1
|
Zarus GM, Ruiz P, Benedict R, Brenner S, Carlson K, Jeong L, Morata TC. Which Environmental Pollutants Are Toxic to Our Ears?-Evidence of the Ototoxicity of Common Substances. TOXICS 2024; 12:650. [PMID: 39330578 PMCID: PMC11435700 DOI: 10.3390/toxics12090650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Ototoxicity refers to the adverse effects of substances on auditory or vestibular functions. This study examines the evidence of ototoxicity's association with exposure to common environmental pollutants, as documented in toxicological profiles by the Agency for Toxic Substances and Disease Registry. Our aim was to evaluate whether the evidence supports modifying the charting of ototoxic effects in the summary tables of these toxicological profiles and providing a guide for scientists to access these data. Health outcomes of interest included hearing loss, vestibular effects, cochlear lesions, tonal alterations, cellular damage, and ototoxicity-related outcomes (neurological, nephrotoxic, hepatic, and developmental effects). We obtained ototoxicity information for 62 substances. Hearing-related effects were reported, along with neurological effects. Overall, 26 profiles reported strong evidence of ototoxicity, including 13 substances previously designated as ototoxic by other health and safety agencies. Commonly studied outcomes included hearing loss, damage to ear anatomy, and auditory dysfunction. Vestibular dysfunction and tinnitus are rarely studied. Our findings highlight the lack of conclusive evidence of ototoxic properties for many substances, especially for pesticides and herbicides. This review supports charting the evidence of ototoxicity separately in toxicological profiles' summary tables. Improving the communication of ototoxicity-related health effects might impact their recognition and prompt further research. A stronger evidence base could support improved prevention efforts in terms of serious health outcomes.
Collapse
Affiliation(s)
- Gregory M. Zarus
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA 30341, USA; (P.R.); (R.B.); (S.B.)
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA 30341, USA; (P.R.); (R.B.); (S.B.)
| | - Rae Benedict
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA 30341, USA; (P.R.); (R.B.); (S.B.)
| | - Stephan Brenner
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA 30341, USA; (P.R.); (R.B.); (S.B.)
| | - Krystin Carlson
- National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA; (K.C.); (T.C.M.)
| | - Layna Jeong
- Georgia Tech School of Biological Sciences, Atlanta, GA 30332, USA;
| | - Thais C. Morata
- National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA; (K.C.); (T.C.M.)
| |
Collapse
|
2
|
Lin X, Luo J, Tan J, Yang L, Wang M, Li P. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1393. [PMID: 34733945 PMCID: PMC8506545 DOI: 10.21037/atm-21-2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Objective This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) caused by ototoxic agents. Background SNHL primarily results from damage to the sensory organ within the inner ear or the vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models of SNHL are commonly established using ototoxic agents. Methods A literature search of PubMed, Embase, and Web of Science was performed for research articles on hearing loss and ototoxic agents in animal models of hearing loss. Conclusions Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the auditory system in humans.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mitian Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Sisto R, Cerini L, Sanjust F, Carbonari D, Gherardi M, Gordiani A, L'Episcopo N, Paci E, Pigini D, Tranfo G, Moleti A. Distortion product otoacoustic emission sensitivity to different solvents in a population of industrial painters. Int J Audiol 2020; 59:443-454. [PMID: 31910691 DOI: 10.1080/14992027.2019.1710776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Objective: To evaluate the ototoxic effect of the exposure to different organic solvents and noise using distortion product otoacoustic emissions (DPOAEs).Design: The exposure to different solvents was evaluated by measuring, before and at the end of the work-shift, the urinary concentrations of solvent metabolites used as dose biomarkers. The urinary concentrations of DNA and RNA oxidation products were also measured as biomarkers of oxidative damage. The simultaneous exposure to noise was also evaluated. DPOAEs and pure tone audiometry (PTA) were used as outcome variables, and were correlated to the exposure variables using mixed effect linear regression models.Study sample: Seventeen industrial painters exposed to a solvent mixture in a naval industry. A sample size of 15 was estimated from previous studies as sufficient for discriminating small hearing level and DPOAE level differences (5 dB and 2 dB, respectively) at a 95% confidence level.Results: Statistically significant associations were found between the DPOAE level and the urinary dose biomarkers and the oxidative damage biomarkers. DPOAE level and the logarithm of the metabolite concentration showed a significant negative correlation.Conclusions: DPOAE are sensitive biomarkers of exposure to ototoxic substances and can be effectively used for the early detection of hearing dysfunction.
