1
|
Minku, Mukherjee K, Ghosh R. Assessment of bone ingrowth around beaded coated tibial implant for total ankle replacement using mechanoregulatory algorithm. Comput Biol Med 2024; 175:108551. [PMID: 38703546 DOI: 10.1016/j.compbiomed.2024.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The long-term performance of porous coated tibial implants for total ankle replacement (TAR) primarily depends on the extent of bone ingrowth at the bone-implant interface. Although attempts were made for primary fixation for immediate post-operative stability, no investigation was conducted on secondary fixation. The aim of this study is to assess bone ingrowth around the porous beaded coated tibial implant for TAR using a mechanoregulatory algorithm. A realistic macroscale finite element (FE) model of the implanted tibia was developed based on computer tomography (CT) data to assess implant-bone micromotions and coupled with microscale FE models of the implant-bone interface to predict bone ingrowth around tibial implant for TAR. The macroscale FE model was subjected to three near physiological loading conditions to evaluate the site-specific implant-bone micromotion, which were then incorporated into the corresponding microscale model to mimic the near physiological loading conditions. Results of the study demonstrated that the implant experienced tangential micromotion ranged from 0 to 71 μm with a mean of 3.871 μm. Tissue differentiation results revealed that bone ingrowth across the implant ranged from 44 to 96 %, with a mean of around 70 %. The average Young's modulus of the inter-bead tissue layer varied from 1444 to 4180 MPa around the different regions of the implant. The analysis postulates that when peak micromotion touches 30 μm around different regions of the implant, it leads to pronounced fibrous tissues on the implant surface. The highest amount of bone ingrowth was observed in the central regions, and poor bone ingrowth was seen in the anterior parts of the implant, which indicate improper osseointegration around this region. This macro-micro mechanical FE framework can be extended to improve the implant design to enhance the bone ingrowth and in future to develop porous lattice-structured implants to predict and enhance osseointegration around the implant.
Collapse
Affiliation(s)
- Minku
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Kaushik Mukherjee
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
2
|
Distefano F, Epasto G. Effect of density grading on the mechanical behaviour of advanced functionally graded lattice structures. J Mech Behav Biomed Mater 2024; 153:106477. [PMID: 38428204 DOI: 10.1016/j.jmbbm.2024.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Lattice structures have found significant applications in the biomedical field due to their interesting combination of mechanical and biological properties. Among these, functionally graded structures sparked interest because of their potential of varying their mechanical properties throughout the volume, allowing the design of biomedical devices able to match the characteristics of a graded structure like human bone. The aim of this works is the study of the effect of the density grading on the mechanical response and the failure mechanisms of a novel functionally graded lattice structure, namely Triply Arranged Octagonal Rings (TAOR). The mechanical behaviour was compared with the same lattice structures having constant density ratio. Electron Beam Melting technology was used to manufacture titanium alloy specimens with global relative densities from 10% to 30%. Functionally graded structures were obtained by increasing the relative density along the specimen, by individually designing the lattice's layers. Scanning electron and a digital microscopy were used to evaluate the dimensional mismatch between actual and designed structures. Compressive tests were carried out to obtain the mechanical properties and to evaluate the collapse modes of the structures in relation to their average relative density and lattice grading. Open-source Digital Image Correlation algorithm was applied to evaluate the deformation behaviour of the structures and to calculate their elastic moduli. The results showed that uniform density structures provide higher mechanical properties than functionally graded ones. The Digital Image Correlation results showed the possibility of effectively designing the different layers of functionally graded structures selecting desired local mechanical properties to mimic the different characteristics of cortical and cancellous bone.
Collapse
Affiliation(s)
- Fabio Distefano
- Department of Engineering, University of Messina, Contrada di Dio, Vill. Sant'Agata, 98166, Messina, Italy
| | - Gabriella Epasto
- Department of Engineering, University of Messina, Contrada di Dio, Vill. Sant'Agata, 98166, Messina, Italy.
| |
Collapse
|
3
|
Gomes C, Mesnard M, Ramos A. Bone density and proximal support effects on dental implant stability - Finite element analysis and in vitro experiments. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101512. [PMID: 37209971 DOI: 10.1016/j.jormas.2023.101512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/19/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVES The application of dental implants presents the occurrence of implant failures associated with bone proximal support. This study aims to assess implant behavior, in particular implant stability and strain distribution in the bone at different bone densities, and the effect of proximal bone support. MATERIAL AND METHODS Three bone densities (D20, D15, and D10) were considered in the experimental in vitro study, represented by solid rigid polyurethane foam and two conditions of bone support in the proximal region. A finite element model was developed and validated experimentally and a Branemark model at a 3:1 scale was implanted in the experiments; the model was loaded and extracted. RESULTS The results of the experimental models validate the finite element models with a correlation R2 equal to 0.899 and NMSE of 7%. The implant extraction tests for the effect of bone properties in the maximum load were 2832 N for D20 and 792 N for D10. The effect of proximal bone support changes the implant stability was observed experimentally; at 1 mm less bone support decreases by 20% of stability and at 2 mm by 58% for D15 density. CONCLUSIONS Bone properties and bone quantity are important for the initial stability of the implant. A bone volume fraction of less than 24 g/cm3 exhibits poor behavior and is not indicated for implantation. Proximal bone support reduces the primary stability of the implant and the effect is critical in lower bone density.
Collapse
Affiliation(s)
- C Gomes
- University of Aveiro, Biomechanics Research Group, Department of Mechanical Engineering, Aveiro 3810-193, Portugal
| | - M Mesnard
- University de Bordeaux, Institut de Mécanique et d'Ingénierie, Department Ingénierie Mécanique et Conception, CNRS UMR 5295, Talence 33405, France
| | - A Ramos
- University of Aveiro, Biomechanics Research Group, Department of Mechanical Engineering, Aveiro 3810-193, Portugal.
| |
Collapse
|
4
|
Rüger M, Seitz AM, Nuss K, von Rechenberg B, Seitz D, Kostmann C, Quadbeck P, Andersen O, Collins C. A Bioinspired Orthopedic Biomaterial with Tunable Mechanical Properties Based on Sintered Titanium Fibers. Adv Healthc Mater 2023; 12:e2202106. [PMID: 36250334 DOI: 10.1002/adhm.202202106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 01/18/2023]
Abstract
Inadequate mechanical compliance of orthopedic implants can result in excessive strain of the bone interface, and ultimately, aseptic loosening. It is hypothesized that a fiber-based biometal with adjustable anisotropic mechanical properties can reduce interface strain, facilitate continuous remodeling, and improve implant survival under complex loads. The biometal is based on strategically layered sintered titanium fibers. Six different topologies are manufactured. Specimens are tested under compression in three orthogonal axes under 3-point bending and torsion until failure. Biocompatibility testing involves murine osteoblasts. Osseointegration is investigated by micro-computed tomography and histomorphometry after implantation in a metaphyseal trepanation model in sheep. The material demonstrates compressive yield strengths of up to 50 MPa and anisotropy correlating closely with fiber layout. Samples with 75% porosity are both stronger and stiffer than those with 85% porosity. The highest bending modulus is found in samples with parallel fiber orientation, while the highest shear modulus is found in cross-ply layouts. Cell metabolism and morphology indicate uncompromised biocompatibility. Implants demonstrate robust circumferential osseointegration in vivo after 8 weeks. The biometal introduced in this study demonstrates anisotropic mechanical properties similar to bone, and excellent osteoconductivity and feasibility as an orthopedic implant material.
