1
|
Kraiem K, Wahab MA, Kallali H, Fra-Vazquez A, Pedrouso A, Mosquera-Corral A, Jedidi N. Effects of short- and long-term exposures of humic acid on the Anammox activity and microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19012-19024. [PMID: 30039484 DOI: 10.1007/s11356-018-2786-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Humic acid has a controversial effect on the biological treatment processes. Here, we have investigated humic acid effects on the Anammox activity by studying the nitrogen removal efficiencies in batch and continuous conditions and analyzing the microbial community using Fluorescence in situ hybridization (FISH) technique. The results showed that the Anammox activity was affected by the presence of humic acid at a concentration higher than 70 mg/L. In fact, in the presence of humic acid concentration of 200 mg/L, the Anammox activity decreased to 57% in batch and under continuous condition, the ammonium removal efficiencies of the reactor decreased from 78 to 41%. This reduction of Anammox activity after humic acid addition was highlighted by FISH analysis which revealed a considerable reduction of the abundance of Anammox bacteria and the bacteria living in symbiosis with them. Furthermore, a total inhibition of Candidatus Brocadia fulgida was observed. However, humic acid has promoted heterotrophic denitrifying bacteria which became dominant in the reactor. In fact, the evolution of the organic matter in the reactor showed that the added humic acid was used as carbon source by heterotrophic bacteria which explained the shift of metabolism to the favor of heterotrophic denitrifying bacteria. Accordingly, humic acid should be controlled in the influent to avoid Anammox activity inhibition.
Collapse
Affiliation(s)
- Khadija Kraiem
- Laboratory of Wastewater Treatment and Valorization, Water Research and Technologies Center, CERTE, Technopark Tourist Route of Soliman Nabeul, PO Box No. 273, 8020, Soliman, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Rommana, B.P. no. 94, 1068, Tunis, Tunisia
| | - Mohamed Ali Wahab
- Laboratory of Wastewater Treatment and Valorization, Water Research and Technologies Center, CERTE, Technopark Tourist Route of Soliman Nabeul, PO Box No. 273, 8020, Soliman, Tunisia.
| | - Hamadi Kallali
- Laboratory of Wastewater Treatment and Valorization, Water Research and Technologies Center, CERTE, Technopark Tourist Route of Soliman Nabeul, PO Box No. 273, 8020, Soliman, Tunisia
| | - Andrea Fra-Vazquez
- Department of Chemical Engineering, Institute of Technological Research, School of Engineering, Universidade de Santiago de Compostela, Rua Lope Gómez de Marzoa s/n, 15782, Santiago de Compostela, Spain
| | - Alba Pedrouso
- Department of Chemical Engineering, Institute of Technological Research, School of Engineering, Universidade de Santiago de Compostela, Rua Lope Gómez de Marzoa s/n, 15782, Santiago de Compostela, Spain
| | - Anuska Mosquera-Corral
- Department of Chemical Engineering, Institute of Technological Research, School of Engineering, Universidade de Santiago de Compostela, Rua Lope Gómez de Marzoa s/n, 15782, Santiago de Compostela, Spain
| | - Naceur Jedidi
- Laboratory of Wastewater Treatment and Valorization, Water Research and Technologies Center, CERTE, Technopark Tourist Route of Soliman Nabeul, PO Box No. 273, 8020, Soliman, Tunisia
| |
Collapse
|
2
|
Schrammel B, Petzold M, Cervero-Aragó S, Sommer R, Lück C, Kirschner A. Persistent presence of outer membrane epitopes during short- and long-term starvation of five Legionella pneumophila strains. BMC Microbiol 2018; 18:75. [PMID: 30016940 PMCID: PMC6050704 DOI: 10.1186/s12866-018-1220-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/29/2018] [Indexed: 11/25/2022] Open
Abstract
Background Legionella pneumophila, the causative agent of Legionnaire’s disease, may enter a viable but non-culturable (VBNC) state triggered by environmental stress conditions. Specific outer-membrane epitopes of L. pneumophila are used in many diagnostic applications and some of them are linked to important virulence-related factors or endotoxins. However, it is not clear how the presence and status of these epitopes are influenced by environmental stress conditions. In this study, changes of outer membrane epitopes for monoclonal antibodies (mAb) from the Dresden panel and the major outer membrane protein MOMP were analysed for five L. pneumophila strains during short- and long-term starvation in ultrapure water. Results With ELISA and single cell immuno-fluorescence analysis, we could show that for most of the investigated mAb-strain combinations the total number of mAb-stained Legionella cells stayed constant for up to 400 days. Especially the epitopes of mAb 3/1, 8/5, 26/1 and 20/1, which are specific for L. pneumophila serogroup 1 subtypes, and the mAb 9/1, specific for serogroup 6, showed long-term persistence. For most mAb- stained cells, a high percentage of viable cells was observed at least until 118 days of starvation. At the same time, we observed a reduction of the fluorescence intensity of the stained cells during starvation indicating a loss of epitopes from the cell surface. However, most of the epitopes, including the virulence-associated mAb 3/1 epitope were still present with high fluorescence intensity after 400 days of starvation in up to 50% of the starved L. pneumophila population. Conclusions The results demonstrate the continuous presence of outer membrane epitopes of L. pneumophila during short-term and long-term starvation. Thus, culture-independent mAb-based diagnostic and detection tools, such as immuno-magnetic separation and microarray techniques are applicable for both L. pneumophila in the culturable and the VBNC state even after long-term starvation but nevertheless require careful testing before application. However, the mere presence of those epitopes is not necessarily an indication of viability or infectivity. Electronic supplementary material The online version of this article (10.1186/s12866-018-1220-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Schrammel