Collapse
Affiliation(s)
- Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Luigi Cerini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Filippo Sanjust
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Damiano Carbonari
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Monica Gherardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Andrea Gordiani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Nunziata L'Episcopo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Enrico Paci
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Daniela Pigini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monteporzio Catone, Italy
| | - Arturo Moleti
- Department of Physics, University of Roma 'Tor Vergata', Rome, Italy
| |
Collapse
|
4
|
Wathier L, Venet T, Bonfanti E, Nunge H, Cosnier F, Parietti-Winkler C, Campo P, Pouyatos B. Measuring the middle-ear reflex: A quantitative method to assess effects of industrial solvents on central auditory pathways. Neurotoxicology 2019; 74:58-66. [DOI: 10.1016/j.neuro.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
5
|
Zhang M, Wang Y, Wang X, Liu J, Zhang J, Gu Q. Roles of oxidative stress, apoptosis, and heme oxygenase-1 in ethylbenzene-induced renal toxicity in NRK-52E cells. Toxicol Ind Health 2016; 32:1952-1960. [DOI: 10.1177/0748233715602834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ethylbenzene is an important industrial chemical, but its potential toxicity is a recent concern. Our previous study investigated the renal toxicity of ethylbenzene in vivo. Rat renal epithelial cells (NRK-52E cells) were incubated with 0, 30, 60, and 90 µmol/L of ethylbenzene for 24 h in vitro to investigate ethylbenzene-induced oxidative stress, apoptosis, and the expression of heme oxygenase 1 (HO-1) and nuclear factor (erythroid 2)-related factor 2 (Nrf2). The cell survival rate in the ethylbenzene-treated groups was significantly lower than the control group. Ethylbenzene significantly increased intracellular reactive oxygen species and apoptosis. Malondialdehyde levels were significantly elevated compared with the control group, while glutathione levels and glutathione peroxidase activities were decreased in ethylbenzene-treated groups. The activities of catalase and superoxide dismutase were also markedly reduced. A significant dose-dependent increase in HO-1 and Nrf2 messenger RNA expression levels was observed in ethylbenzene-treated groups compared with the control group. Similarly, ethylbenzene treatment enhanced protein expression of HO-1 and Nrf2 in a dose-dependent manner. Our results indicated that ethylbenzene induced oxidative stress, apoptosis, and upregulation of HO-1 and Nrf2 in NRK-52E cells, which contributes to ethylbenzene-induced renal toxicity.
Collapse
Affiliation(s)
- Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Yanrang Wang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Xiaojun Wang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Jing Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Jingshu Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| | - Qing Gu
- Tianjin Centers for Disease Control and Prevention, Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Sweeney LM, Kester JE, Kirman CR, Gentry PR, Banton MI, Bus JS, Gargas ML. Risk assessments for chronic exposure of children and prospective parents to ethylbenzene (CAS No. 100-41-4). Crit Rev Toxicol 2015; 45:662-726. [PMID: 25997510 DOI: 10.3109/10408444.2015.1046157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Potential chronic health risks for children and prospective parents exposed to ethylbenzene were evaluated in response to the Voluntary Children's Chemical Evaluation Program. Ethylbenzene exposure was found to be predominately via inhalation with recent data demonstrating continuing decreases in releases and both outdoor and indoor concentrations over the past several decades. The proportion of ethylbenzene in ambient air that is attributable to the ethylbenzene/styrene chain of commerce appears to be relatively very small, less than 0.1% based on recent relative emission estimates. Toxicity reference values were derived from the available data, with physiologically based pharmacokinetic models and benchmark dose methods used to assess dose-response relationships. An inhalation non-cancer reference concentration or RfC of 0.3 parts per million (ppm) was derived based on ototoxicity. Similarly, an oral non-cancer reference dose or RfD of 0.5 mg/kg body weight/day was derived based on liver effects. For the cancer assessment, emphasis was placed upon mode of action information. Three of four rodent tumor types were determined not to be relevant to human health. A cancer reference value of 0.48 ppm was derived based on mouse lung tumors. The risk characterization for ethylbenzene indicated that even the most highly exposed children and prospective parents are not at risk for non-cancer or cancer effects of ethylbenzene.
Collapse
|
7
|
Juárez-Pérez CA, Torres-Valenzuela A, Haro-García LC, Borja-Aburto VH, Aguilar-Madrid G. Ototoxicity effects of low exposure to solvent mixture among paint manufacturing workers. Int J Audiol 2014; 53:370-6. [DOI: 10.3109/14992027.2014.888597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Ethylbenzene-Induced Hearing Loss, Neurobehavioral Function, and Neurotransmitter Alterations in Petrochemical Workers. J Occup Environ Med 2013; 55:1001-6. [DOI: 10.1097/jom.0b013e31829f3142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
|
10
|
Fuente A, McPhersonY B, Hormazabal X. Self-reported hearing performance in workers exposed to solvents. Rev Saude Publica 2013; 47:86-93. [DOI: 10.1590/s0034-89102013000100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/23/2012] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE: To compare hearing performance relating to the peripheral and central auditory system between solvent-exposed and non-exposed workers. METHODS: Forty-eight workers exposed to a mixture of solvents and 48 non-exposed control subjects of matched age, gender and educational level were selected to participate in the study. The evaluation procedures included: pure-tone audiometry (500 - 8,000 Hz), to investigate the peripheral auditory system; the Random Gap Detection test, to assess the central auditory system; and the Amsterdam Inventory for Auditory Disability and Handicap, to investigate subjects' self-reported hearing performance in daily-life activities. A Student t test and analyses of covariance (ANCOVA) were computed to determine possible significant differences between solvent-exposed and non-exposed subjects for the hearing level, Random Gap Detection test and Amsterdam Inventory for Auditory Disability and Handicap. Pearson correlations among the three measures were also calculated. RESULTS: Solvent-exposed subjects exhibited significantly poorer hearing thresholds for the right ear than non-exposed subjects. Also, solvent-exposed subjects exhibited poorer results for the Random Gap Detection test and self-reported poorer listening performance than non-exposed subjects. Results of the Amsterdam Inventory for Auditory Disability and Handicap were significantly correlated with the binaural average of subject pure-tone thresholds and Random Gap Detection test performance. CONCLUSIONS: Solvent exposure is associated with poorer hearing performance in daily life activities that relate to the function of the peripheral and central auditory system.
