1
|
Jackson S, George RT, Lodge MA, Piotrowski A, Wahl RL, Gujar SK, Grossman SA. The effect of regadenoson on the integrity of the human blood-brain barrier, a pilot study. J Neurooncol 2017; 132:513-519. [PMID: 28315063 DOI: 10.1007/s11060-017-2404-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
Abstract
Regadenoson is an FDA approved adenosine receptor agonist which increases blood-brain barrier (BBB) permeability in rodents. Regadenoson is used clinically for pharmacologic cardiac stress testing using SPECT or CT imaging agents that do not cross an intact BBB. This study was conducted to determine if standard doses of regadenoson transiently disrupt the human BBB allowing higher concentrations of systemically administered imaging agents to enter the brain. Patients without known intracranial disease undergoing clinically indicated pharmacologic cardiac stress tests were eligible for this study. They received regadenoson (0.4 mg) followed by brain imaging with either 99mTc-sestamibi for SPECT or visipaque for CT imaging. Pre- and post-regadenoson penetration of imaging agents into brain were quantified [SPECT: radioactive counts, CT: Hounsfield units (HU)] and compared using a matched-pairs t-test. Twelve patients (33% male, median 60 yo) were accrued: 7 SPECT and 5 CT. No significant differences were noted in pre- and post-regadenoson values using mean radionuclide counts (726 vs. 757) or HU (29 vs. 30). While animal studies have demonstrated that regadenoson transiently increases the permeability of the BBB to dextran and temozolomide, we were unable to document changes in the penetration of contrast agents in humans with intact BBB using the FDA approved doses of regadenoson for cardiac evaluation. Further studies are needed exploring alternate regadenoson dosing, schedules, and studies in patients with brain tumors; as transiently disrupting the BBB to improve drug entry into the brain is critical to improving the care of patients with CNS malignancies.
Collapse
Affiliation(s)
- Sadhana Jackson
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA
| | - Richard T George
- Heart and Vascular Institute, Johns Hopkins University, 600 N. Wolfe Street, Sheikh Zayed Tower, Baltimore, MD, 21287, USA
| | - Martin A Lodge
- Nuclear Medicine, Russell H. Morgan Dept. of Radiology and Radiological Sciences, Johns Hopkins University, 601 Caroline St, Baltimore, MD, 21231, USA
| | - Anna Piotrowski
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA
| | - Richard L Wahl
- Nuclear Medicine, Russell H. Morgan Dept. of Radiology and Radiological Sciences, Johns Hopkins University, 601 Caroline St, Baltimore, MD, 21231, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Blvd., St. Louis, MO, 63110, USA
| | - Sachin K Gujar
- Radiology and Radiological Science, Johns Hopkins University, 600 N. Wolfe Street, Sheikh Zayed Tower, Baltimore, MD, 21287, USA
| | - Stuart A Grossman
- Brain Cancer Program, Johns Hopkins University, David H. Koch Cancer Research Building II, 1550 Orleans Street, Room 1M16, Baltimore, MD, 21287, USA.