- Institute for Hygiene and Applied Immunology - Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Markus Petzold
- Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", University of Technology Dresden, Dresden, Germany
| | - Sílvia Cervero-Aragó
- Institute for Hygiene and Applied Immunology - Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria.,Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| | - Regina Sommer
- Institute for Hygiene and Applied Immunology - Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria.,Interuniversity Cooperation Centre for Water and Health, Vienna, Austria
| | - Christian Lück
- Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", University of Technology Dresden, Dresden, Germany
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology - Water Hygiene, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090, Vienna, Austria. .,Interuniversity Cooperation Centre for Water and Health, Vienna, Austria.
| |
Collapse
|
3
|
Applications of Fluorescence In Situ Hybridization in Diagnostic Microbiology. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.07.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Bergquist PL, Hardiman EM, Ferrari BC, Winsley T. Applications of flow cytometry in environmental microbiology and biotechnology. Extremophiles 2009; 13:389-401. [PMID: 19301090 DOI: 10.1007/s00792-009-0236-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
Flow cytometry (FCM) is a technique for counting, examining and sorting microscopic particles suspended in a stream of fluid. It uses the principles of light scattering, light excitation and the emission from fluorescent molecules to generate specific multiparameter data from particles and cells. The cells are hydrodynamically focussed in a sheath solution before being intercepted by a focused light source provided by a laser. FCM has been used primarily in medical applications but is being used increasingly for the examination of individual cells from environmental samples. It has found uses in the isolation of both culturable and hitherto non-culturable bacteria present infrequently in environmental samples using appropriate growth conditions. FCM lends itself to high-throughput applications in directed evolution for the analysis of single cells or cell populations carrying mutant genes. It is also suitable for encapsulation studies where individual bacteria are compartmentalised with substrate in water-in-oil-in-water emulsions or with individual genes in transcriptional/translational mixtures for the production of mutant enzymes. The sensitivity of the technique has allowed the examination of gene optimisation by a procedure known as random or neutral drift where screening and selection is based on the retention of some predetermined level of activity through multiple rounds of mutagenesis.
Collapse
Affiliation(s)
- Peter L Bergquist
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | | | | | | |
Collapse
|
6
|
|
7
|
Duhamel S, Jacquet S. Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. J Microbiol Methods 2005; 64:316-32. [PMID: 16081175 DOI: 10.1016/j.mimet.2005.05.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/11/2005] [Accepted: 05/23/2005] [Indexed: 11/22/2022]
Abstract
Flow cytometry (FCM) was successfully used to analyze freshwater bacteria and viruses in lake sediments after relatively simple sample treatment and optimization of dilution/fixation/staining procedures. Biological particles from Lakes Geneva and Bourget were first separated from the sediments by using both Sodium Pyrophosphate (0.01 M final concentration) and Polyoxyethylene-Sorbitan Monooleate (10% final concentration) and sonicating for 3 min in a water bath. The best results (based on FCM signature and the highest virus and bacterial yields from the sediments) were obtained by formaldehyde fixation carried out within less than one hour (2% final concentration, vs. no fixation or using glutaraldehyde at different concentrations), SYBR-Green II staining (x1/20,000 stock solution concentration, vs. use of SYBR-Gold and SYBR-Green I dyes at different concentrations). There was a considerable loss of particles after only a few days of storage at either 4 or -22 degrees C. For FCM analysis, the samples were diluted in Tris-EDTA buffer (pH 8) and heated for 10 min at 75 degrees C after incubating for 5 min in the dark. The bacterial and viral counts paralleled those obtained using epifluorescence microscopy (EFM), but EFM always gave lower counts than FCM. Analysis of the distribution of the viruses in the water column and in the sediments of Lakes Bourget revealed a marked gradient, with larger quantities in the top layer of the sediment than in the water above it. These results are discussed, as well as the possible novel application of flow cytometry in the study of aquatic viral ecology.
