1
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Luque RM. GHRH and reproductive systems: Mechanisms, functions, and clinical implications. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09931-8. [PMID: 39612161 DOI: 10.1007/s11154-024-09931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Growth hormone-releasing hormone (GHRH) has classically been considered a regulatory neuropeptide of the hypothalamic-pituitary system, which mediates its anabolic effects through hepatic GH/IGF-I axis. However, during the last decades it has been demonstrated that this key regulatory hormone may be produced in numerous peripheral tissues outside the central nervous system, participating in fundamental physiological functions through a complex balance between its purely endocrine action, and the recently local (autocrine/paracrine) discovered role. Among peripheral sites, its presence in the male and female reproductive systems stands out. In this review, we will first explore the role of the GHRH/GHRH-R hormone axis as a central player in the gonadal function; then, we will discuss available information regarding the presence of GHRH/GHRH-R and the potential physiological roles in reproductive systems of various species; and finally, we will address how reproductive system-related disorders-such as infertility problems, endometriosis, or tumor pathologies (including prostate, or ovarian cancer)-could benefit from hormonal interventions related to the manipulation of the GHRH axis.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), IMIBIC Building. Av. Menéndez Pidal S/N. 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), IMIBIC Building. Av. Menéndez Pidal S/N. 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), IMIBIC Building. Av. Menéndez Pidal S/N. 14004, Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
2
|
Barabutis N, Kubra KT, Akhter MS. Growth hormone-releasing hormone antagonists protect against hydrochloric acid-induced endothelial injury in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104113. [PMID: 36940786 PMCID: PMC10111240 DOI: 10.1016/j.etap.2023.104113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Growth hormone-releasing hormone (GHRH) regulates the synthesis of growth hormone from the anterior pituitary gland, and it is involved in inflammatory responses. On the other hand, GHRH antagonists (GHRHAnt) exhibit the opposite effects, resulting in endothelial barrier enhancement. Exposure to hydrochloric acid (HCL) is associated with acute and chronic lung injury. In this study, we investigate the effects of GHRHAnt in HCL-induced endothelial barrier dysfunction, utilizing commercially available bovine pulmonary artery endothelial cells (BPAEC). Cell viability was measured by utilizing 3-(4,5-dimethylthiazol2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, fluorescein isothiocyanate (FITC)-dextran was used to assess barrier function. Our observations suggest that GHRHAnt exert protective effects against HCL-induced endothelial breakdown, since those peptides counteract HCL-triggered paracellular hyperpermeability. Based on those findings, we propose that GHRHAnt represent a new therapeutic approach towards HCL-induced endothelial injury.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
3
|
A 5'UTR SNP of GHRHR locus is associated with body weight and average daily gain in Chinese cattle. Mol Biol Rep 2012; 39:10469-73. [PMID: 23053950 DOI: 10.1007/s11033-012-1927-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Growth hormone-releasing hormone receptor (GHRHR) has important functions in the regulation of the growth hormone axis and the development and proliferation of pituitary somatotropes. Moreover, some mutations in mouse GHRHR can induce the dwarfism. The objective of this paper is to reveal the association of GHRHR with growth traits in three Chinese cattle breeds, including Nanyang cattle (NY, 220), Qinchuan cattle (QC, 114), and Jiaxian cattle (JX, 142). A novel single nucleotide polymorphism (NM_181020:c.102C>T) in 5'UTR of GHRHR was identified using PCR-SSCP and DNA sequencing. The frequency of NM_181020:c.102C allele ranged from 0.926 to 0.956. We found that the locus was significantly associated with NY cattle's body weight (BW) of 6 months, with average daily gain (ADG) of 0-6 months, and as well as with ADG of 6-12 months (p < 0.05). The data suggested that the polymorphism (NM_181020:c.102C>T) of the GHRHR could be a molecular marker candidate for breeding of NY cattle in favor of BW.
Collapse
|
4
|
Liu W, Yu Y, Li G, Tang S, Zhang Y, Wang Y, Zhang S, Zhang Y. Single-nucleotide polymorphisms in the promoter of the growth hormone-releasing hormone receptor gene are associated with growth and reproduction traits in chickens. Anim Genet 2012; 43:564-9. [PMID: 22497307 DOI: 10.1111/j.1365-2052.2011.02306.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2011] [Indexed: 11/28/2022]
Abstract
Growth hormone-releasing hormone receptor (GHRHR) plays a critical role in growth hormone (GH) synthesis, release and regulation in animals. The objective of this study was to investigate variations of the chicken GHRHR gene and their associations with growth and reproduction traits in 768 Beijing You chickens. Results revealed three single nucleotide polymorphisms (SNPs) in the promoter region of the gene (g.-1654A>G, g.-1411A>G and g.-142T>C). Association analysis revealed that the novel SNP g.-1654A>G had significant effects on chicken body weight at 7, 9, 11, 13, 17 weeks of age and the age of first egg as well as egg number at 32, 36 and 40 weeks. Significant association was also observed between g.-1411A>G and g.-142T>C with EN24. Moreover, the age of first egg was distinctly related with g.-142T>C (P < 0.05). Although significant statistical difference was not detected in GHRHR mRNA levels among genotypes of the SNPs (P > 0.05), strong expression variations of the gene were found between the ages 17 and 20 weeks in the population (P < 0.05). These results suggest that the three SNPs in the GHRHR promoter could be used as potential genetic markers to improve the growth and reproductive traits in chickens.
