1
|
Tomaszewska E, Burmańczuk N, Dobrowolski P, Świątkiewicz M, Donaldson J, Burmańczuk A, Mielnik-Błaszczak M, Kuc D, Milewski S, Muszyński S. The Protective Role of Alpha-Ketoglutaric Acid on the Growth and Bone Development of Experimentally Induced Perinatal Growth-Retarded Piglets. Animals (Basel) 2021; 11:E137. [PMID: 33435211 PMCID: PMC7826854 DOI: 10.3390/ani11010137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023] Open
Abstract
The effect of alpha-ketoglutaric acid (AKG) supplementation to experimentally-induced, perinatal growth-retarded piglets was examined. Sows were treated with a synthetic glucocorticoid (Gc) during the last 25 days of pregnancy, and after the birth, piglets were randomly divided into three groups depending on the treatment. The Gc/Gc + AKG and Gc/AKG groups born by Gc-treated sows after the birth were treated with Gc or Gc + AKG for 35 days. Significantly lower serum growth hormone, IGF-I, osteocalcin, leptin, and cortisol concentrations were observed in the Gc/Gc + AKG group, while the bone alkaline phosphatase activity was significantly higher. Serum insulin concentration was higher in the control group. Serum alanine, lysine, histidine, and tryptophan concentrations were higher in the Gc/Gc + AKG and Gc/AKG groups. The perinatal action of Gc significantly affects histomorphometry of articular cartilage and trabecular bone and bone mechanics. The results clearly showed that dietary AKG had positive effects with regards to the profile of free amino acids. Taking into account the function of AKG as an energy donor and stimulator of collagen synthesis, it can be concluded that the anabolic role of AKG may be the main mechanism responsible for its protective effect against the GC-induced perinatal intensified catabolic state.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Natalia Burmańczuk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland;
| | - Janine Donaldson
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Artur Burmańczuk
- Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Maria Mielnik-Błaszczak
- Department of Developmental Dentistry, Medical University of Lublin, 7 Karmelicka St., 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Damian Kuc
- Department of Developmental Dentistry, Medical University of Lublin, 7 Karmelicka St., 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Szymon Milewski
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (S.M.); (S.M.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (S.M.); (S.M.)
| |
Collapse
|
2
|
The influence of dexamethasone administered prenatally on cartilage of newborn spiny mouse (Acomys cahirinus) offspring. J Dev Orig Health Dis 2015; 7:298-305. [DOI: 10.1017/s2040174415007874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Considering the negative effects of glucocorticoid treatment, especially during fetal development it is important to investigate effectors decreasing such disadvantages. The aim of this study was to investigate the effect of prenatally administered dexamethasone (Dex), a synthetic glucocorticoid, on the histomorphometry of the femur in the offspring of spiny mice. The study was performed on 24 pregnant spiny mice. The time of the experiment included the prenatal period between the 20th day of gestation until birth (pregnancy lasts on average of 36–38 days). The mice from the experimental group received dexamethasone per os in a dose of 125 mg/kg birth weight daily. At the end, the newborns from the experimental and control group were weighted and euthanized. Maternal Dex treatment resulted in a 17% decrease in birth weight in newborns. Dex administration significantly reduced the thickness of the hypertrophy zone of the growth plate by 34% and total thickness by 8,7%. In addition, Dex decreased the number of cells in the articular cartilage by 27% and significantly decreased their diameter by 5%. Dex also affected the structure and spatial distribution of thick and thin collagen fibers, lowering the proportion of thin fibers compared with the control group. Moreover, Dex treatment considerably lowered the amount of proteoglycans in articular and growth cartilages. Exposure to glucocorticoids in pregnant spiny mice affects cartilage development by accelerating maturity of collagen fibers and growth plate, presumably along with further disruption of longitudinal growth of long bones.