Collapse
Affiliation(s)
- Solange Duhamel
- UMR CARRTEL, Equipe de Microbiologie Aquatique, Station INRA d'Hydrobiologie Lacustre, 75 Avenue de Corzent, 74203 Thonon-les-Bains cx, France
| | | |
Collapse
|
8
|
Spiegelman D, Whissell G, Greer CW. A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 2005; 51:355-86. [PMID: 16088332 DOI: 10.1139/w05-003] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A survey of the available literature on methods most frequently used for the identification and characterization of microbial strains, communities, or consortia is presented. The advantages and disadvantages of the various methodologies were examined from several perspectives including technical, economic (time and cost), and regulatory. The methods fall into 3 broad categories: molecular biological, biochemical, and microbiological. Molecular biological methods comprise a broad range of techniques that are based on the analysis and differentiation of microbial DNA. This class of methods possesses several distinct advantages. Unlike most other commonly used methods, which require the production of secondary materials via the manipulation of microbial growth, molecular biological methods recover and test their source materials (DNA) directly from the microbial cells themselves, without the requirement for culturing. This eliminates both the time required for growth and the biases associated with cultured growth, which is unavoidably and artificially selective. The recovered nucleic acid can be cloned and sequenced directly or subpopulations can be specifically amplified using polymerase chain reaction (PCR), and subsequently cloned and sequenced. PCR technology, used extensively in forensic science, provides researchers with the unique ability to detect nucleic acids (DNA and RNA) in minute amounts, by amplifying a single target molecule by more than a million-fold. Molecular methods are highly sensitive and allow for a high degree of specificity, which, coupled with the ability to separate similar but distinct DNA molecules, means that a great deal of information can be gleaned from even very complex microbial communities. Biochemical methods are composed of a more varied set of methodologies. These techniques share a reliance on gas chromatography and mass spectrometry to separate and precisely identify a range of biomolecules, or else investigate biochemical properties of key cellular biomolecules. Like the molecular biological methods, some biochemical methods such as lipid analyses are also independent of cultured growth. However, many of these techniques are only capable of producing a profile that is characteristic of the microbial community as a whole, providing no information about individual members of the community. A subset of these methodologies are used to derive taxonomic information from a community sample; these rely on the identification of key subspecies of biomolecules that differ slightly but characteristically between species, genera, and higher biological groupings. However, when the consortium is already growing in chemically defined media (as is often the case with commercial products), the rapidity and relatively low costs of these procedures can mitigate concerns related to culturing biases. Microbiological methods are the most varied and the least useful for characterizing microbial consortia. These methods rely on traditional tools (cell counting, selective growth, and microscopic examination) to provide more general characteristics of the community as a whole, or else to narrow down and identify only a small subset of the members of that community. As with many of the biochemical methods, some of the microbiological methods can fairly rapidly and inexpensively create a community profile, which can be used to compare 2 or more entire consortia. However, for taxonomic identification of individual members, microbiological methods are useful only to screen for the presence of a few key predetermined species, whose preferred growth conditions and morphological characteristics are well defined and reproducible.Key words: microbial communities, microbial consortia, characterization methods, taxonomic identification.