| |
Collapse
|
2
|
Dankbaar JW, Hom J, Schneider T, Cheng SC, Bredno J, Lau BC, van der Schaaf IC, Wintermark M. Dynamic perfusion-CT assessment of early changes in blood brain barrier permeability of acute ischaemic stroke patients. J Neuroradiol 2010; 38:161-6. [PMID: 20950860 DOI: 10.1016/j.neurad.2010.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND PURPOSE Damage to the blood brain barrier (BBB) may lead to haemorrhagic transformation after ischaemic stroke. The purpose of this study was to evaluate the effect of patient characteristics and stroke severity on admission BBB permeability (BBBP) values measured with perfusion-CT (PCT) in acute ischaemic stroke patients. METHODS We retrospectively identified 65 patients with proven ischaemic stroke admitted within 12 hours after symptom onset. Patients' charts were reviewed for demographic variables and vascular risk factors. The Patlak's model was applied to calculate BBBP values from the PCT data in the infarct core, penumbra and non-ischaemic tissue in the contralateral hemisphere. Mean BBBP values and their 95% confidence intervals (CI) were calculated in the different tissue types. Effects of demographic variables and risk factors on BBBP were analyzed using a multivariate, generalized estimating equations (GEE) model. RESULTS BBBP values in the infarct core (mean [95%CI]: 2.48 [2.16-2.85]) and penumbra (2.48 [2.21-2.79]) were significantly higher than in non-ischaemic tissue (2.12 [1.88-2.39]). Multivariate analysis demonstrated that collateral filling has effect on BBBP. Less elevated BBBP values were associated with more than 50% collateral filling. CONCLUSIONS BBBP values are increased in ischaemic brain tissue on the admission PCT scan of acute ischaemic stroke patients. Less abnormally elevated BBBP values were observed in patients with more than 50% collateral filling, possibly explaining why there is a relationship between more collateral filling and a lower incidence of haemorrhagic transformation.
Collapse
Affiliation(s)
- J W Dankbaar
- University of California, Department of Radiology and Biomedical Imaging, Neuroradiology Section, San Francisco, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Hom J, Dankbaar JW, Schneider T, Cheng SC, Bredno J, Wintermark M. Optimal duration of acquisition for dynamic perfusion CT assessment of blood-brain barrier permeability using the Patlak model. AJNR Am J Neuroradiol 2009; 30:1366-70. [PMID: 19369610 DOI: 10.3174/ajnr.a1592] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE A previous study demonstrated the need to use delayed acquisition rather than first-pass data for accurate blood-brain barrier permeability surface product (BBBP) calculation from perfusion CT (PCT) according to the Patlak model, but the optimal duration of the delayed acquisition has not been established. Our goal was to determine the optimal duration of the delayed PCT acquisition to obtain accurate BBBP measurements while minimizing potential motion artifacts and radiation dose. MATERIALS AND METHODS We retrospectively identified 23 consecutive patients with acute ischemic anterior circulation stroke who underwent a PCT study with delayed acquisition. The Patlak model was applied for the full delayed acquisition (90-240 seconds) and also for truncated analysis windows (90-210, 90-180, 90-150, 90-120 seconds). Linear regression of Patlak plots was performed separately for the full and truncated analysis windows, and the slope of these regression lines was used to indicate BBBP. The full and truncated analysis windows were compared in terms of the resulting BBBP values and the quality of the Patlak fitting. RESULTS BBBP values in the infarct and penumbra were similar for the full 90- to 240-second acquisition (95% confidence intervals for the infarct and penumbra: 1.62-2.47 and 1.75-2.41 mL x100 g(-1) x min(-1), respectively) and the 90- to 210-second analysis window (1.82-2.76 and 2.01-2.74 mL x 100 g(-1) x min(-1), respectively). BBBP values increased significantly with shorter acquisitions. The quality of the Patlak fit was excellent for the full 90- to 240-second and 90- to 210-second acquisitions, but it degraded with shorter acquisitions. CONCLUSIONS The duration for the delayed PCT acquisition should be at least 210 seconds, because acquisitions shorter than 210 seconds lead to significantly overestimated BBBP values.
