1
|
Chen H, Kang X, Wang X, Chen X, Nie X, Xiang L, Liu D, Zhao Z. Potential Correlation between Microbial Diversity and Volatile Flavor Substances in a Novel Chinese-Style Sausage during Storage. Foods 2023; 12:3190. [PMID: 37685124 PMCID: PMC10487076 DOI: 10.3390/foods12173190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A novel Chinese-style sausage with Chinese traditional fermented condiments used as additional ingredients is produced in this study. The aim of this study was to investigate the microbial community's structure, the volatile flavor substances and their potential correlation in the novel Chinese sausage. High-throughput sequencing (HTS) and solid-phase microextraction-gas chromatography-mass spectrometry (GC-MS) were, respectively, used to analyze the microbial diversity and volatile flavor substances of the novel Chinese-style sausage during storage. The results showed that Firmicutes, Proteobacteria and Actinobacteria were the predominant bacterial genera, and Hyphopichia and Candida were the predominant fungal genera. A total of 88 volatile flavor substances were identified through GC-MS, among which 18 differential flavor compounds were screened (VIP > 1), which could be used as potential biomarkers to distinguish the novel sausages stored for different periods. Lactobacillus exhibited a significant negative correlation with 2,3-epoxy-4,4-dimethylpentane and acetoin and a significant positive correlation with 2-phenyl-2-butenal. Hyphopichia significantly positively correlated with ester. Leuconostoc significantly positively correlated with ethyl caprate, ethyl palmate, ethyl tetradecanoate and ethyl oleate while it negatively correlated with hexanal. This study provides a theoretical basis for revealing the flavor formation mechanisms and the screening of functional strains for improving the flavor quality of the novel Chinese-style sausage.
Collapse
Affiliation(s)
- Hongfan Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Xinyue Kang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinya Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
| | - Lu Xiang
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Dayu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhiping Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Xu Y, Zang J, Regenstein JM, Xia W. Technological roles of microorganisms in fish fermentation: a review. Crit Rev Food Sci Nutr 2020; 61:1000-1012. [PMID: 32292041 DOI: 10.1080/10408398.2020.1750342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fermentation is an important way to process and preserve fish. It not only gives the product a unique flavor and texture, but it also contributes to increased nutritional value and better functional properties. The production of fermented fish relies on naturally occurring enzymes (in the muscle or the intestinal tract) as well as microbial metabolic activity. This review focuses on the role of microorganisms on texture change, flavor formation, and biogenic amines accumulation in fermented fish. In addition, the production conditions and the major biochemical changes in fermented fish products are also introduced to help understand the factors influencing the quality of fermented fish. Moreover, prospects for further research of fermented fish are discussed.
Collapse
Affiliation(s)
- Yanshun Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinhong Zang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Liu R, Wang Y, Du N, Jiang D, Ge Q, Wu M, Yu H, Xu B. An electricalchemical method to detect the branch-chain aminotransferases activity in lactic acid bacteria. Food Chem 2019; 297:125035. [PMID: 31253330 DOI: 10.1016/j.foodchem.2019.125035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/08/2019] [Accepted: 06/16/2019] [Indexed: 11/30/2022]
Abstract
In this study, an electrochemical system was established to detect the branched-chain amino acid aminotransferase (BCAT) activity in lactic acid bacteria (LAB). A nanocomposite of chitosan (CS) with multi-walled carbon nanotubes (MWCNTs) was synthesized, and the composite solution were uniformly spread over the glassy carbon electrode (GCE) surface by drop-casting to fabricate an electrochemical biosensor. The composite was characterized by scanning electron microscopy (SEM) and cyclic voltammetry (TEM). Results indicated that the MWCNTs-CS/GCE electrode exhibited higher stability and sensitivity, compared with the GCE electrode. The linear response for nicotinamide adenine dinucleotide (NADH) was 1.0-9.0 μM and the response limit was 0.12 µM. The system effectively and sensitively detected the BCAT activity by NADH concentration in the LAB culture, comparing with the optical method. The culture condition of LAB was optimized by using this system, evidencing that established method was available to detect the BCAT activity of LAB.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yanqing Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Nan Du
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Donglei Jiang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Qingfeng Ge
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Mangang Wu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Hai Yu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Baocai Xu
- State Key Laboratory for Meat Quality and Safety Control, Nanjing, Jiangsu 210000, PR China.
