1
|
Heathfield LJ, Martin LJ, van der Heyde Y, Molefe I, Ramesar R. Clinical exome sequencing elucidates underlying cause of death in sudden unexpected death of infants: two case reports. Int J Legal Med 2024; 138:693-700. [PMID: 37482595 PMCID: PMC10861614 DOI: 10.1007/s00414-023-03065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Sudden unexpected death in infants (SUDI) is a traumatic event for families, and unfortunately its occurrence remains high in many parts of the world. Whilst cause of death is resolved for most cases, others remain undetermined following postmortem investigations. There has been a recognition of the role of genetic testing in unexplained cases, where previous studies have demonstrated the resolution of cases through DNA analyses. Here we present two case reports of SUDI cases admitted to Salt River Mortuary, South Africa, and show that underlying causes of death were determined for both infants using clinical exome sequencing. The first infant was heterozygous for a variant (rs148175795) in COL6A3, which suggested a bronchopulmonary dysplasia phenotype. This hypothesis led to finding of a second candidate variant in DMP1 (rs142880465), which may contribute towards a digenic/polygenic mechanism of a more severe phenotype. Histological analysis of retained tissue sections showed an asphyxial mechanism of death, where bronchiolar muscle weakness from an underlying bronchopulmonary dysplasia may have contributed to the asphyxia by affecting respiration. In the second infant, a homozygous variant (rs201340753) was identified in MASP1, which was heterozygous in each parent, highlighting the value of including parental DNA in genetic studies. Whilst mannose-binding lectin deficiency could not be assessed, it is plausible that this variant may have acted in combination with other risk factors within the triple-risk model to result in sudden death. These results may have genetic implications for family members, and represent possible new candidate variants for molecular autopsies.
Collapse
Affiliation(s)
- Laura Jane Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Lorna Jean Martin
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Yolande van der Heyde
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Itumeleng Molefe
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Raj Ramesar
- MRC/UCT Research Unit for Genomic and Precision Medicine, Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
3
|
Fard D, Läer K, Rothämel T, Schürmann P, Arnold M, Cohen M, Vennemann M, Pfeiffer H, Bajanowski T, Pfeufer A, Dörk T, Klintschar M. Candidate gene variants of the immune system and sudden infant death syndrome. Int J Legal Med 2016; 130:1025-1033. [PMID: 26975745 DOI: 10.1007/s00414-016-1347-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/19/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) causes early infant death with an incidence between 0.5 and 2.5 cases among 1000 live births. Besides central sleep apnea and thermal dysregulation, infections have been repeatedly suggested to be implicated in SIDS etiology. METHODS To test the risk contribution of common genetic variants related to infection, we genotyped 40 single-nucleotide polymorphisms (SNPs) from 15 candidate genes for association with SIDS in a total of 579 cases and 1124 controls from Germany and the UK in a two-stage case control design. RESULTS The discovery-stage series (267 SIDS cases and 303 controls) revealed nominally significant associations for variants in interleukin 6 (IL6) (rs1880243), interleukin 10 (IL10) (rs1800871, rs1800872), and mannose-binding lectin 2 (MBL2) (rs930506), and for several other variants in subgroups. Meta-analyses were then performed in adding genotype information from a genome-wide association study of another 312 European SIDS cases and 821 controls. Overall associations were observed for two independent variants in MBL2: rs930506 in a co-dominant model (odds ratio (OR) = 0.82, p = 0.04) and rs1838065 in a dominant model (OR = 1.27, p = 0.03). CONCLUSION Our study did not replicate published associations of IL10 variants with SIDS. However, the evidence for two independent MBL2 variants in the combined analysis of two large series seems consistent with the hypothesis that infection may play a role in SIDS pathogenesis.