Collapse
Affiliation(s)
- J Hom
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif 94143-0628, USA
| | | | | | | | | | | |
Collapse
|
4
|
Balvay D, Troprès I, Billet R, Joubert A, Péoc'h M, Cuenod CA, Le Duc G. Mapping the Zonal Organization of Tumor Perfusion and Permeability in a Rat Glioma Model by Using Dynamic Contrast-enhanced Synchrotron Radiation CT. Radiology 2009; 250:692-702. [DOI: 10.1148/radiol.2501071929] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, Virmani S, Pohlman S, Wintermark M. Age- and anatomy-related values of blood-brain barrier permeability measured by perfusion-CT in non-stroke patients. J Neuroradiol 2009; 36:219-27. [PMID: 19251320 DOI: 10.1016/j.neurad.2009.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 01/10/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE The goal of this study was to determine blood-brain barrier permeability (BBBP) values extracted from perfusion-CT (PCT) using the Patlak model and possible variations related to age, gender, race, vascular risk factors and their treatment and anatomy in non-stroke patients. MATERIALS AND METHODS We retrospectively identified 96 non-stroke patients who underwent a PCT study using a prolonged acquisition time up to 3 minutes. Patients' charts were reviewed for demographic data, vascular risk factors and their treatment. The Patlak model was applied to calculate BBBP values in regions of interest drawn within the basal ganglia and the gray and white matter of the different cerebral lobes. Differences in BBBP values were analyzed using a multivariate analysis considering clinical variables and anatomy. RESULTS Mean absolute BBBP values were 1.2 ml 100 g(-1) min(-1) and relative BBBP/CBF values were 3.5%. Statistical differences between gray and white matter were not clinically relevant. BBBP values were influenced by age, history of diabetes and/or hypertension and aspirin intake. CONCLUSION This study reports ranges of BBBP values in non-stroke patients calculated from delayed phase PCT data using the Patlak model. These ranges will be useful to detect abnormal BBBP values when assessing patients with cerebral infarction for the risk of hemorrhagic transformation.
Collapse
Affiliation(s)
- J W Dankbaar
- Department of Radiology, Neuroradiology Section, University of California, San Francisco, 505, Parnassus Avenue, Box 0628, San Francisco, CA 94143-0628, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, Virmani S, Pohlman S, Dillon WP, Wintermark M. Dynamic perfusion CT assessment of the blood-brain barrier permeability: first pass versus delayed acquisition. AJNR Am J Neuroradiol 2008; 29:1671-6. [PMID: 18635616 DOI: 10.3174/ajnr.a1203] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The Patlak model has been applied to first-pass perfusion CT (PCT) data to extract information on blood-brain barrier permeability (BBBP) to predict hemorrhagic transformation in patients with acute stroke. However, the Patlak model was originally described for the delayed steady-state phase of contrast circulation. The goal of this study was to assess whether the first pass or the delayed phase of a contrast bolus injection better respects the assumptions of the Patlak model for the assessment of BBBP in patients with acute stroke by using PCT. MATERIALS AND METHODS We retrospectively identified 125 consecutive patients (29 with acute hemispheric stroke and 96 without) who underwent a PCT study by using a prolonged acquisition time up to 3 minutes. The Patlak model was applied to calculate BBBP in ischemic and nonischemic brain tissue. Linear regression of the Patlak plot was performed separately for the first pass and for the delayed phase of the contrast bolus injection. Patlak linear regression models for the first pass and the delayed phase were compared in terms of their respective square root mean squared errors (square root MSE) and correlation coefficients (R) by using generalized estimating equations with robust variance estimation. RESULTS BBBP values calculated from the first pass were significantly higher than those from the delayed phase, both in nonischemic brain tissue (2.81 mL x 100 g(-1) x min(-1) for the first pass versus 1.05 mL x 100 g(-1) x min(-1) for the delayed phase, P < .001) and in ischemic tissue (7.63 mL x 100 g(-1) x min(-1) for the first pass versus 1.31 mL x 100 g(-1) x min(-1) for the delayed phase, P < .001). Compared with regression models from the first pass, Patlak regression models obtained from the delayed data were of better quality, showing significantly lower square root MSE and higher R. CONCLUSION Only the delayed phase of PCT acquisition respects the assumptions of linearity of the Patlak model in patients with and without stroke.