Collapse
|
11
|
Fechter LD, Fisher JW, Chapman GD, Mokashi VP, Ortiz PA, Reboulet JE, Stubbs JE, Lear AM, McInturf SM, Prues SL, Gearhart CA, Fulton S, Mattie DR. Subchronic JP-8 jet fuel exposure enhances vulnerability to noise-induced hearing loss in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:299-317. [PMID: 22409492 DOI: 10.1080/15287394.2012.652060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Both laboratory and epidemiological studies published over the past two decades have identified the risk of excess hearing loss when specific chemical contaminants are present along with noise. The objective of this study was to evaluate the potency of JP-8 jet fuel to enhance noise-induced hearing loss (NIHL) using inhalation exposure to fuel and simultaneous exposure to either continuous or intermittent noise exposure over a 4-wk exposure period using both male and female Fischer 344 rats. In the initial study, male (n = 5) and female (n = 5) rats received inhalation exposure to JP-8 fuel for 6 h/d, 5 d/wk for 4 wk at concentrations of 200, 750, or 1500 mg/m³. Parallel groups of rats also received nondamaging noise (constant octave band noise at 85 dB(lin)) in combination with the fuel, noise alone (75, 85, or 95 dB), or no exposure to fuel or noise. Significant concentration-related impairment of auditory function measured by distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) threshold was seen in rats exposed to combined JP-8 plus noise exposure when JP-8 levels of 1500 mg/m³ were presented with trends toward impairment seen with 750 mg/m³ JP-8 + noise. JP-8 alone exerted no significant effect on auditory function. In addition, noise was able to disrupt the DPOAE and increase auditory thresholds only when noise exposure was at 95 dB. In a subsequent study, male (n = 5 per group) and female (n = 5 per group) rats received 1000 mg/m³ JP-8 for 6 h/d, 5 d/wk for 4 wk with and without exposure to 102 dB octave band noise that was present for 15 min out of each hour (total noise duration 90 min). Comparisons were made to rats receiving only noise, and thosereceiving no experimental treatment. Significant impairment of auditory thresholds especially for high-frequency tones was identified in the male rats receiving combined treatment. This study provides a basis for estimating excessive hearing loss under conditions of subchronic JP-8 jet fuel exposure.
Collapse
Affiliation(s)
- L D Fechter
- Jerry Pettis Memorial VA Medical Center, Loma Linda, California 92357, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vyskocil A, Truchon G, Leroux T, Lemay F, Gendron M, Gagnon F, Majidi NE, Boudjerida A, Lim S, Emond C, Viau C. A weight of evidence approach for the assessment of the ototoxic potential of industrial chemicals. Toxicol Ind Health 2011; 28:796-819. [PMID: 22064681 DOI: 10.1177/0748233711425067] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is accumulating epidemiological evidence that exposure to some solvents, metals, asphyxiants and other substances in humans is associated with an increased risk of acquiring hearing loss. Furthermore, simultaneous and successive exposure to certain chemicals along with noise can increase the susceptibility to noise-induced hearing loss. There are no regulations that require hearing monitoring of workers who are employed at locations in which occupational exposure to potentially ototoxic chemicals occurs in the absence of noise exposure. This project was undertaken to develop a toxicological database allowing the identification of possible ototoxic substances present in the work environment alone or in combination with noise exposure. Critical toxicological data were compiled for chemical substances included in the Quebec occupational health regulation. The data were evaluated only for noise exposure levels that can be encountered in the workplace and for realistic exposure concentrations up to the short-term exposure limit or ceiling value (CV) or 5 times the 8-h time-weighted average occupational exposure limit (TWA OEL) for human data and up to 100 times the 8-h TWA OEL or CV for animal studies. In total, 224 studies (in 150 articles of which 44 evaluated the combined exposure to noise and a chemical) covering 29 substances were evaluated using a weight of evidence approach. For the majority of cases where potential ototoxicity was previously proposed, there is a paucity of toxicological data in the primary literature. Human and animal studies indicate that lead, styrene, toluene and trichloroethylene are ototoxic and ethyl benzene, n-hexane and p-xylene are possibly ototoxic at concentrations that are relevant to the occupational setting. Carbon monoxide appears to exacerbate noise-induced hearing dysfunction. Toluene interacts with noise to induce more severe hearing losses than the noise alone.