Collapse
Affiliation(s)
- Delnaz Fard
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Katharina Läer
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Thomas Rothämel
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Matthias Arnold
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Marta Cohen
- Sheffield Children's Hospital NHS Trust, Western Bank, Sheffield, S10 2TH, UK
| | - Mechtild Vennemann
- Institute of Legal Medicine, Universität Münster, Roentgenstr. 23, 48149, Münster, Germany
| | - Heidi Pfeiffer
- Institute of Legal Medicine, Universität Münster, Roentgenstr. 23, 48149, Münster, Germany
| | - Thomas Bajanowski
- Institut of Legal Medicine, Universität Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Arne Pfeufer
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Blackwell C, Moscovis S, Hall S, Burns C, Scott RJ. Exploring the risk factors for sudden infant deaths and their role in inflammatory responses to infection. Front Immunol 2015; 6:44. [PMID: 25798137 PMCID: PMC4350416 DOI: 10.3389/fimmu.2015.00044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022] Open
Abstract
The risk factors for sudden infant death syndrome (SIDS) parallel those associated with susceptibility to or severity of infectious diseases. There is no evidence that a single infectious agent is associated with SIDS; the common thread appears to be induction of inflammatory responses to infections. In this review, interactions between genetic and environmental risk factors for SIDS are assessed in relation to the hypothesis that many infant deaths result from dysregulation of inflammatory responses to "minor" infections. Risk factors are assessed in relation to three important stages of infection: (1) bacterial colonization (frequency or density); (2) induction of temperature-dependent toxins; (3) induction or control of inflammatory responses. In this article, we review the interactions among risk factors for SIDS for their effects on induction or control of inflammatory responses. The risk factors studied are genetic factors (sex, cytokine gene polymorphisms among ethnic groups at high or low risk of SIDS); developmental stage (changes in cortisol and testosterone levels associated with 2- to 4-month age range); environmental factors (virus infection, exposure to cigarette smoke). These interactions help to explain differences in the incidences of SIDS observed between ethnic groups prior to public health campaigns to reduce these infant deaths.
Collapse
Affiliation(s)
- Caroline Blackwell
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Sophia Moscovis
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Sharron Hall
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Hunter Area Pathology Service Immunology, John Hunter Hospital, New Lambton, NSW, Australia
| | - Christine Burns
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Hunter Area Pathology Service Immunology, John Hunter Hospital, New Lambton, NSW, Australia
| | - Rodney J. Scott
- Faculty of Health and Medicine, Hunter Medical Research Institute, School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Information Based Medicine, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Hunter Area Pathology Service Genetics, John Hunter Hospital, New Lambton, NSW, Australia
| |
Collapse
|
5
|
Heitzeneder S, Seidel M, Förster-Waldl E, Heitger A. Mannan-binding lectin deficiency - Good news, bad news, doesn't matter? Clin Immunol 2011; 143:22-38. [PMID: 22377282 DOI: 10.1016/j.clim.2011.11.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 01/13/2023]
Abstract
Mannan-binding lectin (MBL) deficiency has been classified as a commonly occurring immune disorder, affecting approximately 30% of the human population. MBL, being part of the innate immune system, supports the recognition of infectious pathogens by binding to carbohydrate moieties expressed on microorganisms and activates the lectin pathway of the complement system. MBL2 gene polymorphisms are associated with quantitative and qualitative MBL abnormalities in the serum. The clinical impact of MBL deficiency and its association to a wide variety of diseases has been extensively studied. The picture is puzzling as the studies suggest a detrimental or beneficial or no impact of low or high MBL serum levels on disease susceptibility. In this review we attempt to extract what is relevant from the literature and address controversial issues. We finally suggest that a comprehensive understanding of the role of MBL in human diseases requires considering its context-dependency.