Collapse
Affiliation(s)
- W Liu
- Key Laboratory of Agricultural Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Komatsu M, Kojima M, Okamura H, Nishio M, Kaneda M, Kojima T, Takeda H, Malau-Aduli AEO, Takahashi H. Age-related changes in gene expression of the growth hormone secretagogue and growth hormone-releasing hormone receptors in Holstein-Friesian cattle. Domest Anim Endocrinol 2012; 42:83-93. [PMID: 22056236 DOI: 10.1016/j.domaniend.2011.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 10/15/2022]
Abstract
Growth hormone secretion from the anterior pituitary gland is controlled by interactions between three hormone receptors, between GHRH and GHRH receptor (GHRH-R), between ghrelin and growth hormone secretagogue receptor (GHS-R1a), and between somatostatin and somatostatin receptors in the hypothalamus and anterior pituitary gland. Ghrelin-GHS-R1a is involved in many important functions, including GH secretion and appetite. We investigated age-related changes in the expressions of GHS-R1a, GHS-R1b (the truncated-type receptor), and GHRH-R mRNAs by real-time reverse transcription-PCR using 16 tissues, leukocytes, oocytes, and cumulus cells in Holstein-Friesian cattle. The tissue samples were divided into three age classes: 1) 19 to 26 d of age (preweaning calves), 2) 2 mo to 6.5 mo of age (postweaning calves), and 3) 3.2 to 8.1 yr of age (cows). The GHS-R1a mRNA was highly (P < 0.05) expressed in the arcuate nucleus, pituitary gland, and liver compared with that of the other tissues in all age classes. Expression of GHS-R 1a mRNA in the arcuate nucleus of postweaning calves was > 10-fold greater (P < 0.01) than those of preweaning calves and cows, and its expression level was the greatest (P < 0.01) in all tissues examined in age group 2. GHS-R1a and GHRH-R mRNA expressions in the pituitary gland of preweaning calves tended to be greater (P < 0.20 and P < 0.17, respectively) than those of postweaning calves and cows. GHS-R1b mRNA expression was detected in all tissues examined, and abundance was greater (P < 0.05) in the pancreas, pituitary gland, spleen, arcuate nucleus, adipose tissue, and leukocyte compared with that of the other tissues examined in age group 3. Interestingly, a relatively large animal-to-animal variation was observed in pancreas GHS-R 1b mRNA expression. The GHRH-R mRNA was markedly increased (P < 0.01) in the pituitary gland in all age groups compared with that of the other tissues. GHRH-R mRNA abundance in the arcuate nucleus, pituitary gland, liver, spleen, adipose tissue, and heart of preweaning calves tended to be greater than those of postweaning calves and cows. The GHRH-R mRNA was not detected in the mammary gland and adipose tissue of nonlactating cows.
Collapse
MESH Headings
- Age Factors
- Animals
- Arcuate Nucleus of Hypothalamus/physiology
- Cattle/genetics
- Cattle/metabolism
- Female
- Gene Expression Regulation
- Growth Hormone/biosynthesis
- Growth Hormone/genetics
- Growth Hormone/metabolism
- Least-Squares Analysis
- Male
- Pituitary Gland, Anterior/metabolism
- Pituitary Gland, Anterior/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction/veterinary
- Receptors, Ghrelin/biosynthesis
- Receptors, Ghrelin/genetics
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/biosynthesis
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
Collapse
Affiliation(s)
- M Komatsu
- National Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Novel polymorphisms of the growth hormone gene and their effect on growth traits in Chinese goats. Meat Sci 2010; 86:758-63. [PMID: 20643508 DOI: 10.1016/j.meatsci.2010.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 06/12/2010] [Accepted: 06/15/2010] [Indexed: 11/23/2022]
Abstract
The polymorphisms of the growth hormone (GH) gene were analyzed in 686 individuals from four goat populations, Three haplotypes (A, B and C) and three observed genotypes (AA, AB and AC) were detected at the P2 locus, and three haplotypes (E, F and G) and three observed genotypes (EE, EF and EG) were also detected at the P4 locus. In addition, five single nucleotide polymorphisms (SNPs)-A112G, C142T (Gly>Ser), C214T (P2 locus), C266A (Pro>His) and C214T (P4 locus, Arg>Trp), were identified by GH gene sequencing and PCR-SSCP analysis. The SNPs loci were in Hardy-Weinberg disequilibrium in three goat populations (P<0.05). Association of polymorphisms with growth traits was done in BG, F1 and F1 populations, which were shown to be associated with growth traits in three goat populations. The SNPs in the goat GH gene had significant effects on growth traits (P<0.05). suggesting that the GH gene is a strong candidate gene that affects growth traits in goat.