Collapse
Affiliation(s)
- A Vyskocil
- Institut de recherche en santé publique de l'Université de Montréal, Département de santé environnementale et santé au travail, Université de Montréal, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fechter LD, Gearhart CA, Fulton S. Ototoxic potential of JP-8 and a Fischer-Tropsch synthetic jet fuel following subacute inhalation exposure in rats. Toxicol Sci 2010; 116:239-48. [PMID: 20378580 DOI: 10.1093/toxsci/kfq110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study was undertaken to identify the ototoxic potential of two jet fuels presented alone and in combination with noise. Rats were exposed via a subacute inhalation paradigm to JP-8 jet fuel, a kerosene-based fuel refined from petroleum, and a synthetic fuel produced by the Fischer-Tropsch (FT) process. Although JP-8 contains small ( approximately 5%) concentrations of aromatic hydrocarbons some of which known to be ototoxic, the synthetic fuel does not. The objectives of this study were to identify a lowest observed adverse effect level and a no observed adverse effect level for each jet fuel and to provide some preliminary, but admittedly, indirect evidence concerning the possible role of the aromatic hydrocarbon component of petroleum-based jet fuel on hearing. Rats (n = 5-19) received inhalation exposure to JP-8 or to FT fuel for 4 h/day on five consecutive days at doses of 500, 1000, and 2000 mg/m(3). Additional groups were exposed to various fuel concentrations followed by 1 h of an octave band of noise, noise alone, or no exposure to fuel or noise. Significant dose-related impairment in the distortion product otoacoustic emissions (DPOAE) was seen in subjects exposed to combined JP-8 plus noise exposure when JP-8 levels of at least 1000 mg/m(3) were presented. No noticeable impairment was observed at JP-8 levels of 500 mg/m(3) + noise. In contrast to the effects of JP-8 on noise-induced hearing loss, FT exposure had no effect by itself or in combination with noise exposure even at the highest exposure level tested. Despite an observed loss in DPOAE amplitude seen only when JP-8 and noise were combined, there was no loss in auditory threshold or increase in hair cell loss in any exposure group.
Collapse
Affiliation(s)
- Laurence D Fechter
- Research Service, Loma Linda VA Medical Center, Loma Linda, California 92357, USA.
| | | | | |
Collapse
|
14
|
Zhang M, Wang Y, Wang Q, Yang J, Yang D, Liu J, Li J. Involvement of mitochondria-mediated apoptosis in ethylbenzene-induced renal toxicity in rat. Toxicol Sci 2010; 115:295-303. [PMID: 20156836 DOI: 10.1093/toxsci/kfq046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ethylbenzene is an important industrial chemical that has recently been classified as a possible human carcinogen (International Agency of Research on Cancer class 2B), but the available data do not support the genotoxic mechanism of ethylbenzene-induced tumors in kidney. We investigated the effects of ethylbenzene on renal ultrastructure and explored the nongenotoxic mechanism of mitochondria-mediated apoptosis pathway. Forty male Sprague-Dawley rats were used as a vivo model with ethylbenzene inhalation for 13 weeks, and the metabolites of ethylbenzene, mandelic acid (MA), and phenylglyoxylic acid (PGA) in urine were examined by high-performance liquid chromatography. Meanwhile, the ultrastructure of renal tubular epithelial cells was observed, and cell apoptosis was detected via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Furthermore, we investigated the expression levels of messenger RNA (mRNA) and protein of bax, bcl-2, cytochrome c, caspase-9, and caspase-3 in rat kidney. With respect to levels of MA, PGA, and MA + PGA, a significant dose-dependent increase was observed in 4335 and 6500 mg/m(3) ethylbenzene-treated groups against the control group. The mitochondria of renal tubular epithelial cells became a compact and vacuolar structure in 6500 mg/m(3) ethylbenzene-treated group, and ethylbenzene induced a significant increase in the number of apoptotic cells as compared to the control group. In addition, enhanced mRNA and protein expression levels of all measured genes were observed in various ethylbenzene-treated groups except the decreased bcl-2 expression levels. Our results indicated that ethylbenzene may induce apoptosis of renal tubular epithelial cells via mitochondria-mediated apoptotic pathways. MA and PGA in urine might be a parameter of biological dose in vivo after ethylbenzene inhalation.