Collapse
Affiliation(s)
- Matthias Rüger
- Department of Paediatric Orthopedics and Traumatology, University Children´s Hospital, University of Zurich, Zurich, 8032, Switzerland.,Laboratory for Bone Biomechanics, Institute for Biomechanics, ETH Zurich, Zurich, 8093, Switzerland
| | - Andreas Martin Seitz
- Institute of Orthopedic Research and Biomechanics, Centre of Trauma Research, University Medical Centre, 89081, Ulm, Germany
| | - Katja Nuss
- Musculoskeletal Research Unit, Department of Mechanisms of Disease, Vetsuisse Faculty, Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, 8057, Switzerland
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Department of Mechanisms of Disease, Vetsuisse Faculty, Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, 8057, Switzerland
| | - Daniel Seitz
- Biomed Center Innovation gGmbH, 95447, Bayreuth, Germany
| | - Cris Kostmann
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, 01277, Dresden, Germany
| | - Peter Quadbeck
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, 01277, Dresden, Germany
| | - Olaf Andersen
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden, 01277, Dresden, Germany
| | - Caitlyn Collins
- Laboratory for Bone Biomechanics, Institute for Biomechanics, ETH Zurich, Zurich, 8093, Switzerland.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
5
|
Changoor A, Suderman RP, Alshaygy I, Fuhrmann A, Akens MK, Safir O, Grynpas MD, Kuzyk PRT. Irregular porous titanium enhances implant stability and bone ingrowth in an intra-articular ovine model. J Orthop Res 2022; 40:2294-2307. [PMID: 35146795 DOI: 10.1002/jor.25272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/02/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Two commercially available porous coatings, Gription and Porocoat, were compared for the first time in a challenging intra-articular, weight-bearing, ovine model. Gription has evolved from Porocoat and has higher porosity, coefficient of friction, and microtextured topography, which are expected to enhance bone ingrowth. Cylindrical implants were press-fit into the weight-bearing regions of ovine femoral condyles and bone ingrowth and fixation strength evaluated 4, 8, and 16 weeks postoperatively. Biomechanical push-out tests were performed on lateral femoral condyles (LFCs) to evaluate the strength of the bone-implant interface. Bone ingrowth was assessed in medial femoral condyles (MFCs) as well as implants retrieved from LFCs following biomechanical testing using backscattered electron microscopy and histology. By 16 weeks, Gription-coated implants exhibited higher force (2455 ± 1362 vs. 1002 ± 1466 N; p = 0.046) and stress (12.60 ± 6.99 vs. 5.14 ± 7.53 MPa; p = 0.046) at failure, and trended towards higher stiffness (11,510 ± 7645 vs. 5010 ± 8374 N/mm; p = 0.061) and modulus of elasticity (591 ± 392 vs. 256 ± 431 MPa; p = 0.061). A strong, positive correlation was detected between bone ingrowth in LFC implants and failure force (r = 0.93, p < 10-13 ). By 16 weeks, bone ingrowth in Gription-coated implants in MFCs was 10.50 ± 6.31% compared to 5.88 ± 2.77% in Porocoat (p = 0.095). Observations of the bone-implant interface, made following push-out testing, showed more bony material consistently adhered to Gription compared to Porocoat at all three time points. Gription provided superior fixation strength and bone ingrowth by 16 weeks.
Collapse
Affiliation(s)
- Adele Changoor
- Department of Surgery and Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - R Peter Suderman
- Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Ibrahim Alshaygy
- Division of Orthopaedic Surgery, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Fuhrmann
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Orthopedic Surgery, Barzilai Medical Centre, Ashkelon, Israel
| | - Margarete K Akens
- Department of Surgery and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Oleg Safir
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology and Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Paul R T Kuzyk
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Mathai B, Gupta S. Bone Ingrowth Around an Uncemented Femoral Implant Using Mechanoregulatory Algorithm: A Multiscale Finite Element Analysis. J Biomech Eng 2022; 144:1116026. [PMID: 34423812 DOI: 10.1115/1.4052227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/08/2022]
Abstract
The primary fixation and long-term stability of a cementless femoral implant depend on bone ingrowth within the porous coating. Although attempts were made to quantify the peri-implant bone ingrowth using the finite element (FE) analysis and mechanoregulatory principles, the tissue differentiation patterns on a porous-coated hip stem have scarcely been investigated. The objective of this study is to predict the spatial distribution of evolutionary bone ingrowth around an uncemented hip stem, using a three-dimensional (3D) multiscale mechanobiology-based numerical framework. Multiple load cases representing a variety of daily living activities, including walking, stair climbing, sitting down, and standing up from a chair, were used as applied loading conditions. The study accounted for the local variations in host bone material properties and implant-bone relative displacements of the macroscale implanted FE model, in order to predict bone ingrowth in microscale representative volume elements (RVEs) of 12 interfacial regions. In majority RVEs, 20-70% bone tissue (immature and mature) was predicted after 2 months, contributing toward a progressive increase in average Young's modulus (1200-3000 MPa) of the interbead tissue layer. Higher bone ingrowth (mostly greater than 60%) was predicted in the anterolateral regions of the implant, as compared to the posteromedial side (20-50%). New bone tissue was formed deeper inside the interbead spacing, adhering to the implant surface. The study helps to gain an insight into the degree of osseointegration of a porous-coated femoral implant.
Collapse
Affiliation(s)
- Basil Mathai
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| |
Collapse
|
7
|
Rony L, Aguado E, Verlee B, Pascaretti-Grizon F, Chappard D. Microarchitecture of titanium cylinders obtained by additive manufacturing does not influence osseointegration in the sheep. Regen Biomater 2021; 8:rbab021. [PMID: 34188953 PMCID: PMC8226111 DOI: 10.1093/rb/rbab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
Large bone defects are a challenge for orthopedic surgery. Natural (bone grafts) and synthetic biomaterials have been proposed but several problems arise such as biomechanical resistance or viral/bacterial safety. The use of metallic foams could be a solution to improve mechanical resistance and promote osseointegration of large porous metal devices. Titanium cylinders have been prepared by additive manufacturing (3D printing/rapid prototyping) with a geometric or trabecular microarchitecture. They were implanted in the femoral condyles of aged ewes; the animals were left in stabling for 90 and 270 days. A double calcein labeling was done before sacrifice; bones were analyzed by histomorphometry. Neither bone volume, bone/titanium interface nor mineralization rate were influenced by the cylinder's microarchitecture; the morphometric parameters did not significantly increase over time. Bone anchoring occurred on the margins of the cylinders and some trabeculae extended in the core of the cylinders but the amount of bone inside the cylinders remained low. The rigid titanium cylinders preserved bone cells from strains in the core of the cylinders. Additive manufacturing is an interesting tool to prepare 3D metallic scaffolds, but microarchitecture does not seem as crucial as expected and anchoring seems limited to the first millimeters of the graft.
Collapse
Affiliation(s)
- Louis Rony
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Eric Aguado
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Bruno Verlee
- SIRRIS Liège Science Park, Rue du bois St Jean 12, Seraing 4102, Belgium
| | - Florence Pascaretti-Grizon
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| | - Daniel Chappard
- GEROM-Groupe Etudes Remodelage Osseux et bioMatériaux, LabCom NextBone, Univ-Angers, IRIS-IBS Institut de Biologie en Santé, 49933 Angers, France
| |
Collapse
|
8
|
The limit of tolerable micromotion for implant osseointegration: a systematic review. Sci Rep 2021; 11:10797. [PMID: 34031476 PMCID: PMC8144379 DOI: 10.1038/s41598-021-90142-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Much research effort is being invested into the development of porous biomaterials that enhance implant osseointegration. Large micromotions at the bone-implant interface impair this osseointegration process, resulting in fibrous capsule formation and implant loosening. This systematic review compiled all the in vivo evidence available to establish if there is a universal limit of tolerable micromotion for implant osseointegration. The protocol was registered with the International Prospective Register for Systematic Reviews (ID: CRD42020196686). Pubmed, Scopus and Web of Knowledge databases were searched for studies containing terms relating to micromotion and osseointegration. The mean value of micromotion for implants that osseointegrated was 32% of the mean value for those that did not (112 ± 176 µm versus 349 ± 231 µm, p < 0.001). However, there was a large overlap in the data ranges with no universal limit apparent. Rather, many factors were found to combine to affect the overall outcome including loading time, the type of implant and the material being used. The tables provided in this review summarise these factors and will aid investigators in identifying the most relevant micromotion values for their biomaterial and implant development research.
