaH2PO4 in the formulation showed dual release profiles in water, pH 1.2 gastric fluid, and pH 6.8 intestinal fluid in vitro. Dual release was defined as immediate drug release within few minutes followed by extended release over 8 h. The similarity factors of m-HPMC tablets and bi-layered Tylenol ER tablets were 79.8, 66.1, and 82.7 in water, gastric fluid and intestinal fluid, respectively, indicating the equivalence of the two release profiles. No significant in vivo bioavailability differences were observed in healthy human volunteers. The developed m-HPMC tablet with dual release characteristics can be easily prepared using a conventional high-speed tablet machine and could provide an alternative to commercially available bilayered Tylenol ER tablets.
Collapse
Affiliation(s)
- Qing-Ri Cao
- National Research Laboratory for Bioavailability Control, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | | | | | | |
Collapse
|
38
|
Cao QR, Choi YW, Cui JH, Lee BJ. Effect of solvents on physical properties and release characteristics of monolithic hydroxypropylmethylcellulose matrix granules and tablets. Arch Pharm Res 2005; 28:493-501. [PMID: 15918526 DOI: 10.1007/bf02977682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Effect of solvents on physical characteristics and release characteristics of monolithic acetaminophen (APAP) hydroxypropylmethylcellulose (HPMC) matrix granules and tablets were examined. Various types and amounts of solvents were employed for granulation and cOAting. APAP and other excipients were mixed and were then wet-granulated in a high-speed mixer. The dried granules were then directly compressed and film-coated with low viscosity grade HPMC. As the amount of water increased, the size of granules also increased, showing more spherical and regular shape. However, manufacturing problems such as capping and lamination in tableting occurred when water was used alone as a granulating solvent. The physical properties of HPMC matrix granules were not affected by the batch size. The initial release rate as well as the amount of APAP dissolved had a tendency to decrease as the water level increased. Addition of nonaqueous solvent like ethanol to water resulted in good physical properties of granules. When compared to water/ethanol as a coating solvent, the release rate of film-coated HPMC matrix tablets was more sensitive to the conditions of coating and drying in methylene chloride/ethanol. Most of all, monolithic HPMC matrix tablet when granulated in ethanol/water showed dual release with about 50% drug release immediately within few minutes followed by extended release. It was evident that the type and amount of solvents (mainly water and ethanol) were very important for wet granulation and film-coating of monolithic HPMC matrix tablet, because the plastic deforming and fragmenting properties of material were changed by the different strengths of the different solvents.
Collapse
Affiliation(s)
- Qing-Ri Cao
- National Research Laboratory for Bioavailability Control, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | | | | | | |
Collapse
|
39
|
Cao QR, Choi HG, Kim DC, Lee BJ. Release behavior and photo-image of nifedipine tablet coated with high viscosity grade hydroxypropylmethylcellulose: effect of coating conditions. Int J Pharm 2004; 274:107-17. [PMID: 15072787 DOI: 10.1016/j.ijpharm.2004.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 12/15/2003] [Accepted: 01/06/2004] [Indexed: 11/15/2022]
Abstract
An orally applicable nifedipine-loaded core tablets was coated using high viscosity grade HPMC (100,000 cps) in ethanol/water cosolvent. The release of coated tablet was evaluated using USP paddle method in 900 ml of simulated gastric fluid (pH 1.2) for 2 h followed by intestinal fluid (pH 6.8) for 10 h. The surface morphologies using scanning electron microscope and photo-images using digital camera of coated tablet during the release test were also visualized, respectively. The viscosity of hydro-alcoholic HPMC solution largely decreased as the amount of ethanol increased. There was no significant difference in viscosity among plasticizers used. The distinct and continuous coated layer was observed using scanning electron microscope. However, the surface morphologies were highly dependent on HPMC concentration and ratio of coating solvents. The higher ratio of ethanol/water gave a longer lag time prior to drug release. Lag time also increased as a function of the coating levels based on weight gains due to increased thickness of coated layer. Lag time is inversely correlated with HPMC concentration in ethanol/water (5:1) cosolvent. As the HPMC concentration slightly decreased from 3.8 to 3.2% in hydroalcoholic coating solution, a large increase of lag time was observed. As the swelling (mixing) time of high viscosity grade HPMC in ethanol/water cosolvent increased from 1 to 5 h, the release rate was decreased due to enough plasticization of polymer. Based on photo-imaging analysis, the coated tablet was initially swelled and gelled without erosion and disintegration over 5 h. The disintegration of the coated tablet was occurred approximately 7 h after dissolution, resulting in pulsed release of drug. The high viscosity grade HPMC can be applicable for polymeric coating after careful selection of solvent systems. The release behavior and lag time could be controlled by coating conditions such as HPMC concentration, ethanol/water ratio as a coating solvent, coating level and swelling (mixing) time of coating solution. The current time-controlled release tablet coated with high viscosity grade HPMC with a designated lag time followed by a rapid release may provide an alternative to site specific or colonic delivery of drugs. In addition, the release behavior can be matched with body's circadian rhythm pattern in chronotherapy.
Collapse
Affiliation(s)
- Qing-Ri Cao
- National Research Laboratory for Bioavailability Control, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | | | | | | |
Collapse
|
40
|
Varma MVS, Kaushal AM, Garg A, Garg S. Factors Affecting Mechanism and Kinetics of Drug Release from Matrix-Based Oral Controlled Drug Delivery Systems. ACTA ACUST UNITED AC 2004. [DOI: 10.2165/00137696-200402010-00003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Retention of progesterone by four carbonaceous materials: study of the adsorption kinetics. Colloids Surf A Physicochem Eng Asp 2003. [DOI: 10.1016/s0927-7757(03)00324-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|