Collapse
Affiliation(s)
- Dan Spiegelman
- Biotechnology Research Institute, National Research Council Canada, Montreal, QC
| | | | | |
Collapse
|
9
|
Maruyama F, Kenzaka T, Yamaguchi N, Tani K, Nasu M. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl Environ Microbiol 2003; 69:5023-8. [PMID: 12902306 PMCID: PMC169117 DOI: 10.1128/aem.69.8.5023-5028.2003] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new in situ DNA amplification technique for microscopic detection of bacteria carrying a specific gene is described. Loop-mediated isothermal amplification (LAMP) was used to detect stxA(2) in Escherichia coli O157:H7 cells. The mild permeabilization conditions and low isothermal temperature used in the in situ LAMP method caused less cell damage than in situ PCR. It allowed use of fluorescent antibody labeling in the bacterial mixture after the DNA amplification for identification of E. coli O157:H7 cells with an stxA(2) gene. Higher-contrast images were obtained with this method than with in situ PCR.
Collapse
Affiliation(s)
- Fumito Maruyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
10
|
Gunasekera TS, Dorsch MR, Slade MB, Veal DA. Specific detection of Pseudomonas spp. in milk by fluorescence in situ hybridization using ribosomal RNA directed probes. J Appl Microbiol 2003; 94:936-45. [PMID: 12694460 DOI: 10.1046/j.1365-2672.2003.01930.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Pseudomonas spp. are considered the most important milk spoilage organisms. Here we describe development of a fluorescence in situ hybridization (FISH) probe specific for detection and enumeration of Pseudomonas spp. in milk. METHODS AND RESULTS 16S rRNA sequences were analysed to develop specific oligonucleotide probe for the genus Pseudomonas. Twenty different Pseudomonas spp. and 23 bacterial species from genera other than Pseudomonas (as negative controls) were tested. All tested Pseudomonas spp. yielded a positive FISH reaction, whereas negative controls showed no FISH reaction except for Burkholderia cepacia that showed a relatively weak FISH reaction. The FISH assay specifically stains Pseudomonas in milk when the milk contains a mixture of other bacterial species. The FISH assay takes 2 h and compares favourably with current culturing methods, which take a minimum of 48 h. Specificity of the probe was validated using polymerase chain reaction to selectively amplifying the Pseudomonas rDNA gene and sequencing the gene products. CONCLUSIONS The method presented in this study allows simultaneously detection, identification and enumeration of Pseudomonas spp. in milk. SIGNIFICANCE AND IMPACT OF THE STUDY Rapid and accurate enumeration of Pseudomonas facilitates the identification of specific contamination sources in dairy plants, the accurate validation of pasteurization treatments and the prediction of shelf life of processed milk.
Collapse
Affiliation(s)
- T S Gunasekera
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | |
Collapse
|
11
|
Ferrari BC, Veal D. Analysis-only detection of Giardia by combining immunomagnetic separation and two-color flow cytometry. Cytometry A 2003; 51:79-86. [PMID: 12541282 DOI: 10.1002/cyto.a.10009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Giardia is a protozoan parasite of concern to water utilities. Giardia detection relies on cyst isolation and confirmation with the use of fluorescence microscopy. It is of interest to develop a flow cytometric (FCM) method that reliably detects one cyst in 10 L of water. To date all available antibodies have targeted the same epitope on the cyst wall. To achieve a reliable method, two independent probes are required. METHODS Giardia cysts were spiked into a backwash water sample with and without prior hybridization to peptide nucleic acid (PNA) probes. Immunomagnetic separation (IMS) as a pre-enrichment step was compared with filtration of the water sample. Cysts were recovered with two-color FCM. Those cysts hybridized with PNA and fluorescein isothiocyanate (FITC) were dual stained with monoclonal antibody (mAb) conjugated to phycoerythrin (PE); those not hybridized to PNA were dual stained with mAb-FITC and mAb-PE. RESULTS A fourfold increase in fluorescent signal intensity was obtained when combining the mAb-PE and PNA probe compared with two-color antibody staining. When combined with IMS, Giardia was successfully identified by FCM, with no false positives detected. CONCLUSIONS Analysis-only FCM detection of Giardia in water is feasible. Further method development incorporating PNA probe hybridization after IMS is necessary.