Collapse
|
9
|
Deering J, Presas A, Yu B, Valentin D, Heiss C, Bosbach WA, Grandfield K. Implant resonance and the mechanostat theory: Applications of therapeutic ultrasound for porous metallic scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112070. [PMID: 33965119 DOI: 10.1016/j.msec.2021.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 11/18/2022]
Abstract
The development of treatment strategies for improving secondary stability at the bone-implant interface is a challenge. Porous implants are one solution for improving long-term implant stability, but the osteoconduction process of implants into the bone can be slow. Strain-driven osteogenesis from the mechanostat theory offers insight into pathways for post-operative treatment but mechanisms to deliver strain to the bone-implant interface need refinement. In this work, the use of therapeutic ultrasound is simulated to induce resonance into a porous implant structure. Local strains through the scaffold are measured by varying systemic variables such as damping ratio, applied vibrational force, primary bone-implant stability, and input frequency. At the natural frequency of the system with applied forces of 0.5 N and a damping ratio of 0.5%, roughly half of the nodes in the simulated environment exceed the microstrain threshold of 1000 με required for new bone formation. A high degree of sensitivity was noted upon changing input frequency, with minor sensitivities arising from damping ratio and applied vibrational force. These findings suggest that the application of therapeutic resonance to improve osseointegration of the bone-implant interface may be viable for applications including dental implants or segmental bone defects.
Collapse
Affiliation(s)
- Joseph Deering
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada.
| | - Alexandre Presas
- Center for Industrial Diagnostics and Fluid Dynamics (CDIF), Polytechnic University of Catalonia (UPC), Barcelona, Spain
| | - Bosco Yu
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - David Valentin
- Center for Industrial Diagnostics and Fluid Dynamics (CDIF), Polytechnic University of Catalonia (UPC), Barcelona, Spain
| | - Christian Heiss
- Experimental Trauma Surgery, Justus-Liebig-University of Giessen, Germany; Department of Trauma, Hand, and Reconstructive Surgery, University Hospital of Giessen, Germany
| | - Wolfram A Bosbach
- Experimental Trauma Surgery, Justus-Liebig-University of Giessen, Germany; Department of Trauma, Hand, and Reconstructive Surgery, University Hospital of Giessen, Germany
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Lovati AB, Lopa S, Bottagisio M, Talò G, Canciani E, Dellavia C, Alessandrino A, Biagiotti M, Freddi G, Segatti F, Moretti M. Peptide-Enriched Silk Fibroin Sponge and Trabecular Titanium Composites to Enhance Bone Ingrowth of Prosthetic Implants in an Ovine Model of Bone Gaps. Front Bioeng Biotechnol 2020; 8:563203. [PMID: 33195126 PMCID: PMC7604365 DOI: 10.3389/fbioe.2020.563203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis frequently requires arthroplasty. Cementless implants are widely used in clinics to replace damaged cartilage or missing bone tissue. In cementless arthroplasty, the risk of aseptic loosening strictly depends on implant stability and bone–implant interface, which are fundamental to guarantee the long-term success of the implant. Ameliorating the features of prosthetic materials, including their porosity and/or geometry, and identifying osteoconductive and/or osteoinductive coatings of implant surfaces are the main strategies to enhance the bone-implant contact surface area. Herein, the development of a novel composite consisting in the association of macro-porous trabecular titanium with silk fibroin (SF) sponges enriched with anionic fibroin-derived polypeptides is described. This composite is applied to improve early bone ingrowth into the implant mesh in a sheep model of bone defects. The composite enables to nucleate carbonated hydroxyapatite and accelerates the osteoblastic differentiation of resident cells, inducing an outward bone growth, a feature that can be particularly relevant when applying these implants in the case of poor osseointegration. Moreover, the osteoconductive properties of peptide-enriched SF sponges support an inward bone deposition from the native bone towards the implants. This technology can be exploited to improve the biological functionality of various prosthetic materials in terms of early bone fixation and prevention of aseptic loosening in prosthetic surgery.
Collapse
Affiliation(s)
- Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Elena Canciani
- Ground Sections Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Claudia Dellavia
- Ground Sections Laboratory, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | | | | | | | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy.,Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
11
|
Challa V, Nune K, Gong N, Misra R. The significant impact of mechanically-induced phase transformation on cellular functionality of biomedical austenitic stainless steel. J Mech Behav Biomed Mater 2020; 108:103815. [DOI: 10.1016/j.jmbbm.2020.103815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
|
12
|
Ramos A, Mesnard M. Finite element model to predict bone loss around dental implant. Comput Methods Biomech Biomed Engin 2020. [DOI: 10.1080/10255842.2020.1713474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- A. Ramos
- TEMA, Biomechanics Research Group, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
13
|
Caravaggi P, Liverani E, Leardini A, Fortunato A, Belvedere C, Baruffaldi F, Fini M, Parrilli A, Mattioli‐Belmonte M, Tomesani L, Pagani S. CoCr porous scaffolds manufactured via selective laser melting in orthopedics: Topographical, mechanical, and biological characterization. J Biomed Mater Res B Appl Biomater 2019; 107:2343-2353. [DOI: 10.1002/jbm.b.34328] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/16/2018] [Accepted: 12/23/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Paolo Caravaggi
- Movement Analysis LaboratoryIRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | | | - Alberto Leardini
- Movement Analysis LaboratoryIRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | | | - Claudio Belvedere
- Movement Analysis LaboratoryIRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Fabio Baruffaldi
- Medical Technology LaboratoryIRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical StudiesIRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | - Annapaola Parrilli
- Laboratory of Preclinical and Surgical StudiesIRCCS Istituto Ortopedico Rizzoli Bologna Italy
| | | | | | - Stefania Pagani
- Laboratory of Preclinical and Surgical StudiesIRCCS Istituto Ortopedico Rizzoli Bologna Italy
| |
Collapse
|
14
|
Nune KC, Montes I, Injeti VSY, Somani MC, Misra RDK. The determining role of nanoscale mechanical twinning on cellular functions of nanostructured materials. J Mech Behav Biomed Mater 2018; 88:185-195. [PMID: 30173071 DOI: 10.1016/j.jmbbm.2018.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/08/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
Considering that micromotions generated at the bone-implant interface under physiological loading introduce mechanical strain on the tissue and surface of the implant and that strain can be introduced during processing of the biomedical device, we elucidate here the interplay between mechanically-induced nanoscale twinning in austenitic stainless steel on osteoblast functions. Mechanically-induced nanoscale twinning significantly impacted cell attachment, cell-substrate interactions, proliferation, and subsequent synthesis of prominent proteins (fibronectin, actin, and vinculin). Twinning was beneficial in favorably modulating cellular activity and contributed to small differences in hydrophilicity and nanoscale roughness in relation to the untwinned surface.
Collapse
Affiliation(s)
- K C Nune
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - I Montes
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - V S Y Injeti
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA
| | - M C Somani
- Department of Mechanical Engineering, The University of Oulu, P.O. Box 4200, 90014 Oulu, Finland
| | - R D K Misra
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
15
|
Murase K, Stenlund P, Thomsen P, Lausmaa J, Palmquist A. Three-dimensional modeling of removal torque and fracture progression around implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:104. [PMID: 29961132 PMCID: PMC6028867 DOI: 10.1007/s10856-018-6108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
In the present study, a model for simulations of removal torque experiments was developed using finite element method. The interfacial retention and fracturing of the surrounding material caused by the surface features during torque was analyzed. It was hypothesized that the progression of removal torque and the phases identified in the torque response plot represents sequential fractures at the interface. The 3-dimensional finite element model fairly accurately predicts the torque required to break the fixation of acid-etched implants, and also provides insight to how sequential fractures progress downwards along the implant side.
Collapse
Affiliation(s)
- Kohei Murase
- Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Patrik Stenlund
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden.
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- RISE Research Institutes of Sweden AB, Gothenburg, Sweden.
| | - Peter Thomsen
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jukka Lausmaa
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
- RISE Research Institutes of Sweden AB, Gothenburg, Sweden
| | - Anders Palmquist
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
MacBarb RF, Lindsey DP, Woods SA, Lalor PA, Gundanna MI, Yerby SA. Fortifying the Bone-Implant Interface Part 2: An In Vivo Evaluation of 3D-Printed and TPS-Coated Triangular Implants. Int J Spine Surg 2017; 11:16. [PMID: 28765800 PMCID: PMC5537984 DOI: 10.14444/4016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. METHODS A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. RESULTS Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants (p<0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core (p<0.002). CONCLUSIONS Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants' core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. CLINICAL RELEVANCE Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures.