Collapse
|
6
|
Vege A, Ole Rognum T. Sudden infant death syndrome, infection and inflammatory responses. ACTA ACUST UNITED AC 2004; 42:3-10. [PMID: 15325392 DOI: 10.1016/j.femsim.2004.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 06/14/2004] [Indexed: 11/24/2022]
Abstract
Sudden infant death syndrome (SIDS) is sudden unexpected death in infancy for which there is no explanation after review of the history, a death scene investigation and a thorough autopsy. The use of common diagnostic criteria is a prerequisite for discussing the importance of infection, inflammatory responses and trigger mechanism in SIDS. Several observations of immune stimulation in the periphery and of interleukin-6 elevation in the cerebrospinal fluid of SIDS victims explain how infections can play a role in precipitating these deaths. Finally, these findings and important risk factors for SIDS are integrated in the concept of a vicious circle for understanding the death mechanism. The vicious circle is a concept to elucidate the interactions between unfavourable factors, including deficient auto-resuscitation, and how this could result in death.
Collapse
Affiliation(s)
- Ashild Vege
- Institute of Forensic Medicine, University of Oslo, University Hospital, Rikshospitalet, Oslo 0027, Norway.
| | | |
Collapse
|
7
|
Abstract
Mannan-binding lectin (MBL) is a plasma collectin (C-type lectin with a collagen-like domain) and is considered an important component of innate immunity. Circulating MBL is genetically determined for the major part, but plasma concentration is also markedly influenced by nongenetic factors. The carbohydrate-binding ability of MBL can be inhibited by simple sugars like mannose, fucose and N-acetylglucosamine, but its greatest avidity appears to be for repeating mannose-based structural patterns typical of microbial surfaces. By this means, MBL can bind to a wide variety of bacteria and other microbes, neutralizing them and/or opsonizing them by activating complement using the recently discovered lectin pathway of complement activation. Individual humans differ 1000-fold in MBL concentration, and individuals with low circulating MBL appear to be more vulnerable to infections in a number of clinical settings, especially when combined with secondary immune deficiency. The best evidence that MBL deficiency or insufficiency is physiologically relevant comes from a rapidly expanding literature of clinical studies. MBL insufficiency appears to be a significant risk factor for infections in infants, and for individuals of any age undergoing chemotherapy or post-transplant immunosuppression. Moreover, MBL appears to have a significant influence on the course of certain chronic diseases like rheumatoid arthritis and cystic fibrosis. Replacement therapy with a plasma-derived product is safe and seems promising, while recombinant MBL provides hope for large-scale therapeutic applications. Randomized clinical trials of MBL therapy, which are now on the horizon, should provide unambiguous evidence for the physiological significance of MBL in innate immunity.
Collapse
Affiliation(s)
- D C Kilpatrick
- SNBTS National Science Laboratory, Ellen's Glen Road, Edinburgh, EH17 7QT, UK.
| |
Collapse
|
8
|
Blackwell CC, Gordon AE, James VS, MacKenzie DAC, Mogensen-Buchanan M, El Ahmer OR, Al Madani OM, Törö K, Csukás Z, Sótonyi P, Weir DM, Busuttil A. The role of bacterial toxins in sudden infant death syndrome (SIDS). Int J Med Microbiol 2002; 291:561-70. [PMID: 11892683 DOI: 10.1078/1438-4221-00168] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for the involvement of bacterial toxins in some cases of sudden infant death syndrome (SIDS), particularly the pyrogenic toxins of Staphylococcus aureus. This had led to the hypothesis that some SIDS deaths are due to induction of inflammatory mediators by infectious agents or their products during a period in which the infant is unable to control these normally protective responses. The genetic, developmental and environmental risk factors identified for SIDS are assessed in relation to frequency or density of mucosal colonisation by toxigenic bacteria and their effects on induction and control of inflammatory responses to the toxins.
Collapse
Affiliation(s)
- C C Blackwell
- Department of Medical Microbiology, University of Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Making sense of the risk factors for sudden infant death syndrome (SIDS): infection and inflammation. ACTA ACUST UNITED AC 2001. [DOI: 10.1097/00013542-200110000-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|