Collapse
Affiliation(s)
- Belinda C Ferrari
- Centre for Fluorometric Applications in Biotechnology, School of Biological Sciences, Macquarie University, Sydney, Australia.
| | | |
Collapse
|
12
|
Malacrinò P, Zapparoli G, Torriani S, Dellaglio F. Rapid detection of viable yeasts and bacteria in wine by flow cytometry. J Microbiol Methods 2001; 45:127-34. [PMID: 11311398 DOI: 10.1016/s0167-7012(01)00243-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The potential of using flow cytometry (FCM) in combination with fluorescent dyes for rapidly estimating counts of yeasts and malolactic bacteria in laboratory media and wines was examined. In general, there was a good correlation (regression coefficient, 0.94) between viable counts of yeasts determined by FCM and by standard plate assay. The FCM detection limit of yeasts in YPDE medium and in Pinot noir must was 10(3) cells/ml. The lowest bacterial concentration detected by FCM was 10(4) cells/ml. When yeast and malolactic bacteria populations were simultaneously analysed in wine by FCM without any previous sample treatment, difficulties were encountered in the count of bacterial cells due to their size, which is similar to natural debries present in wine. However, after the optimisation of the sample preparation, the technique appeared promising in determining the presence of such microorganisms in wine with one single measurement. Because it is rapid and easy to use, flow cytometry can be considered a useful method for microbiological quality control in wineries and for the investigation of the growth dynamics of microorganisms in wine.
Collapse
Affiliation(s)
- P Malacrinò
- Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada Le Grazie 15-37134, Verona, Italy
| | | | | | | |
Collapse
|
13
|
Schedl M, Behr T, Ludwig W, Schieifer KH, Niessner R, Knopp D. Optimization of reverse hybridization in microplates coated with rRNA targeted oligonucleotide probes. Syst Appl Microbiol 2000; 23:573-81. [PMID: 11249028 DOI: 10.1016/s0723-2020(00)80032-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the modern molecular techniques for the identification of microorganisms the most straightforward way is through direct hybridization with rRNA/rDNA targeted probes. In this study, the optimization of the experimental procedures for the reverse hybridization technique in 96-well microplates is described using both synthetic model oligonucleotides (18 b) and amplified DNA (app. 4500 bp). Three different types of plates were compared (Maxi Sorp, NucleoLink, CovaLink). Plates made from nonchemically modified polystyrene which are conventionally used in immunoassays (MaxiSorp) proved to be an economic alternative for plates offering chemically modified tailor-made surfaces. Phosphorylation of the oligonucleotide probe was not necessary for successful immobilization whereas with 5'-terminal hexa-deoxyadenosine tailed capture oligonucleotides an enhanced sensitivity of the assay was observed. Variation of the stringency by adjusting different concentrations of formamide during the washing step ensures high probe specificity and therefore allows reliable identification of the microorganisms. The assay can be performed in less than 4 hours using pre-coated plates which can be stored for several weeks. After dissociation of the target DNA/capture probe duplex with an alkaline denaturing solution rehybridization is possible.
Collapse
Affiliation(s)
- M Schedl
- Institut für Wasserchemie, Technische Universität München, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Vives-Rego J, Lebaron P, Nebe-von Caron G. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 2000; 24:429-48. [PMID: 10978545 DOI: 10.1111/j.1574-6976.2000.tb00549.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Flow cytometry has become a valuable tool in aquatic and environmental microbiology that combines direct and rapid assays to determine numbers, cell size distribution and additional biochemical and physiological characteristics of individual cells, revealing the heterogeneity present in a population or community. Flow cytometry exhibits three unique technical properties of high potential to study the microbiology of aquatic systems: (i) its tremendous velocity to obtain and process data; (ii) the sorting capacity of some cytometers, which allows the transfer of specific populations or even single cells to a determined location, thus allowing further physical, chemical, biological or molecular analysis; and (iii) high-speed multiparametric data acquisition and multivariate data analysis. Flow cytometry is now commonly used in aquatic microbiology, although the application of cell sorting to microbial ecology and quantification of heterotrophic nanoflagellates and viruses is still under development. The recent development of laser scanning cytometry also provides a new way to further analyse sorted cells or cells recovered on filter membranes or slides. The main infrastructure limitations of flow cytometry are: cost, need for skilled and well-trained operators, and adequate refrigeration systems for high-powered lasers and cell sorters. The selection and obtaining of the optimal fluorochromes, control microorganisms and validations for a specific application may sometimes be difficult to accomplish.