Collapse
Affiliation(s)
- Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Ter Haar G, de Groot JCMJ, Venker-van Haagen AJ, van Sluijs FJ, Smoorenburg GF. Effects of aging on inner ear morphology in dogs in relation to brainstem responses to toneburst auditory stimuli. J Vet Intern Med 2009; 23:536-43. [PMID: 19645839 DOI: 10.1111/j.1939-1676.2009.0290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Age-related hearing loss (ARHL) is the most common form of hearing loss in humans and is increasingly recognized in dogs. HYPOTHESIS Cochlear lesions in dogs with ARHL are similar to those in humans and the severity of the histological changes is reflected in tone audiograms. ANIMALS Ten geriatric dogs (mean age: 12.7 years) and three 9-month-old dogs serving as controls for histological analysis. METHODS Observational study. Auditory thresholds were determined by recording brainstem responses (BERA) to toneburst auditory stimuli (1, 2, 4, 8, 12, 16, 24, and 32 kHz). After euthanasia and perfusion fixation, the temporal bones were harvested and processed for histological examination of the cochleas. The numbers of outer hair cells (OHCs) and inner hair cells (IHCs) were counted and the spiral ganglion cell (SGC) packing density and stria vascularis cross-sectional area (SVCA) were determined. RESULTS A combination of cochlear lesions was found in all geriatric dogs. There were significant reductions (P .001) in OHC (42%, 95% confidence interval [CI]; 24-64%) and IHC counts (21%, 95% CI; 62-90%) and SGC packing densities (323, 95% CI; 216-290) in the basal turn, SVCA was smaller in all turns. The greatest reduction in auditory sensitivity was at 8-32 kHz. CONCLUSIONS AND CLINICAL IMPORTANCE ARHL in this specific population of geriatric dogs was comparable histologically to the mixed type of ARHL in humans. The predominance of histological changes in the basal cochlear turn was consistent with the large threshold shifts observed in the middle- to high-frequency region.
Collapse
Affiliation(s)
- G Ter Haar
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Jamesdaniel S, Ding D, Kermany MH, Jiang H, Salvi R, Coling D. Analysis of cochlear protein profiles of Wistar, Sprague-Dawley, and Fischer 344 rats with normal hearing function. J Proteome Res 2009; 8:3520-8. [PMID: 19432484 DOI: 10.1021/pr900222c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Differences in the expression of cochlear proteins are likely to affect the susceptibility of different animal models to specific types of auditory pathology. However, little is currently known about proteins that are abundantly expressed in inner ear. Identification of these proteins may facilitate the search for biomarkers of susceptibility and intervention targets. To begin to address this issue, we analyzed cochlear protein profiles of three strains of rats, Wistar, Sprague-Dawley, and Fischer 344, using a broad spectrum antibody microarray. Normal hearing function of the animals was ascertained using distortion product otoacoustic emissions (DPOAE). Of 725 proteins screened in whole cochlea, more than 80% were detected in all three strains. However, there were striking differences in the levels at which they occur. Among 213 proteins expressed at levels>or=2 fold of actin, only 7.5% were detected at these levels in all three strains. Myosin light chain kinase (MLCK) was immunolocalized in cuticular plate of outer hair cells (OHC) while mitogen activated protein (MAP) kinase-extracellular-signal regulated kinase1/2 (ERK1/2) was detected as foci in OHC, pillar cells, strial marginal cells, and fibroblasts of spiral ligament. A review of literature indicated that the expression of 7 (44%) of these 16 proteins were detected for the first time in the inner ear, although there were implications of the presence of some of these proteins. One of these abundant, but unstudied, proteins, MAP kinase activated protein kinase2 (MAPKAPK2), shows strong immunolabeling in pillar cells and inner hair cells (IHC). There was moderate MAPKAPK2 labeling in OHC, supporting cells, neurons, and marginal, intermediate, and basal cells. The current study provides the first, large cochlear protein profile of multiple rat strains. The diversity in expression of abundant proteins in these strains may contribute to differences in susceptibility of these strains to aging, noise, or ototoxic drugs.
Collapse
Affiliation(s)
- Samson Jamesdaniel
- Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Organic solvents have been reported to adversely affect human health, including hearing health. Animal models have demonstrated that solvents may induce auditory damage, especially to the outer hair cells. Research on workers exposed to solvents has suggested that these chemicals may also induce auditory damage through effects on the central auditory pathways. Studies conducted with both animals and humans demonstrate that the hearing frequencies affected by solvent exposure are different to those affected by noise, and that solvents may interact synergistically with noise. The present article aims to review the contemporary literature of solvent-induced hearing loss, and consider the implications of solvent-induced auditory damage for clinical audiologists. Possible audiological tests that may be used when auditory damage due to solvent exposure is suspected are discussed.