Collapse
|
17
|
Jariwala SH, Wee H, Roush EP, Whitcomb TL, Murter C, Kozlansky G, Lakhtakia A, Kunselman AR, Donahue HJ, Armstrong AD, Lewis GS. Time course of peri-implant bone regeneration around loaded and unloaded implants in a rat model. J Orthop Res 2017; 35:997-1006. [PMID: 27381807 PMCID: PMC5800527 DOI: 10.1002/jor.23360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/02/2016] [Indexed: 02/04/2023]
Abstract
The time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats. External cyclic loading (60 or 100 μm displacement, 1 Hz, 60 s) was applied every other day for 14 days to one implant in each rat, while implants in contralateral limbs served as the unloaded controls. Hind limbs were imaged with high-resolution micro-CT (12.5 μm voxel size) at 2, 5, 9, and 12 days post-surgery. Trabecular changes over time were detected by 3D image registration allowing for measurements of bone-formation rate (BFR) and bone-resorption rate (BRR). At day 9, mean %BV/TV for loaded and unloaded limbs were 35.5 ± 10.0% and 37.2 ± 10.0%, respectively, and demonstrated significant increases in bone volume compared to day 2. BRR increased significantly after day 9. No significant differences between bone volumes, BFR, and BRR were detected due to implant loading. Although not reaching significance (p = 0.16), an average 119% increase in pull-out strength was measured in the loaded implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:997-1006, 2017.
Collapse
Affiliation(s)
- Shailly H. Jariwala
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Hwabok Wee
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Evan P. Roush
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Tiffany L. Whitcomb
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Christopher Murter
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Gery Kozlansky
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Akhlesh Lakhtakia
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812
| | - Allen R. Kunselman
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Henry J. Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - April D. Armstrong
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Gregory S. Lewis
- Division of Musculoskeletal Sciences, Department of Orthopedics and Rehabilitation, College of Medicine, Pennsylvania State University, Hershey, PA 17033
- Author to whom all correspondence should be addressed: Gregory S. Lewis, Ph.D*, Pennsylvania State University College of Medicine, 500 University Drive, Mailbox – H089, Hershey, PA-17033, Phone: (717) 531-5244, Fax no.: (717) 531-7583,
| |
Collapse
|
18
|
Stenlund P, Trobos M, Lausmaa J, Brånemark R, Thomsen P, Palmquist A. Effect of load on the bone around bone-anchored amputation prostheses. J Orthop Res 2017; 35:1113-1122. [PMID: 27341064 DOI: 10.1002/jor.23352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/22/2016] [Indexed: 02/04/2023]
Abstract
Osseointegrated transfemoral amputation prostheses have proven successful as an alternative method to the conventional socket-type prostheses. The method improves prosthetic use and thus increases the demands imposed on the bone-implant system. The hypothesis of the present study was that the loads applied to the bone-anchored implant system of amputees would result in locations of high stress and strain transfer to the bone tissue and thus contribute to complications such as unfavourable bone remodeling and/or elevated inflammatory response and/or compromised sealing function at the tissue-abutment interface. In the study, site-specific loading measurements were made on amputees and used as input data in finite element analyses to predict the stress and strain distribution in the bone tissue. Furthermore, a tissue sample retrieved from a patient undergoing implant revision was characterized in order to evaluate the long-term tissue response around the abutment. Within the limit of the evaluated bone properties in the present experiments, it is concluded that the loads applied to the implant system may compromise the sealing function between the bone and the abutment, contributing to resorption of the bone in direct contact with the abutment at the most distal end. This was supported by observations in the retrieved clinical sample of bone resorption and the formation of a soft tissue lining along the abutment interface. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1113-1122, 2017.
Collapse
Affiliation(s)
- Patrik Stenlund
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Trobos
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jukka Lausmaa
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| | - Rickard Brånemark
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Thomsen
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Malfroy Camine V, Terrier A, Pioletti DP. Micromotion-induced peri-prosthetic fluid flow around a cementless femoral stem. Comput Methods Biomech Biomed Engin 2017; 20:730-736. [PMID: 28271719 DOI: 10.1080/10255842.2017.1296954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Micromotion-induced interstitial fluid flow at the bone-implant interface has been proposed to play an important role in aseptic loosening of cementless implants. High fluid velocities are thought to promote aseptic loosening through activation of osteoclasts, shear stress induced control of mesenchymal stem cells differentiation, or transport of molecules. In this study, our objectives were to characterize and quantify micromotion-induced fluid flow around a cementless femoral stem using finite element modeling. With a 2D model of the bone-implant interface and full-factorial design, we first evaluated the relative influence of material properties, and bone-implant micromotion and gap on fluid velocity. Transverse sections around a femoral stem were built from computed tomography images, while boundary conditions were obtained from experimental measurements on the same femur. In a second step, a 3D model was built from the same data-set to estimate the shear stress experienced by cells hosted in the peri-implant tissues. The full-factorial design analysis showed that local micromotion had the most influence on peak fluid velocity at the interface. Remarkable variations in fluid velocity were observed in the macrostructures at the surface of the implant in the 2D transverse sections of the stem. The 3D model predicted peak fluid velocities extending up to 2.2 mm/s in the granulation tissue and to 3.9 mm/s in the trabecular bone. Peak shear stresses on the cells hosted in these tissues ranged from 0.1 to 12.5 Pa. These results offer insight into mechanical stimuli encountered at the bone-implant interface.
Collapse
Affiliation(s)
- Valérie Malfroy Camine
- a Laboratory of Biomechanical Orthopedics , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Alexandre Terrier
- a Laboratory of Biomechanical Orthopedics , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Dominique P Pioletti
- a Laboratory of Biomechanical Orthopedics , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| |
Collapse
|
20
|
Pinheiro M, Alves JL. The feasibility of a custom-made endoprosthesis in mandibular reconstruction: Implant design and finite element analysis. J Craniomaxillofac Surg 2015; 43:2116-28. [PMID: 26596361 DOI: 10.1016/j.jcms.2015.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/09/2015] [Accepted: 10/02/2015] [Indexed: 11/15/2022] Open
Abstract
This work studies the feasibility of custom-made endoprosthesis in the reconstruction of major mandibular defects. The natural anatomical and occlusal relations are used to accurately reconstruct a mandibular defect. The customized implant allows the accurate restoration of the facial profile and aesthetics. The biomechanical behaviour of mandibular endoprosthesis was validated with Finite Element Analysis for three masticatory tasks, namely incisal, right molar and left group clenching. The implanted mandible shows displacement fields and stress distributions very similar to the intact mandible. The strain fields observed along the bone-implant interface may promote bone maintenance and ingrowth. The preliminary results show that this implant may be a reliable alternative to other prosthetic mandibular reconstruction approaches.
Collapse
Affiliation(s)
- Manuel Pinheiro
- Department of Mechanical Engineering, University of Minho, Guimarães, Braga, Portugal.
| | - J L Alves
- Department of Mechanical Engineering, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
21
|
Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? J Biomech 2014; 48:767-78. [PMID: 25560273 DOI: 10.1016/j.jbiomech.2014.12.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/23/2022]
Abstract
Finite element has been used for more than four decades to study and evaluate the mechanical behaviour total joint replacements. In Huiskes seminal paper "Failed innovation in total hip replacement: diagnosis and proposals for a cure", finite element modelling was one of the potential cures to avoid poorly performing designs reaching the market place. The size and sophistication of models has increased significantly since that paper and a range of techniques are available from predicting the initial mechanical environment through to advanced adaptive simulations including bone adaptation, tissue differentiation, damage accumulation and wear. However, are we any closer to FE becoming an effective screening tool for new devices? This review contains a critical analysis of currently available finite element modelling techniques including (i) development of the basic model, the application of appropriate material properties, loading and boundary conditions, (ii) describing the initial mechanical environment of the bone-implant system, (iii) capturing the time dependent behaviour in adaptive simulations, (iv) the design and implementation of computer based experiments and (v) determining suitable performance metrics. The development of the underlying tools and techniques appears to have plateaued and further advances appear to be limited either by a lack of data to populate the models or the need to better understand the fundamentals of the mechanical and biological processes. There has been progress in the design of computer based experiments. Historically, FE has been used in a similar way to in vitro tests, by running only a limited set of analyses, typically of a single bone segment or joint under idealised conditions. The power of finite element is the ability to run multiple simulations and explore the performance of a device under a variety of conditions. There has been increasing usage of design of experiments, probabilistic techniques and more recently population based modelling to account for patient and surgical variability. In order to have effective screening methods, we need to continue to develop these approaches to examine the behaviour and performance of total joint replacements and benchmark them for devices with known clinical performance. Finite element will increasingly be used in the design, development and pre-clinical testing of total joint replacements. However, simulations must include holistic, closely corroborated, multi-domain analyses which account for real world variability.