Collapse
|
7
|
Effects of genetic variability of the dairy goat growth hormone releasing hormone receptor (GHRHR) gene on growth traits. Mol Biol Rep 2010; 38:539-44. [PMID: 20354904 DOI: 10.1007/s11033-010-0138-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
Growth hormone-releasing hormone receptor (GHRHR) plays a critical role in growth hormone (GH) synthesis, release and regulation of pituitary somatotroph expansion in vertebrates. The objective of this study was to investigate variations in goat GHRHR gene and their associations with growth traits in 668 dairy goats. The results showed four novel single nucleotide polymorphisms (SNPs): NC_007302:g.5203C>T, 7307C>G, 9583G>A and 9668A>C. In detail, the novel SNP C>T in the 5203rd nucleotide identified a missense mutation: CCC (Pro)>TCC (Phe) at position 116aa of the goat GHRHR (423aa). Besides, 9583G>A and 9668A>C polymorphism were in complete linkage disequilibrium. The genetic diversity analysis revealed that the Guanzhong dairy goat possessed intermediate genetic diversity in P3 and P7 loci, and the Xinong Sannen dairy goat belonged to poor genetic diversity in P4 locus. Significant associations between the genotypes of P3 locus and body length, body height and chest circumference was observed in Guanzhong goat (P<0.05). However, in Xinong saanen population, significant statistical difference was only found in body height and body length (P<0.05). In P4 and P7 loci, no significant associations were detected between any variant sites and body length, body height and chest circumference, as well as for the milk traits (P>0.05). These results strongly suggested that the goat GHRHR gene is a candidate gene that influences growth traits in dairy goat.
Collapse
|
8
|
Chapter 3 Diseases Associated with Growth Hormone‐Releasing Hormone Receptor (GHRHR) Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:57-84. [DOI: 10.1016/s1877-1173(09)88003-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Li M, Arimura A. Neuropeptides of the pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide/growth hormone-releasing hormone/secretin family in testis. Endocrine 2003. [PMID: 12721498 DOI: 10.1385/endo: 20: 3: 201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian testicular development and the maintenance of spermatogenesis are hormone-dependent processes that are controlled by the pituitary gonadotropins and testosterone. Recent studies have demonstrated the presence of many neuropeptides and their receptors in the testis, suggesting that these peptides operate as local regulators of testicular germ cell development and function. Among these testicular neuropeptides, the peptides that belong to the pituitary adenylate cyclase-activating polypeptide (PACAP) family, particularly growth hormone-releasing hormone and secretin, appear to show some unique common features in terms of intratesticular localization and the time of expression during the spermatogenic cycle. However, their precise physiologic roles and mechanisms of action remain unknown. This review analyzes the available information on the functional interactions among the testicular cells that appear to be mediated by locally produced neuropeptides, with a special emphasis on the peptides of the PACAP family.
Collapse
Affiliation(s)
- Min Li
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | | |
Collapse
|
10
|
Li M, Arimura A. Neuropeptides of the pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide/growth hormone-releasing hormone/secretin family in testis. Endocrine 2003; 20:201-14. [PMID: 12721498 DOI: 10.1385/endo:20:3:201] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Revised: 11/25/2002] [Accepted: 12/09/2002] [Indexed: 12/12/2022]
Abstract
Mammalian testicular development and the maintenance of spermatogenesis are hormone-dependent processes that are controlled by the pituitary gonadotropins and testosterone. Recent studies have demonstrated the presence of many neuropeptides and their receptors in the testis, suggesting that these peptides operate as local regulators of testicular germ cell development and function. Among these testicular neuropeptides, the peptides that belong to the pituitary adenylate cyclase-activating polypeptide (PACAP) family, particularly growth hormone-releasing hormone and secretin, appear to show some unique common features in terms of intratesticular localization and the time of expression during the spermatogenic cycle. However, their precise physiologic roles and mechanisms of action remain unknown. This review analyzes the available information on the functional interactions among the testicular cells that appear to be mediated by locally produced neuropeptides, with a special emphasis on the peptides of the PACAP family.
Collapse
Affiliation(s)
- Min Li
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | | |
Collapse
|