Collapse
Affiliation(s)
- J W Dankbaar
- Department of Radiology, Neuroradiology Section, University of California, San Francisco, San Francisco, CA 94143-0628, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Provenzale JM, York G, Moya MG, Parks L, Choma M, Kealey S, Cole P, Serajuddin H. Correlation of Relative Permeability and Relative Cerebral Blood Volume in High-Grade Cerebral Neoplasms. AJR Am J Roentgenol 2006; 187:1036-42. [PMID: 16985154 DOI: 10.2214/ajr.04.0676] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study was to correlate the degree of contrast enhancement on dynamic contrast-enhanced T1-weighted MRI and the relative cerebral blood volume (rCBV) values on T2*-weighted MRI in patients with high-grade brain neoplasms. SUBJECTS AND METHODS Ten patients with biopsy-proven high-grade gliomas underwent dynamic contrast-enhanced MRI using T1-weighted fast spoiled gradient-echo technique (TR/TE, 8.3/1.5) during i.v. infusion of 0.1 mmol/kg of MR contrast medium. This sequence was followed within 5 minutes by dynamic susceptibility contrast (DSC) imaging (1,500/80) during i.v. infusion of 0.2 mmol/kg of MR contrast medium. Dynamic contrast-enhanced analysis was performed using the maximum-signal-intensity algorithm, and DSC analysis was performed using the negative enhancement integral program. For each tumor, we performed two comparisons: first, the average dynamic contrast-enhanced and rCBV values within a region of interest drawn around the entire contrast-enhancing tumor on a single image through the center of the lesion and, second, the highest dynamic contrast-enhanced and highest rCBV values within each tumor. Statistical analyses of the first comparison were performed using Pearson's correlation coefficient, R2 correlation coefficient, and Spearman's rank correlation and for the second comparison using Kendall's tau correlation. RESULTS The mean signal intensity values ranged between 3.48 and 7.16 SDs above baseline values (mean, 4.89 SDs). The mean rCBV values ranged between 57.9% and 122.7% of the normal lentiform nucleus (mean, 76.6%). The Pearson's correlation coefficient was 0.867, the R2 correlation coefficient was 0.752, and the Spearman's rank correlation was 0.794 (p = 0.001). Dynamic contrast-enhanced values from the region of highest signal intensity ranged between 7.7 and 48.6 SDs above baseline values (mean, 17.3 SDs). The highest rCBV values ranged between 105% and 400% of the normal lentiform nucleus (mean, 292%). The correlation was estimated to be 0.7778 and was statistically significant at the 0.01 level of statistical significance (p = 0.0035). CONCLUSION We found a high correlation between degree of contrast enhancement on dynamic contrast-enhanced images and rCBV values in whole tumors and in regions having the highest degree of contrast enhancement in this small study. Our findings, which suggest that relative permeability and rCBV values may be correlated in high-grade glial neoplasms, deserve further study in a larger patient population.
Collapse
Affiliation(s)
- James M Provenzale
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006; 239:632-49. [PMID: 16714455 DOI: 10.1148/radiol.2393042031] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diffusion-weighted magnetic resonance (MR) imaging and perfusion MR imaging are advanced techniques that provide information not available from conventional MR imaging. In particular, these techniques have a number of applications with regard to characterization of tumors and assessment of tumor response to therapy. In this review, the authors describe the fundamental principles of diffusion-weighted and perfusion MR imaging and provide an overview of the ways in which these techniques are being used to characterize tumors by helping distinguish tumor types, assess tumor grade, and attempt to determine tumor margins. In addition, the role of these techniques for evaluating response to tumor therapy is outlined.