Collapse
|
22
|
Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces. Acta Biomater 2013; 9:6663-74. [PMID: 23337705 DOI: 10.1016/j.actbio.2013.01.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/06/2012] [Accepted: 01/14/2013] [Indexed: 11/24/2022]
Abstract
Implant loading can create micromotion at the bone-implant interface. The interfacial strain associated with implant micromotion could contribute to regulating the tissue healing response. Excessive micromotion can lead to fibrous encapsulation and implant loosening. Our objective was to characterize the influence of interfacial strain on bone regeneration around implants in mouse tibiae. A micromotion system was used to create strain under conditions of (1) no initial contact between implant and bone and (2) direct bone-implant contact. Pin- and screw-shaped implants were subjected to displacements of 150 or 300 μm for 60 cycles per day for 7 days. Pin-shaped implants placed in five animals were subjected to three sessions of 150 μm displacement per day, with 60 cycles per session. Control implants in both types of interfaces were stabilized throughout the healing period. Experimental strain analyses, microtomography, image-based displacement mapping, and finite element simulations were used to characterize interfacial strain fields. Calcified tissue sections were prepared and Goldner trichrome stained to evaluate the tissue reactions in higher and lower strain regions. In stable implants bone formation occurred consistently around the implants. In implants subjected to micromotion bone regeneration was disrupted in areas of high strain concentrations (e.g. >30%), whereas lower strain values were permissive of bone formation. Increasing implant displacement or number of cycles per day also changed the strain distribution and disturbed bone healing. These results indicate that not only implant micromotion but also the associated interfacial strain field contributes to regulating the interfacial mechanobiology at healing bone-implant interfaces.
Collapse
|
23
|
Sato N, Kuwana T, Yamamoto M, Suenaga H, Anada T, Koyama S, Suzuki O, Sasaki K. Bone response to immediate loading through titanium implants with different surface roughness in rats. Odontology 2013; 102:249-58. [PMID: 23563749 DOI: 10.1007/s10266-013-0107-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Naoko Sato
- Tohoku University Hospital, Maxillofacial Prosthetics Clinic, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Long JP, Hollister SJ, Goldstein SA. A paradigm for the development and evaluation of novel implant topologies for bone fixation: in vivo evaluation. J Biomech 2012; 45:2651-7. [PMID: 22951278 PMCID: PMC3462280 DOI: 10.1016/j.jbiomech.2012.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 11/21/2022]
Abstract
While contemporary prosthetic devices restore some function to individuals who have lost a limb, there are efforts to develop bio-integrated prostheses to improve functionality. A critical step in advancing this technology will be to securely attach the device to remnant bone. To investigate mechanisms for establishing robust implant fixation in bone while undergoing loading, we previously used a topology optimization scheme to develop optimized orthopedic implants and then fabricated selected designs from titanium (Ti)-alloy with selective laser sintering (SLS) technology. In the present study, we examined how implant architecture and mechanical stimulation influence osseointegration within an in vivo environment. To do this, we evaluated three implant designs (two optimized and one non-optimized) using a unique in vivo model that applied cyclic, tension/compression loads to the implants. Eighteen (six per implant design) adult male canines had implants surgically placed in their proximal, tibial metaphyses. Experimental duration was 12 weeks; daily loading (peak load of ±22 N for 1000 cycles) was applied to one of each animal's bilateral implants for the latter six weeks. Following harvest, osseointegration was assessed by non-destructive mechanical testing, micro-computed tomography (microCT) and back-scatter scanning electron microscopy (SEM). Data revealed that implant loading enhanced osseointegration by significantly increasing construct stiffness, peri-implant trabecular morphology, and percentages of interface connectivity and bone ingrowth. While this experiment did not demonstrate a clear advantage associated with the optimized implant designs, osseointegration was found to be significantly influenced by aspects of implant architecture.
Collapse
Affiliation(s)
- Jason P Long
- Department of Orthopaedic Surgery, the University of Michigan, United States.
| | | | | |
Collapse
|
25
|
A paradigm for the development and evaluation of novel implant topologies for bone fixation: Implant design and fabrication. J Biomech 2012; 45:2241-7. [DOI: 10.1016/j.jbiomech.2012.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 05/31/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
|
26
|
Global biomechanical model for dental implants. J Biomech 2011; 44:1059-65. [DOI: 10.1016/j.jbiomech.2011.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 11/18/2022]
|
27
|
Führt Osteoporose zu einer Reduktion der Primärstabilität zementfreier Hüftpfannen? DER ORTHOPADE 2011; 40:607-13. [DOI: 10.1007/s00132-010-1733-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Variola F, Brunski J, Orsini G, de Oliveira PT, Wazen R, Nanci A. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. NANOSCALE 2011; 3:335-53. [PMID: 20976359 PMCID: PMC3105323 DOI: 10.1039/c0nr00485e] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Evidence that nanoscale surface properties stimulate and guide various molecular and biological processes at the implant/tissue interface is fostering a new trend in designing implantable metals. Cutting-edge expertise and techniques drawn from widely separated fields, such as nanotechnology, materials engineering and biology, have been advantageously exploited to nanoengineer surfaces in ways that control and direct these processes in predictable manners. In this review, we present and discuss the state-of-the-art of nanotechnology-based approaches currently adopted to modify the surface of metals used for orthopedic and dental applications, and also briefly consider their use in the cardiovascular field. The effects of nanoengineered surfaces on various in vitro molecular and cellular events are firstly discussed. This review also provides an overview of in vivo and clinical studies with nanostructured metallic implants, and addresses the potential influence of nanotopography on biomechanical events at interfaces. Ultimately, the objective of this work is to give the readership a comprehensive picture of the current advances, future developments and challenges in the application of the infinitesimally small to biomedical surface science. We believe that an integrated understanding of the in vitro and particularly of the in vivo behavior is mandatory for the proper exploitation of nanostructured implantable metals and, indeed, of all biomaterials.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC, H3C 3J7 (Canada)
| | - John Brunski
- Division of Plastic & Reconstructive Surgery, Department of Surgery PSRL, School of Medicine, Stanford University, 257 Campus Drive Stanford, CA 94305 (USA)
| | - Giovanna Orsini
- Department of Clinical Sciences and Stomatology, University of Marche, Via Tronto 10, 66026 Ancona (Italy)
| | - Paulo Tambasco de Oliveira
- Department of Morphology, Stomatology and Physiology, University of São Paulo, Ribeirão Preto, SP, 14040-904 (Brazil)
| | - Rima Wazen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC, H3C 3J7 (Canada)
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, Montréal, QC, H3C 3J7 (Canada)
| |
Collapse
|
29
|
Abstract
Porous titanium has been used for grafts and implant coatings as it allows the mechanical interlocking of the pores and bone. Evaluation of porous scaffolds for bone regeneration is essential for their manufacture. Porosity, pore size, pore shape and pore homogeneity are parameters that influence strongly the mechanical strength and biological functionality. In this study, porous titanium samples were manufactured by powder metallurgy by using pure titanium powders mixed with a pore former. The quantification of the porosity parameters was assessed in this work by geometric method and gamma-ray transmission, the non-destructive techniques and metallographic images processing, a destructive technique. Qualitative evaluation of pore morphology and surface topography were performed by scanning electron microscopy and optical microscopy. The results obtained and the effectiveness of the techniques used were compared in order to select those most suitable for characterization of porous titanium scaffolds.