Collapse
Affiliation(s)
- J Vives-Rego
- Departament de Microbiologia, Universitat de Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|
15
|
Veal DA, Deere D, Ferrari B, Piper J, Attfield PV. Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 2000; 243:191-210. [PMID: 10986415 DOI: 10.1016/s0022-1759(00)00234-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Large numbers of microbiological samples are analysed annually using traditional culture-based techniques. These techniques take hours to days to yield a result, are tedious and are not suitable for non-culturable microorganisms. Further, culture-based techniques do not provide real-time information on the physiological status of the organism in situ which is important in the industrial manufacture of many microbial products. Flow cytometry offers the prospect of real-time microbial analysis of individual microorganisms, without dependency on microbial culture. However, flow cytometry has not been extensively used as a tool for routine microbial analysis. This has been mainly due to the high cost and complexity of instrumentation, the need for trained flow cytometrists and the lack of assay kits with appropriate biological reagents for specific applications. Many modern instruments are now relatively simple to operate, due to improvements in the user-interface, and no longer need a specialist operator. However, most cytometers are still reliant on analogue technology first developed 20-30 years ago. The incorporation of modern, solid state opto-electronics combined with micro-fabrication and digital signal processing technology offers the prospect of simple to use, low cost and robust instruments suitable for microbial analyses. Advances are being made in the development of a range of biological reagents and these are now being formulated into simple to use kits for microbiological applications. Currently, these kits are largely restricted to simple analyses, for example to assay for total or viable numbers of microorganisms present. However, technologies are available to selectively label specific types of microorganisms. For example, fluorescent antibodies can be used to label microorganisms according to expression of particular antigens, fluorescent in situ hybridisation to label according to phylogeny and fluorogenic enzymatic substrates to label according to expression of specific enzyme activities. Reagents are also available that stain viruses sufficiently brightly to enable their direct detection in environments such as sea water. Microorganisms need to be detected in a variety of different matrices (e.g., water, mud, food, and beverages) and these matrices may be highly variable in nature (e.g., tap water compared to river water). Many matrices have high background autofluorescence (e.g., algae and minerals in water samples) or may bind non-specifically to the fluorescent biological reagents used (e.g., protein micelles in milk). Formulation of biological reagents and sample pre-treatments are critical to the development of suitable microbiological assays. Here, developments in instrumentation and biological reagents for microbiological applications are reviewed with specific examples from environmental or industrial microbiology. The broader considerations for the development of microbial assays for flow cytometry are also considered.
Collapse
Affiliation(s)
- D A Veal
- Centre for Development of Fluorimetric Applications in Biotechnology, Department of Biological Sciences, Macquarie University, 2109, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
16
|
Nebe-von-Caron G, Stephens PJ, Hewitt CJ, Powell JR, Badley RA. Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods 2000; 42:97-114. [PMID: 11000436 DOI: 10.1016/s0167-7012(00)00181-0] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
With the increased awareness of the problems associated with the growth dependent analysis of bacterial populations, direct optical detection methods such as flow cytometry have enjoyed increased popularity over the last few years. Among the analyses discussed here are: (1) Bacterial discrimination from other particles on the basis of nucleic acid staining, using sample disaggregation to provide fast reliable enumeration while minimizing data artefacts due to post sampling growth; (2) Determination of basic cell functions such as reproductive ability, metabolic activity and membrane integrity, to characterise the physiological state or degree of viability of bacteria; and (3) The use of single cell sorting onto agar plates, microscope slides or into multi-well plates to correlate viability as determined by cell growth with fluorescent labelling techniques. Simultaneous staining with different fluorochromes provides an extremely powerful way to demonstrate culture heterogeneity, and also to understand the functional differences revealed by each stain in practical applications. Analysis of bacterial fermentations showed a considerable drop (20%) in membrane potential and integrity during the latter stages of small scale (5L), well mixed fed-batch fermentations. These changes, not found in either batch or continuous culture fermentations, are probably due to the severe, steadily increasing stress associated with glucose limitation during the fed-batch process, suggesting 'on-line' flow cytometry could improve process control. Heat injured cells can already show up to 4 log of differences in recovery in different pre-enrichment media, thus contributing to the problem of viable but non-culturable cells (VBNC's). Cytometric cell sorting demonstrated decreasing recovery with increasing loss of membrane function. However, a new medium protecting the cells from intracellular and extracellular causes of oxidative stress improved recovery considerably. Actively respiring cells showed much higher recovery improvement than the other populations, demonstrating for the first time the contribution of oxidative respiration to intracellular causes of damage as a key part of the VBNC problem. Finally, absolute and relative frequencies of one species in a complex population were determined using immunofluorescent labelling in combination with the analysis of cell function. The detail and precision of multiparameter flow cytometric measurements of cell function at the single cell level now raise questions regarding the validity of classical, growth dependent viability assessment methods.