Collapse
Affiliation(s)
- James M Provenzale
- Department of Radiology, Box 3808, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
10
|
Cianfoni A, Cha S, Bradley WG, Dillon WP, Wintermark M. Quantitative measurement of blood-brain barrier permeability using perfusion-CT in extra-axial brain tumors. J Neuroradiol 2006; 33:164-8. [PMID: 16840958 DOI: 10.1016/s0150-9861(06)77254-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Non-invasive assessment of vascular permeability is of main importance in the diagnosis, treatment and follow-up of intracranial tumors. Perfusion-CT is one of the imaging options available, which affords quantitative assessment of cerebral blood volume and blood-brain barrier permeability. Herein we report two cases of extra-axial tumors studied with perfusion-CT. Comparison with perfusion-MRI was available in one case. High permeability values, as measured by perfusion-CT, reflected the absence of blood-brain barrier in these extra-axial tumors.
Collapse
Affiliation(s)
- A Cianfoni
- Universita Cattolica del Sacro Cuore (UCSC), Policlinico Agostino Gemelli, Department of Radiology, Roma, Italy
| | | | | | | | | |
Collapse
|
11
|
Le Duc G, Corde S, Charvet AM, Elleaume H, Farion R, Le Bas JF, Estève F. In Vivo Measurement of Gadolinium Concentration in a Rat Glioma Model by Monochromatic Quantitative Computed Tomography. Invest Radiol 2004; 39:385-93. [PMID: 15194909 DOI: 10.1097/01.rli.0000124250.61768.c0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Monochromatic quantitative computed tomography allows a nondestructive and quantitative measurement of gadolinium (Gd) concentration. This technique was used in the C6 rat glioma model to compare gadopentetate dimeglumine and gadobutrol. METHODS Rats bearing late-stage gliomas received 2.5 mmol/kg (392.5 mg Gd/kg) of gadopentetate dimeglumine (n = 5) and gadobutrol (n = 6) intravenously before the imaging session performed at the European Synchrotron Radiation Facility. RESULTS Monochromatic quantitative computed tomography enabled in vivo follow-up of Gd concentration as a function of time in specified regions of interest. Surprisingly, after gadobutrol injection, Gd concentrations in the center and periphery of the tumor were higher than those after gadopentetate injection, although identical in normal and contralateral area of the brain. CONCLUSION The in vivo assessment of absolute Gd concentrations revealed differences in gadobutrol and gadopentetate dimeglumine behaviors in tumoral tissues despite injections in the same conditions. These differences might be attributed to different characteristics of the contrast agents.
Collapse
Affiliation(s)
- Géraldine Le Duc
- Medical Beamline, European Synchrotron Radiation Facility, Unité INSERM 647, CHU, BP217, 38043 Grenoble Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Keith CJ, Griffiths M, Petersen B, Anderson RJ, Miles KA. Computed tomography perfusion imaging in acute stroke. AUSTRALASIAN RADIOLOGY 2002; 46:221-30. [PMID: 12196228 DOI: 10.1046/j.1440-1673.2002.01026.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of thrombolytic and neuroprotective agents for the treatment of acute stroke has created an imperative for improved imaging techniques in the assessment of acute stroke. Five cases are presented to illustrate the value of perfusion CT in the evaluation of suspected acute stroke. To obtain the perfusion data, a rapid series of images was acquired without table movement following a bolus of contrast medium. Cerebral blood flow, cerebral blood volume and mean transit time were determined by mathematically modelling the temporal changes in contrast enhancement in the brain and vascular system. Pixel-by-pixel analysis allowed generation of perfusion maps. In two cases, CT-perfusion imaging usefully excluded acute stroke, including one patient in whom a low-density area on conventional CT was subsequently proven to be tumour. Cerebral ischaemia was confirmed in three cases, one with an old and a new infarction, one with a large conventional CT abnormality but only a small perfusion defect, and one demonstrating infarct and penumbra. Perfusion CT offers the ability to positively identify patients with non-haemorrhagic stroke in the presence of a normal conventional CT, to select those cases where thrombolysis is appropriate, and to provide an indication for prognosis.
Collapse
Affiliation(s)
- C J Keith
- Southern X-ray Clinics, School of Physical Sciences, Queensland University of Technology, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
13
|
|