Collapse
|
30
|
Kang H, Lin CY, Hollister SJ. Topology Optimization of Three Dimensional Tissue Engineering Scaffold Architectures for Prescribed Bulk Modulus and Diffusivity. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION : JOURNAL OF THE INTERNATIONAL SOCIETY FOR STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION 2010; 42:633-644. [PMID: 32774195 PMCID: PMC7413610 DOI: 10.1007/s00158-010-0508-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tissue engineering scaffolds play critical roles in skeletal tissue regeneration by supporting physiological loads as well as enhancing cell/tissue migration and formation. These roles can be fulfilled by the functional design of scaffold pore architectures such that the scaffold provides proper mechanical and mass transport environments for new tissue formation. These roles require simultaneous design of mechanical and mass transport properties. In this paper, a numerical homogenization based topology optimization scheme was applied to the design of three dimensional unit microstructures for tissue engineering scaffolds. As measures of mechanical and mass transport environments, target effective bulk modulus and isotropic diffusivity were achieved by optimal design of porous microstructure. Cross property bounds between bulk modulus and diffusivity were adapted to determine feasible design targets for a given porosity. Results demonstrate that designed microstructures could reach cross property bounds for porosity ranging from 30% to 60%.
Collapse
Affiliation(s)
- Heesuk Kang
- Department of Mechanical Engineering, Scaffold Tissue Engineering Group, Department of Biomedical Engineering, Spine Research Laboratory, Department of Neurosurgery, University of Michigan, Ann Arbor. Phone: (734) 647-0926
| | - Chia-Ying Lin
- Spine Research Laboratory, Department of Neurosurgery, University of Michigan Medical School, Phone: (734) 615-0371; Fax: (734) 763-7322
| | - Scott J. Hollister
- Department of Mechanical Engineering, Scaffold Tissue Engineering Group, Department of Biomedical Engineering, Spine Research Laboratory, Department of Neurosurgery, Department of Surgery, University of Michigan, Ann Arbor. 2208 Lurie Biomedical Engineering Building, 1101 Beal Ave, Ann Arbor, MI 48109, Phone: +1-734-6479962, Fax: +1-734-6474834
| |
Collapse
|
31
|
Cai YZ, Wang LL, Cai HX, Qi YY, Zou XH, Ouyang HW. Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. J Biomed Mater Res A 2010; 95:49-57. [DOI: 10.1002/jbm.a.32816] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Sato N, Kubo K, Yamada M, Hori N, Suzuki T, Maeda H, Ogawa T. Osteoblast mechanoresponses on Ti with different surface topographies. J Dent Res 2009; 88:812-6. [PMID: 19767577 DOI: 10.1177/0022034509343101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During implant healing, mechanical force is transmitted to osteogenic cells via implant surfaces with various topographies. This study tested a hypothesis that osteoblasts respond to mechanical stimulation differently on titanium with different surface topographies. Rat bone-marrow-derived osteoblastic cells were cultured on titanium disks with machined or acid-etched surfaces. A loading session consisted of a 3-minute application of a 10- or 20-mum-amplitude vibration. Alkaline phosphatase activity and gene expression increased only when the cells were loaded in 3 sessions/day on machined surfaces, regardless of the vibration amplitude, whereas they were increased with 1 loading session/day on the acid-etched surface. The loading did not affect the osteoblast proliferation on either surface, but selectively enhanced the cell spreading on the machined surface. Analysis of the data suggests that osteoblastic differentiation is promoted by mechanical stimulation on titanium, and that the promotion is disproportionate, depending on the titanium surface topography. The frequency of mechanical stimulation, rather than its amplitude, seemed to have a key role.
Collapse
Affiliation(s)
- N Sato
- Laboratory of Bone and Implant Sciences, Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, 10833 Le Conte Avenue (B3-81 CHS), Box 951668, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Andreykiv A, van Keulen F, Prendergast PJ. Computational mechanobiology to study the effect of surface geometry on peri-implant tissue differentiation. J Biomech Eng 2009; 130:051015. [PMID: 19045522 DOI: 10.1115/1.2970057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The geometry of an implant surface to best promote osseointegration has been the subject of several experimental studies, with porous beads and woven mesh surfaces being among the options available. Furthermore, it is unlikely that one surface geometry is optimal for all loading conditions. In this paper, a computational method is used to simulate tissue differentiation and osseointegration on a smooth surface, a surface covered with sintered beads (this simulated the experiment (Simmons, C., and Pilliar, R., 2000, Biomechanical Study of Early Tissue Formation Around Bone-Interface Implants: The Effects of Implant Surface Geometry," Bone Engineering, J. E. Davies, ed., Emsquared, Chap. A, pp. 369-379) and established that the method gives realistic results) and a surface covered by porous tantalum. The computational method assumes differentiation of mesenchymal stem cells in response to fluid flow and shear strain and models cell migration and proliferation as continuum processes. The results of the simulation show a higher rate of bone ingrowth into the surfaces with porous coatings as compared with the smooth surface. It is also shown that a thicker interface does not increase the chance of fixation failure.
Collapse
|
34
|
The Effects of Laser Microtextured Collars Upon Crestal Bone Levels of Dental Implants. IMPLANT DENT 2008; 17:217-28. [DOI: 10.1097/id.0b013e3181779016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Leucht P, Kim JB, Wazen R, Currey JA, Nanci A, Brunski JB, Helms JA. Effect of mechanical stimuli on skeletal regeneration around implants. Bone 2007; 40:919-30. [PMID: 17175211 PMCID: PMC1987325 DOI: 10.1016/j.bone.2006.10.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 10/19/2006] [Accepted: 10/31/2006] [Indexed: 01/14/2023]
Abstract
Due to the aging population and the increasing need for total joint replacements, osseointegration is of a great interest for various clinical disciplines. Our objective was to investigate the molecular and cellular foundation that underlies this process. Here, we used an in vivo mouse model to study the cellular and molecular response in three distinct areas of unloaded implants: the periosteum, the gap between implant and cortical bone, and the marrow space. Our analyses began with the early phases of healing, and continued until the implants were completely osseointegrated. We investigated aspects of osseointegration ranging from vascularization, cell proliferation, differentiation, and bone remodeling. In doing so, we gained an understanding of the healing mechanisms of different skeletal tissues during unloaded implant osseointegration. To continue our analysis, we used a micromotion device to apply a defined physical stimulus to the implants, and in doing so, we dramatically enhanced bone formation in the peri-implant tissue. By comparing strain measurements with cellular and molecular analyses, we developed an understanding of the correlation between strain magnitudes and fate decisions of cells shaping the skeletal regenerate.
Collapse
Affiliation(s)
- Philipp Leucht
- Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
- Department of Trauma, Hand and Reconstructive Surgery, Johann-Wolfgang-Goethe University of Frankfurt/Main, 60590 Frankfurt/Main, Germany
| | - Jae-Beom Kim
- Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | - Rima Wazen
- Départment de stomatologic, Faculté de médecine dentaire, Montréal, Québec, Canada H3C 3J7
| | - Jennifer A. Currey
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Antonio Nanci
- Départment de stomatologic, Faculté de médecine dentaire, Montréal, Québec, Canada H3C 3J7
| | - John B. Brunski
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jill A. Helms
- Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Abstract
Titanium foams have been used for surgical implants and biomedical engineering
because they exhibit inert behavior and good corrosion resistance. Substantial progress has
been achieved for metallic foam fabrication techniques, however the porosity characterization
methods available haven’t been studied sufficiently. A previous research has developed a
powder metallurgy route to produce pure titanium foams attaining the porosity requisites for
porous surfaced surgical implants. In this study, titanium foams porosity was evaluated
employing different techniques: optical quantitative metallographic analysis with automatic
image technique, gamma-ray transmission and x-ray microtomography. These techniques can
be used for titanium foams analysis, though their results can not be simply compared, because
they use quite different methodologies and take different measurement assumptions.