Collapse
Affiliation(s)
- Adrian Fuente
- Centre for Communication Disorders, The University of Hong Kong, Hong Kong, China.
| | | |
Collapse
|
18
|
Vyskocil A, Leroux T, Truchon G, Lemay F, Gendron M, Gagnon F, El Majidi N, Viau C. Ethyl benzene should be considered ototoxic at occupationally relevant exposure concentrations. Toxicol Ind Health 2009; 24:241-6. [PMID: 19022877 DOI: 10.1177/0748233708094097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Organic solvents can produce ototoxic effects in both man and experimental animals. The objective of this study was to review the literature on the effects of low-level exposure to ethyl benzene on the auditory system and consider its relevance for the occupational settings. Both human and animal investigations were evaluated only for realistic exposure concentrations based on the permissible exposure limits. In Quebec, the Time-Weighed Average Exposure Value for 8A h (TWAEV) is 100A ppm (434A mg/m(3)) and the Short-Term Exposure Value for 15A min (STEV) is 125A ppm (543A mg/m(3)). In humans, the upper limit for considering ototoxicity data relevant to the occupational exposure situation was set at STEV. Animal data were evaluated only for exposure concentrations up to 100 times the TWAEV. In workers, there is no evidence of either ethyl benzene-induced hearing losses or ototoxic interaction after combined exposure to ethyl benzene and noise. In rats, ethyl benzene affects the auditory function mainly in the cochlear mid-frequency range and ototoxic interaction was observed after combined exposure to noise and ethyl benzene. Further studies with sufficient data on the ethyl benzene exposure of workers are necessary to make a definitive conclusion. Given the current evidence from animal studies, we recommend considering ethyl benzene as an ototoxic agent.
Collapse
Affiliation(s)
- A Vyskocil
- Département de santé environnementale et santé au travail, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Trnovec T, Sovčíková E, Hust'ák M, Wimmerová S, Kočan A, Jurečková D, Langer P, Palkovičová L, Drobná B. Exposure to polychlorinated biphenyls and hearing impairment in children. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:183-7. [PMID: 21783857 DOI: 10.1016/j.etap.2007.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The objective of this cross-sectional epidemiological study was to assess if long-term exposure to polychlorinated biphenyls (PCBs) is associated with hearing impairment. Four hundred and thirty-three children aged 8-9 years residing in an area polluted by PCBs in Eastern Slovakia were examined otoscopically, tympanometrically and by pure tone audiometry. PCB levels in their serum were determined by gas chromatography. Transient otoacoustic emissions (TEOAE) were measured in a subgroup of 161 children. The mean of the sum of PCB concentrations in serum was 528.2ng/g serum lipids (median 321ng/g serum lipids). Serum PCB concentrations were associated with an increase of hearing threshold at low frequencies and a negative correlation between serum PCBs and the amplitude of TEOAE response was observed in the uppermost tertile of children grouped with regard to serum PCBs, not related to thyroid hormone levels. It was concluded that long-term environmental exposure to PCBs is associated with subclinical but diagnosable hearing deficits.
Collapse
Affiliation(s)
- Tomáš Trnovec
- Slovak Medical University, Limbová 12, 83303 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hazards to Hearing from Combined Exposure to Toluene and Noise in Rats. Int J Occup Med Environ Health 2008; 21:47-57. [DOI: 10.2478/v10001-008-0008-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Gagnaire F, Langlais C, Grossmann S, Wild P. Ototoxicity in rats exposed to ethylbenzene and to two technical xylene vapours for 13 weeks. Arch Toxicol 2006; 81:127-43. [PMID: 16786347 DOI: 10.1007/s00204-006-0124-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Male Sprague-Dawley rats were exposed to ethylbenzene (200, 400, 600 and 800 ppm) and to two mixed xylenes (250, 500, 1,000 and 2,000 ppm total compounds) by inhalation, 6 h/day, 6 days/week for 13 weeks and sacrificed for morphological investigation 8 weeks after the end of exposure. Brainstem auditory-evoked responses were used to determine auditory thresholds at different frequencies. Ethylbenzene produced moderate to severe ototoxicity in rats exposed to the four concentrations studied. Increased thresholds were observed at 2, 4, 8 and 16 kHz in rats exposed to 400, 600 and 800 ppm ethylbenzene. Moderate to severe losses of outer hair cells of the organ of Corti occurred in animals exposed to the four concentrations studied. Exposure to both mixed xylenes produced ototoxicity characterized by increased auditory thresholds and losses of outer hair cells. Ototoxicity potentiation caused by ethylbenzene was observed. Depending on the mixed xylene studied and the area of the concentration-response curves taken into account, the concentrations of ethylbenzene in mixed xylenes necessary to cause a given ototoxicity were 1.7-2.8 times less than those of pure ethylbenzene. Given the high ototoxicity of ethylbenzene, the safety margin of less or equal to two (LOAEL/TWA) might be too small to protect workers from the potential risk of ototoxicity. Moreover, the enhanced ototoxicity of ethylbenzene and para-xylene observed in mixed xylenes should encourage the production of mixed xylenes with the lowest possible concentrations of ethylbenzene and para-xylene.
