Isla E. Animal-Energy Relationships in a Changing Ocean: The Case of Continental Shelf Macrobenthic Communities on the Weddell Sea and the Vicinity of the Antarctic Peninsula.
BIOLOGY 2023;
12:biology12050659. [PMID:
37237473 DOI:
10.3390/biology12050659]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
The continental shelves of the Weddell Sea and the Antarctic Peninsula vicinity host abundant macrobenthic communities, and the persistence of which is facing serious global change threats. The current relationship among pelagic energy production, its distribution over the shelf, and macrobenthic consumption is a "clockwork" mechanism that has evolved over thousands of years. Together with biological processes such as production, consumption, reproduction, and competence, it also involves ice (e.g., sea ice, ice shelves, and icebergs), wind, and water currents, among the most important physical controls. This bio-physical machinery undergoes environmental changes that most likely will compromise the persistence of the valuable biodiversity pool that Antarctic macrobenthic communities host. Scientific evidence shows that ongoing environmental change leads to primary production increases and also suggests that, in contrast, macrobenthic biomass and the organic carbon concentration in the sediment may decrease. Warming and acidification may affect the existence of the current Weddell Sea and Antarctic Peninsula shelf macrobenthic communities earlier than other global change agents. Species with the ability to cope with warmer water may have a greater chance of persisting together with allochthonous colonizers. The Antarctic macrobenthos biodiversity pool is a valuable ecosystem service that is under serious threat, and establishing marine protected areas may not be sufficient to preserve it.
Collapse