Collapse
|
37
|
Joos U, Wiesmann HP, Szuwart T, Meyer U. Mineralization at the interface of implants. Int J Oral Maxillofac Surg 2006; 35:783-90. [PMID: 16697141 DOI: 10.1016/j.ijom.2006.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 03/13/2006] [Indexed: 11/20/2022]
Abstract
Osseointegration of implants is crucial for the long-term success of oral implants. Mineralization of the bone's extracellular matrix as the ultimate step of a mature bone formation is closely related to implant osseointegration. Osteogenesis at oral implants is a complex process, driven by cellular and acellular phenomena. The biological process of the maintenance and emergence of minerals in the vicinity of oral implants is influenced to a great extent by biophysical parameters. Implant-related structural and functional factors, as well as patient-specific factors, govern the features of osteogenesis. To understand the influence of these factors in peri-implant bone mineralization, it is important to consider the basic biological processes. Biological and crystallographic investigations have to be applied to evaluate mineralization at implant surfaces at the different hierarchical levels of analysis. This review gives insight into the complex theme of mineral formation around implants. Special focus is given to new developments in implant design and loading protocols aimed at accelerating osseointegration of dental implants.
Collapse
Affiliation(s)
- U Joos
- Clinic for Cranio-, Maxillofacial Surgery, University of Münster, Germany.
| | | | | | | |
Collapse
|
38
|
Abstract
Porous structures are applied as coatings in order to improve surgical implants bone fixation by allowing the mechanical interlocking of the pores and bone. Sintered titanium porous coatings have been used for surgical implants because they have a strong attachment of the coating to the substrate. This works reports the processing and characterization of titanium porous coatings and foam samples, for surgical implants applications. Pure titanium powders mixed with urea as a binder was used for the porous coatings and foam samples. A rod shape of Ti-6Al-7Nb alloy P/M sample was used as substrate. Coatings surfaces were analyzed via scanning electron microscopy and the porosity characterization was made by quantitative metallografic analysis. It was found that coating porosity can be controlled by adjusting the binder percent addition and powder sizes. Sintered samples exhibited a microstructure with micropores and inteconnected macropores which is suitable to be used in surgical implants.
Collapse
|
39
|
Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron 2005; 36:630-44. [PMID: 16182543 DOI: 10.1016/j.micron.2005.07.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 07/08/2005] [Accepted: 07/14/2005] [Indexed: 02/02/2023]
Abstract
Long-term clinical success of endosseous dental implants is critically related to a wide bone-to-implant direct contact. This condition is called osseointegration and is achieved ensuring a mechanical primary stability to the implant immediately after implantation. Both primary stability and osseointegration are favoured by micro-rough implant surfaces which are obtained by different techniques from titanium implants or coating the titanium with different materials. Host bone drilled cavity is comparable to a common bone wound. In the early bone response to the implant, the first tissue which comes into contact with the implant surface is the blood clot, with particular attention to platelets and fibrin. Peri-implant tissue healing starts with an inflammatory response as the implant is inserted in the bone cavity, but an early afibrillar calcified layer comparable to the lamina limitans or incremental lines in bone is just observable at the implant surface both in vitro than in vivo conditions. Just within the first day from implantation, mesenchymal cells, pre-osteoblasts and osteoblasts adhere to the implant surface covered by the afibrillar calcified layer to produce collagen fibrils of osteoid tissue. Within few days from implantation a woven bone and then a reparative trabecular bone with bone trabeculae delimiting large marrow spaces rich in blood vessels and mesenchymal cells are present at the gap between the implant and the host bone. The peri-implant osteogenesis can proceed from the host bone to the implant surface (distant osteogenesis) and from the implant surface to the host bone (contact osteogenesis) in the so called de novo bone formation. This early bone response to the implant gradually develops into a biological fixation of the device and consists in an early deposition of a newly formed reparative bone just in direct contact with the implant surface. Nowadays, senile and post-menopausal osteoporosis are extremely diffuse in the population and have important consequences on the clinical success of endosseous dental implants. In particular the systemic methabolic and site morphological conditions are not favorable to primary stability, biological fixation and final osseointegration. An early good biological fixation may allow the shortening of time before loading the implant, favouring the clinical procedure of early or immediate implant loading. Trabecular bone in implant biological fixation is gradually substituted by a mature lamellar bone which characterizes the implant ossoeintegration. As a final consideration, the mature lamellar bone observed in osseointegrated implants is not always the same as a biological turnover occurs in the peri-implant bone up to 1mm from the implant surface, with both osteogenesis and bone reabsorption processes.
Collapse
Affiliation(s)
- Franchi Marco
- Department of Human Anatomical Sciences and Physiopathology of Locomotor Apparatus, Via Irnerio 48, 40136 Bologna, Italy.
| | | | | | | |
Collapse
|
40
|
Müller M, Hennig FF, Hothorn T, Stangl R. Bone-implant interface shear modulus and ultimate stress in a transcortical rabbit model of open-pore Ti6Al4V implants. J Biomech 2005; 39:2123-32. [PMID: 16085075 DOI: 10.1016/j.jbiomech.2005.05.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 05/26/2005] [Indexed: 10/25/2022]
Abstract
This experimental study on laser-textured implants aimed to evaluate periimplant bone elasticity and ultimate stress of the bone-implant interface in a rabbit femur model. After randomization, two cylindrical Ti6Al4V samples (3.5 mm wide, 5.5 mm long) were transcortically implanted in each femur of 15 female New Zealand White Rabbits. Polished implants had been laser-textured with 100, 200, and 300 microm diameter pores, and another corundum blasted implant was additionally textured with 200 microm pores. Twelve weeks into the experiment, a modified push-out test was performed. The median shear modulus indicating the elasticity of the periimplant bone was 41.12 MPa for the proximal implant location and 25.38 MPa for the distal, without evidence for significant differences between implant types. Taking into account the median ultimate shear stress for 200 microm implants with and without corundum blasting, no significant difference could be demonstrated. However, for blasted 200 microm implants a statistically significant (p<0.025) relative gain in ultimate shear stress of 41% and 17% was proven in comparison with 100 and 300 microm implants, respectively. Non-blasted 200 microm implants reached 48% relative gain in respect of 100 microm samples.
Collapse
Affiliation(s)
- M Müller
- Department of Trauma-, Hand- and Reconstructive-Surgery, Klinikum Bamberg, Buger Strasse 80, D-96049 Bamberg, Germany
| | | | | | | |
Collapse
|
41
|
Clark PA, Rodriguez A, Sumner DR, Hussain MA, Mao JJ. Modulation of bone ingrowth of rabbit femur titanium implants by in vivo axial micromechanical loading. J Appl Physiol (1985) 2005; 98:1922-9. [PMID: 15640386 DOI: 10.1152/japplphysiol.01080.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Titanium implants commonly used in orthopedics and dentistry integrate into host bone by a complex and coordinated process. Despite increasingly well illustrated molecular healing processes, mechanical modulation of implant bone ingrowth is poorly understood. The objective of the present study was to determine whether micromechanical forces applied axially to titanium implants modulate bone ingrowth surrounding intraosseous titanium implants. We hypothesized that small doses of micromechanical forces delivered daily to the bone-implant interface enhance implant bone ingrowth. Small titanium implants were placed transcortically in the lateral aspect of the proximal femur in 15 New Zealand White rabbits under general anesthesia and allowed to integrate with the surrounding bone for 6 wk. Micromechanical forces at 200 mN and 1 Hz were delivered axially to the right femur implants for 10 min/day over 12 consecutive days, whereas the left femur implants served as controls. The average bone volume 1 mm from mechanically loaded implants (n = 15) was 73 +/- 12%, which was significantly greater than the average bone volume (52 +/- 21%) of the contralateral controls (n = 15) (P < 0.01). The average number of osteoblast-like cells per endocortical bone surface was 55 +/- 8 cells/mm(2) for mechanically loaded implants, which was significantly greater than the contralateral controls (35 +/- 6 cells/mm(2)) (P < 0.01). Dynamic histomorphometry showed a significant increase in mineral apposition rate and bone-formation rate of mechanically stressed implants (3.8 +/- 1.2 microm/day and 2.4 +/- 1.0 microm(3).microm(-2).day(-1), respectively) than contralateral controls (2.2 +/- 0.92 microm/day and 1.2 +/- 0.60 microm(3).microm(-2).day(-1), respectively; P < 0.01). Collectively, these data suggest that micromechanical forces delivered axially on intraosseous titanium implants may have anabolic effects on implant bone ingrowth.