Collapse
Affiliation(s)
- G Nebe-von-Caron
- Unilever Research Colworth, Bedfordshire, MK44 1LQ, Sharnbrook, UK.
| | | | | | | | | |
Collapse
|
17
|
Moter A, Göbel UB. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 2000; 41:85-112. [PMID: 10991623 DOI: 10.1016/s0167-7012(00)00152-4] [Citation(s) in RCA: 436] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a technique allowing simultaneous visualization, identification, enumeration and localization of individual microbial cells, fluorescence in situ hybridization (FISH) is useful for many applications in all fields of microbiology. FISH not only allows the detection of culturable microorganisms, but also of yet-to-be cultured (so-called unculturable) organisms, and can therefore help in understanding complex microbial communities. In this review, methodological aspects, as well as problems and pitfalls of FISH are discussed in an examination of past, present and future applications.
Collapse
Affiliation(s)
- A Moter
- Institut für Mikrobiologie und Hygiene, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | |
Collapse
|
18
|
Gunasekera TS, Attfield PV, Veal DA. A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl Environ Microbiol 2000; 66:1228-32. [PMID: 10698799 PMCID: PMC91970 DOI: 10.1128/aem.66.3.1228-1232.2000] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Application of flow cytometry (FCM) to microbial analysis of milk is hampered by the presence of milk proteins and lipid particles. Here we report on the development of a rapid (</=1-h) FCM assay based on enzymatic clearing of milk to determine total bacteria in milk. When bacteria were added to ultra-heat-treated milk, a good correlation (r >/= 0.98) between the FCM assay and the more conventional methods of plating and direct microscopic counting was achieved. Raw milk data showed a significant correlation (P < 0.01) and a good agreement (r = 0.91) between FCM and standard plate count methods. The detection limit of the FCM assay was </=10(4) bacteria ml of milk(-1). This limit is below the level of detection required to satisfy legislation in many countries and states.
Collapse
Affiliation(s)
- T S Gunasekera
- Centre for Fluorimetric Applications in Biotechnology, Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | | | | |
Collapse
|
19
|
|
20
|
Just T, Burgwald H, Broe MK. Flow cytometric detection of EBV (EBER snRNA) using peptide nucleic acid probes. J Virol Methods 1998; 73:163-74. [PMID: 9766887 DOI: 10.1016/s0166-0934(98)00058-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of peptide nucleic acid (PNA) probes for detection of Epstein-Barr Virus (EBV) snRNA in fixed cells is described. Fluorescein labelled PNA probes were used to detect EBER1 and EBER2 snRNA in Raji, Daudi and HS-Sultan cells. The fixation and permeabilization of cells were optimized. The optimal fixation was found to be 5% acetic acid plus 4% paraformaldehyde in PBS and the optimal permeabilization 0.5% Tween 20 in PBS whereas no proteolytic digestion was needed. The hybridization time needed with the PNA probes was only 1 h. When running mixed samples of Ramos (EBV neg.) Raji, Daudi and HS-Sultan (EBV pos.) cells in flow cytometry a strong fluorescence signal was seen in Raji, Daudi and HS-Sultan cells whereas no fluorescence signal was seen in the Ramos cells. In total 0.5% EBER positive Raji cells could easily be identified in a mixture of Raji and Ramos cells. The results were verified by fluorescence microscopy. It is concluded that PNA probes can be used for in situ hybridization in solution and the analysis can be done using flow cytometry or fluorescence microscopy. PNA probes therefore may facilitate and enhance the potential use of the in situ hybridization/flow cytometry combination.
Collapse
Affiliation(s)
- T Just
- Department of Immunocytochemistry, DAKO A/S, Glostrup, Denmark.
| | | | | |
Collapse
|
21
|
Power M, van der Meer JR, Tchelet R, Egli T, Eggen R. Molecular-based methods can contribute to assessments of toxicological risks and bioremediation strategies. J Microbiol Methods 1998. [DOI: 10.1016/s0167-7012(98)00018-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Amann R, Ludwig W, Schulze R, Spring S, Moore E, Schleifer KH. rRNA-Targeted Oligonucleotide Probes for the Identification of Genuine and Former Pseudomonads. Syst Appl Microbiol 1996. [DOI: 10.1016/s0723-2020(96)80023-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|