Collapse
|
3
|
Sliwa E, Dobrowolski P, Piersiak T. Bone development of suckling piglets after prenatal, neonatal or perinatal treatment with dexamethasone. J Anim Physiol Anim Nutr (Berl) 2009; 94:293-306. [PMID: 19663986 DOI: 10.1111/j.1439-0396.2008.00909.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In mammals, the release from growth-inhibiting conditions results in catch-up growth. To investigate animal evidence for whether prenatal dexamethasone (DEX) treatment leads to the development of growth restriction especially reduced mineralization of skeleton, and release from it leads to the phenomenon of catch-up, piglets were prenatally exposed to DEX (3.0 mg/sow per day(-2)) during the last 24 days of prenatal life and tested further in two different ways: discontinued at birth and continued administration of DEX (0.5 mg/kg day(-2)) to piglets through 30 days of neonatal life. Using dual energy X-ray absorptiometry methods, bone mineral density (BMD) and bone mineral content (BMC) were measured. The three-point bending test was applied to determine the mechanical properties of the bones. Furthermore, geometric properties of the bones were assessed. Serum concentration of osteocalcin (OC) was determined. Histomorphological analysis of the ribs was also performed. The consequences of neonate DEX treatment and in utero DEX exposure were reflected in a dramatic decrease of BMD, BMC and blood serum OC concentration and geometric parameters of piglets' bones. Prenatal action of DEX during the last 24 days of pregnancy resulted in continued neonatal modification of bone tissues, thus diminishing bone quality, and negatively influenced structural development and mechanical properties, finally increasing the risk of fractures of ribs and limb bones. Prenatal DEX treatment limited to the last 24 days of foetal life did not reduce the term birth weight and the growth of suckling piglets followed up to 30 days of neonatal life, and catch-up in bone mineralization did not occur.
Collapse
Affiliation(s)
- E Sliwa
- Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland.
| | | | | |
Collapse
|
4
|
Gaines AM, Carroll JA, Allee GL. Evaluation of exogenous glucocorticoid injection on preweaning growth performance of neonatal pigs under commercial conditions12. J Anim Sci 2004; 82:1241-5. [PMID: 15080348 DOI: 10.2527/2004.8241241x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Three commercial trials were conducted to evaluate the use of dexamethasone (Dex) and/ or isoflupredone (Predef) in improving preweaning growth performance of neonatal pigs. The objectives of the commercial trials were threefold: 1) to evaluate Predef in comparison with Dex; 2) to address the sexual dimorphic growth response observed in a previous commercial trial; and 3) to determine whether there is any benefit of providing Dex treatment to pigs being fed supplemental milk. In Exp. 1, 276 pigs (Triumph 4 x PIC Camborough 22) were assigned according to birth weight and sex to three treatments. Treatments included saline (Control), Dex (2 mg/kg BW i.m. injection of Dex), or Predef (2 mg/kg BW i.m. injection of Predef 2X) within 24 h after birth. A treatment effect was observed for BW at weaning (P < 0.001), with pigs injected with Predef being 0.51 kg lighter than Control and Dex-treated pigs. The lower BW of Predef-treated pigs at weaning were a result of a lower ADG (P < 0.001) during the preweaning period compared with Control and Dex pigs. In Exp. 2, 703 pigs (Triumph 4 x PIC Camborough 22) were assigned according to birth weight and sex to three treatments. Treatments included either an i.m. injection of saline (Control), Dexl (1 mg/kg BW of Dex), or Dex2 (2 mg/kg BW of Dex) within 24 h after birth. No treatment effects were observed for BW at weaning (P = 0.24) or ADG (P = 0.19). In Exp. 3, 342 pigs (Genetiporc) were assigned according to birth weight and sex to two treatments. Treatments included either an i.m. injection of saline or Dex (2 mg/kg BW) within 24 h after birth. All pigs were provided supplemental milk from the time of treatment until weaning age. No treatment effects were observed for BW at weaning (P = 0.13) or ADG (P = 0.11). The negative response to Predef was similar to the growth-suppressive effects observed by others using chronic glucocorticoid treatment. In contrast to our previous findings, Dex did not improve preweaning growth performance regardless of dose or supplemental milk.
Collapse
Affiliation(s)
- A M Gaines
- University of Missouri, Columbia 65211, USA
| | | | | |
Collapse
|