Collapse
Affiliation(s)
- François Gagnaire
- Département Polluants et Santé, Institut National de Recherche et de Sécurité, Avenue de Bourgogne, BP 27, 54501 Vandoeuvre Cedex, France.
| | | | | | | |
Collapse
|
22
|
Kim J, Park H, Ha E, Jung T, Paik N, Yang S. Combined effects of noise and mixed solvents exposure on the hearing function among workers in the aviation industry. INDUSTRIAL HEALTH 2005; 43:567-73. [PMID: 16100934 DOI: 10.2486/indhealth.43.567] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study aims to evaluate the effect of occupational exposure to noise and organic solvents on hearing loss in the aviation industry. The study population comprised 542 male workers, who worked in avionics jobs in Kimhae, Korea, who kept records of work environment evaluations and medical examinations. The Cumulative Exposure Index (CEI) was constructed to assess the lifetime cumulative exposure of the workers, and pure tone audiometry (PTA) data of the workers from their biannual medical surveillance was used to assess hearing loss. The prevalence of hearing loss found in the group exposed to noise and mixed solvents simultaneously (54.9%) was higher than those in the other groups (6.0% in the unexposed, 17.1% in the noise-only, and 27.8 % in the exposed to only a solvents mixture). The relative risks, adjusted for age, were estimated to be 4.3 (95 % CI 1.7-10.8) for the noise-only group, 8.1 (95% CI 2.0-32.5) for the noise and solvents group, and 2.6 (95 % CI 0.6-10.3) for the solvents-mixture group. These suggest that chronic exposure to mixed solvents had a toxic effect on the auditory system. This raises the issue of whether hearing conservation regulations should be applied to all workers exposed to solvents.
Collapse
Affiliation(s)
- Jeongyoun Kim
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, 911-1, Mok-6-dong, Yangcheon-ku, Seoul 158-060, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Gagnaire F, Langlais C. Relative ototoxicity of 21 aromatic solvents. Arch Toxicol 2005; 79:346-54. [PMID: 15660228 DOI: 10.1007/s00204-004-0636-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 12/06/2004] [Indexed: 11/26/2022]
Abstract
Some aromatic solvents (e.g. toluene, p-xylene, styrene, and ethylbenzene) show, in the rat, striking ototoxicity characterized by an irreversible hearing loss, as measured by behavioural or electrophysiological methods, associated with damage to outer hair cells in the cochlea of the exposed animals. To broaden the range of aromatic solvents studied concerning their potential ototoxicity and to compare their ototoxicity quantitatively, 21 aromatic solvents were administered orally by gastric intubation to Sprague-Dawley rats for 5 days/week for a 2-week period. The dose used was 8.47 mmol kg(-1) body weight day(-1). The possible ototoxicity of the aromatic solvents was evaluated by morphological investigation of the cochlea. Whole-mount surface preparations of the organ of Corti were made to quantify the number of missing hair cells (cytocochleogram). Among the 21 solvents studied, eight (toluene, p-xylene, ethylbenzene, n-propylbenzene, styrene, alpha-methylstyrene, trans-beta-methylstyrene, and allylbenzene) caused histological lesions of the organ of Corti. They differed widely in their potency. The least ototoxic solvents caused outer hair cell (OHC) loss in the middle turn of the organ of Corti. The OHC loss was slight in the first row, and greater in the second and third rows. The most ototoxic solvents caused high losses in the three rows of the outer hair cells along the entire length of the basilar membrane. There were also occasional inner hair cell (ICH) losses in the most affected animals. Although no measurements were made of the chemical concentrations reached in the blood or the brain, tentative ranking of an increasing ototoxicity of the eight aromatic solvents could be proposed on the basis of the histological losses observed-alpha-methylstyrene<trans-beta-methylstyrene=toluene< or =p-xylene<n-propylbenzene<styrene=ethylbenzene<allylbenzene. There was no relationship between the degree of ototoxicity and the lipophilic properties of the ototoxic agents as expressed by the octanol/water partition coefficients. However, it seemed that some structural constraint was essential to induce ototoxicity. It seems there must be a single side-chain on the aromatic ring for ototoxicity, except with p-xylene. The other aromatic solvents with two side-chains were not ototoxic. When the saturated side-chain was branched (isopropylbenzene, isobutylbenzene, sec-butylbenzene, tert-butylbenzene), no ototoxicity was observed. The ototoxic potency increased when the length of the saturated side-chain extended from one carbon atom to two carbon atoms. Beyond that point, the ototoxic effect decreased with n-propylbenzene and disappeared with n-butylbenzene. Moreover, unsaturation of the side-chain of allylbenzene increased the ototoxicity of n-propylbenzene substantially. Branching of the unsaturated chain (alpha-methylstyrene and trans-beta-methylstyrene) decreased the ototoxicity of styrene.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Cell Count
- Cochlea/drug effects
- Cochlea/ultrastructure
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/ultrastructure
- Hydrocarbons, Aromatic/chemistry
- Hydrocarbons, Aromatic/toxicity
- Male
- Microscopy, Electron, Scanning
- Molecular Structure
- Rats
- Rats, Sprague-Dawley
- Solvents/chemistry
- Solvents/toxicity
- Structure-Activity Relationship
Collapse
Affiliation(s)
- François Gagnaire
- Département Polluants et Santé, Institut National de Recherche et de Sécurité, Avenue de Bourgogne, BP 27, +54501, Vandoeuvre Cedex, France.