Collapse
Affiliation(s)
- Paul A Clark
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612-7211, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Cementless implants offer the advantage of fixation by direct bone-to-implant osseointegration, thereby avoiding the use of a synthetic intermediary material (such as acrylic bone cement) of limited mechanical strength. Successful osseointegration, however, depends on several conditions being satisfied during the peri-implant bone healing period, including the need for limited early loading resulting in minimal relative movement at the implant-bone interface. Sintered porous- and plasma spray-coated implants represent the most common cementless orthopedic implants in current clinical use, although novel cast structures also are being investigated. All stand to benefit from surface modifications currently being explored to enhance osteoconductive or osteoinductive characteristics of the implants. The faster osseointegration that such modified surface designs potentially might offer would result in more reliable and convenient (from the patient perspective) cementless implants. Encouraging results of early animal-based studies exploring such modifications have been reported.
Collapse
Affiliation(s)
- Robert M Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
43
|
Gan L, Wang J, Tache A, Valiquette N, Deporter D, Pilliar R. Calcium phosphate sol–gel-derived thin films on porous-surfaced implants for enhanced osteoconductivity. Part II: Short-term in vivo studies. Biomaterials 2004; 25:5313-21. [PMID: 15110482 DOI: 10.1016/j.biomaterials.2003.12.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
Osseointegration rates of porous-surfaced Ti6Al4V implants with control (unmodified sintered coatings) were compared to porous-surfaced implants modified through the addition of either an Inorganic or Organic Route-formed-Ca-P film. Implants were placed in distal femoral rabbit condyle sites and, following a 9-day healing period, implant fixation strength was evaluated using a pull-out test. Three groups of ten rabbits each were evaluated. Inorganic Route Ca-P-coated implants were compared with control implants in Group I. Organic Route Ca-P-coated implants with control implants in Group II, and Inorganic- with Organic Route-Ca-P-coated implants in Group III. Maximum pull-out force and interface stiffness were compared while selected extracted implants were examined by SEM to characterise failure surfaces. Both types of Ca-P coatings significantly enhanced the early rate of bone ingrowth and fixation as evidenced by higher pull-out force and interface stiffness compared with controls. However, there was no significant difference between Ca-P-coated implants prepared using the two different methods. The enhanced osteoconductivity observed with the Organic Route-formed films despite the absence of any obvious new surface topographic features introduced with the films suggests that the increased rate of bone ingrowth was due primarily to altered surface chemistry rather than changes in topography, at least for these sintered porous-surfaced implants.
Collapse
Affiliation(s)
- Lu Gan
- University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Cehreli MC, Akça K, Iplikçioğlu H. Force transmission of one- and two-piece morse-taper oral implants: a nonlinear finite element analysis. Clin Oral Implants Res 2004; 15:481-9. [PMID: 15248884 DOI: 10.1111/j.1600-0501.2004.01025.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To compare force transmission behaviors of one-piece (1-P) and two-piece (2-P) morse-taper oral implants. MATERIAL AND METHODS A three-dimensional finite element model of a morse-taper oral implant and a solid abutment was constructed separately. The implant-abutment complex was embedded in a phi 1.5 cm x 1.5 cm acrylic resin cylinder. Vertical and oblique forces of 50 N and 100 N were applied on the abutment and solved by two different analyses. First, contact analysis was performed in the implant-abutment complex to evaluate a 2-P implant. Then, the components were bonded with a separation force of 10(20) N to analyze a 1-P implant. RESULTS Von Mises stresses in the implant, principal stresses, and displacements in the resin were the same for both designs under vertical loading. Under oblique loading, principal stresses and displacement values in the resin were the same, but the magnitudes of Von Mises stresses were higher in the 2-P implant. The principal stress distributions around both implants in the acrylic bone were similar under both loading conditions. CONCLUSION 2-P implants experience higher mechanical stress under oblique loading. Nevertheless, the 1-P- or 2-P morse-taper nature of an implant is not a decisive factor for the magnitude and distribution of stresses, and displacements in supporting tissues.
Collapse
Affiliation(s)
- Murat Cavit Cehreli
- Department of Prosthodontics, Faculty of Dentistry, Hacettepe University, Sihhiye, Ankara, Turkey.
| | | | | |
Collapse
|
45
|
Meyer U, Joos U, Mythili J, Stamm T, Hohoff A, Fillies T, Stratmann U, Wiesmann HP. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 2004; 25:1959-67. [PMID: 14738860 DOI: 10.1016/j.biomaterials.2003.08.070] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Primary stability and an optimized load transfer are assumed to account for an undisturbed osseointegration process of implants. Immediate loaded newly designed titanium dental implants inserted in the mandible of minipigs were used for the characterization of the interfacial area between the implant surface and the surrounding bone tissue during the early healing phase. Histological and electron microscopical studies were performed from implant containing bone specimens. Two different load regimens were applied to investigate the load related tissue reaction. Histological and electron microscopical analysis revealed a direct bone apposition on the implant surfaces, as well as the attachment of cells and matrix proteins in the early loading phase. A striking finding of the ultrastructural immunocytochemical investigations was the synthesis and deposition of bone related proteins (osteonectin, fibronectin, fibronectin receptor) by osteoblasts from day one of bone/biomaterial interaction. Calcium-phosphate needle-like crystallites were newly synthesized in a time-related manner directly at the titanium surface. No difference in the ultrastructural appearance of the interface was found between the two loading groups. Our experimental data suggest that loading of specially designed implants can be performed immediately after insertion without disturbing the biological osseointegration process.
Collapse
Affiliation(s)
- U Meyer
- Department of Cranio-Maxillofacial Surgery, University of Münster, Waldeyerstr. 30, D-48149, Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Aldini NN, Fini M, Giavaresi G, Giardino R, Greggi T, Parisini P. Pedicular fixation in the osteoporotic spine: a pilot in vivo study on long-term ovariectomized sheep. J Orthop Res 2002; 20:1217-24. [PMID: 12472232 DOI: 10.1016/s0736-0266(02)00069-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Spinal instrumentation success is greatly affected by the presence of osteoporosis. To date, however, no data exist on in vivo investigations on biomaterial and surgical techniques in the osteoporotic spine. In the present study 24 uncoated and 24 HA-coated screws were implanted in the L3, L4 and L5 pedicles of eight sheep (four ovariectomized, OVX Group; four sham-operated, Control Group). At four months, uncoated screws showed a significant decrease of about -22% in the extraction torque of the OVX Group as compared to the Control Group (p < 0.005). The extraction torque of HA-coated screws significantly (p < 0.0005) improved in both groups when compared to that of uncoated screws and showed increases ranging from 133% to 157%. Pedicle trabecular bone of OVX sheep showed a significant decrease in BV/TV (-30%; p < 0.05) and Tb.Th (-33%; p < 0.01). The affinity index (AI) results revealed significant (p < 0.0005) differences between uncoated and HA-coated screws for both groups: values were lower for uncoated than HA-coated screws by about -35%. A significant difference was also found for the AI data of uncoated screws between the OVX and Control Groups (-13%, p < 0.005). The current findings have demonstrated that long-term ovariectomized sheep can be used to study in vivo osteointegration in the osteoporotic spine. The HA coating has proven to improve bone purchase and bone-screw interface strength in healthy and osteopenic animals.
Collapse
Affiliation(s)
- N Nicoli Aldini
- Department of Experimental Surgery, Research Institute Codivilla-Putti, Rizzoli Orthopaedic Institute, via di Bambino, 1110-40136 Bologna, Italy
| | | | | | | | | | | |
Collapse
|