| | | |
Collapse
|
24
|
Hadjab S, Maurel D, Cazals Y, Siaud P. Hexachlorobenzene, a dioxin-like compound, disrupts auditory function in rat. Hear Res 2004; 191:125-34. [PMID: 15109712 DOI: 10.1016/j.heares.2003.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 12/29/2003] [Indexed: 10/26/2022]
Abstract
Hexachlorobenzene (HCB) is a dioxin-like compound widely distributed in the environment. In this study, we investigated the effects of HCB on the cochlea. Conscious free-moving rats were given HCB per os daily for 4 weeks at doses of 0.16, 4 or 16 mg/kg in olive oil, whereas the control group received olive oil only. The effects of HCB were evaluated at various time intervals, by measuring auditory nerve acoustic thresholds and plasma thyroid hormone concentration by radioimmunoassay. Histological evaluation involved surface preparation and scanning electron microscopy observations of cochlear hair cells. At a dose of 0.16 mg/kg, HCB induced no loss of acoustic sensitivity, whereas at 4 mg/kg, it induced cochlear sensitivity deficits at the mid-frequencies (2-16 kHz) with complete recovery once treatment was stopped. At a dose of 16 mg/kg, permanent threshold shifts were observed at all frequencies tested (from 1 to 32 kHz). Morphological studies showed no cochlear hair cell loss or alteration of stereocilia. HCB treatment reduced circulating thyroxine concentrations. Thyroidectomy had no effect on cochlear sensitivity in control animals. Thus, HCB is a potent oto-toxicant, and its ototoxicity may be independent of its thyroidal effects.
Collapse
Affiliation(s)
- Saida Hadjab
- Laboratoire d'Otologie Neuro-Otologie, EMI 9902 INSERM, Faculté de Médecine Secteur Nord, Université de la Méditerranée, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
25
|
Cappaert NLM, Klis SFL, Muijser H, Kulig BM, Ravensberg LC, Smoorenburg GF. Differential susceptibility of rats and guinea pigs to the ototoxic effects of ethyl benzene. Neurotoxicol Teratol 2002; 24:503-10. [PMID: 12127896 DOI: 10.1016/s0892-0362(02)00208-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was found in the corresponding cochlear regions. In contrast, guinea pigs showed no threshold shifts and no OHC loss after exposure to much higher ethyl benzene levels (2500 ppm, 6 h/day, 5 days). Subsequently, a limited study (four rats and four guinea pigs) was performed in an attempt to understand these differences in susceptibility. Ethyl benzene concentration in blood was determined in both species after exposure to 500-ppm ethyl benzene (8 h/day, 3 days). At the end of the first day, blood of the rats contained 23.2+/-0.8-microg/ml ethyl benzene, whereas the concentration in guinea pig blood was 2.8+/-0.1 microg/ml. After 3 days, the concentration in both species decreased with respect to the first day, but the ethyl benzene concentration in rat blood was still 4.3 times higher than that in guinea pig blood. Thus, the difference in susceptibility between the species may be related to the ethyl benzene concentration in blood.
Collapse
Affiliation(s)
- Natalie L M Cappaert
- Hearing Research Laboratories, Room G.02.531, University Medical Center, Heidelberglaan 100, NL-3584 CX, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Cappaert NL, Klis SF, Muijser H, Kulig BM, Smoorenburg GF. Simultaneous exposure to ethyl benzene and noise: synergistic effects on outer hair cells. Hear Res 2001; 162:67-79. [PMID: 11707353 DOI: 10.1016/s0378-5955(01)00373-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects on hearing of simultaneous exposure to the ototoxic organic solvent ethyl benzene and broad-band noise were evaluated in rats. The effects of three ethyl benzene concentrations (0, 300 or 400 ppm) and three noise levels (95 or 105 dB(lin) SPL or background noise at 65 dB(lin) SPL) and all their combinations were investigated for a 5 day exposure at 8 h/day. Distortion product otoacoustic emissions and compound action potentials were affected after 105 dB noise alone, and after 105 dB noise in combination with ethyl benzene (300 and 400 ppm). However, the amount of loss for these combinations did not exceed the loss for 105 dB noise alone. Outer hair cell (OHC) loss after exposure to 300 ppm ethyl benzene was located in the third row of OHCs. At 400 ppm, the loss spread out to the second and first row of OHCs. Noise alone hardly affected the OHC counts except for a minor loss in the first row of OHCs after 105 dB SPL. Noise at 105 dB in combination with ethyl benzene at 300 and 400 ppm, however, showed OHC loss greater than the sum of the losses induced by noise and ethyl benzene alone.
Collapse
Affiliation(s)
- N L Cappaert
- Hearing Research laboratories, University Medical center, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|