| |
Collapse
|
4
|
Quintieri L, Giribaldi M, Giuffrida MG, Creanza TM, Ancona N, Cavallarin L, De Angelis M, Caputo L. Proteome Response of Staphylococcus xylosus DSM 20266T to Anaerobiosis and Nitrite Exposure. Front Microbiol 2018; 9:2275. [PMID: 30319582 PMCID: PMC6167427 DOI: 10.3389/fmicb.2018.02275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 01/22/2023] Open
Abstract
The viability and competitiveness of Staphylococcus xylosus in meat mostly depend on the ability to adapt itself to rapid oxygen and nutrients depletion during meat fermentation. The utilization of nitrite instead of oxygen becomes a successful strategy for this strain to improve its performance in anaerobiosis; however, metabolic pathways of this strain underlying this adaptation, are partially known. The aim of this study was to provide an overview on proteomic changes of S. xylosus DSM 20266T cultured under anaerobiosis and nitrite exposure. Thus, two different cultures of this strain, supplemented or not with nitrite, were in vitro incubated in aerobiosis and anaerobiosis monitoring cell viability, pH, oxidation reduction potential and nitrite content. Protein extracts, obtained from cells, collected as nitrite content was depleted, were analyzed by 2DE/MALDI-TOF/TOF-MS. Results showed that DSM 20266T growth was significantly sustained by nitrite in anaerobiosis, whereas no differences were found in aerobiosis. Accordingly, nitrite content was depleted after 13 h only in anaerobiosis. At this time of sampling, a comparative proteomic analysis showed 45 differentially expressed proteins. Most differences were found between aerobic and anaerobic cultures without nitrite; the induction of glycolytic enzymes and glyoxylate cycle, the reduction of TCA enzymes, and acetate fermentation were found in anaerobiosis to produce ATP and maintain the cell redox balance. In anaerobic cultures the nitrite supplementation partially restored TCA cycle, and reduced the amount of glycolytic enzymes. These results were confirmed by phenotypic microarray that, for the first time, was carried out on cell previously adapted at the different growth conditions. Overall, metabolic changes were similar between aerobiosis and anaerobiosis NO2-adapted cells, whilst cells grown under anaerobiosis showed different assimilation profiles by confirming proteomic data; indeed, these latter extensively assimilated substrates addressed at both supplying glucose for glycolysis or fueling alternative pathways to TCA cycle. In conclusion, metabolic pathways underlying the ability of S. xylosus to adapt itself to oxygen starvation were revealed; the addition of nitrite allowed S. xylosus to take advantage of nitrite to this condition, restoring some metabolic pathway underlying aerobic behavior of the strain.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| | - Marzia Giribaldi
- Institute of Sciences of Food Production, National Research Council of Italy, Turin, Italy.,Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca in Ingegneria e Trasformazioni Agroalimentari, Turin, Italy
| | | | - Teresa Maria Creanza
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), National Research Council, Bari, Italy
| | - Nicola Ancona
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), National Research Council, Bari, Italy
| | - Laura Cavallarin
- Institute of Sciences of Food Production, National Research Council of Italy, Turin, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Bari, Italy
| |
Collapse
|
5
|
Effect of temperature and pH on the community dynamics of coagulase-negative staphylococci during spontaneous meat fermentation in a model system. Food Microbiol 2018; 76:180-188. [PMID: 30166139 DOI: 10.1016/j.fm.2018.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/06/2018] [Accepted: 05/20/2018] [Indexed: 01/13/2023]
Abstract
Coagulase-negative staphylococci (CNS) contribute to the product quality of fermented meats. In spontaneously fermented meats, CNS communities are variable and difficult to predict, as their compositions depend on a superposed combination of different processing factors. To partially disentangle this superposition, a meat model system was used to study the influence of temperature and pH on the CNS community dynamics. Therefore, cured pork mince was prepared that was divided into three batches of different initial acidity levels, namely pH 5.7, pH 5.5, and pH 5.3. These three batches were incubated at three different temperatures, namely 23 °C, 30 °C, and 37 °C. Hence, the experimental set-up resulted in nine combinations of different temperature and initial pH values. Samples were analysed after 3 and 14 days to monitor pH, colony counts, and species diversity of the CNS communities, based on mannitol-salt-phenol-red agar (MSA) medium. At conditions of mild acidity (pH 5.7) and low temperature (23 °C), as often encountered during artisan-type meat fermentations, a co-prevalence of Staphylococcus xylosus, Staphylococcus equorum, and Staphylococcus saprophyticus occurred. At the same initial pH but higher incubation temperatures (30 °C and 37 °C), Staphylococcus lugdunensis became the prevailing CNS species, besides S. saprophyticus (30 °C) and the coagulase-positive species Staphylococcus aureus (37 °C). When the initial pH was set at 5.5, S. saprophyticus was the prevailing CNS species at both 23 °C and 30 °C, but it was replaced by Staphylococcus epidermidis and Staphylococcus simulans at 37 °C after 3 and 14 days, respectively. At the most acidic conditions (pH 5.3), CNS counts declined and many of the MSA isolates were of non-staphylococcal nature. Among others, Staphylococcus carnosus (23 °C), Staphylococcus warneri (30 °C), and S. epidermidis (37 °C) were found. Overall, the results of the present study indicated that the processing factors temperature and pH had a clear impact on the shaping of staphylococcal communities during meat fermentation.
Collapse
|
6
|
Shotgun Metagenomics and Volatilome Profile of the Microbiota of Fermented Sausages. Appl Environ Microbiol 2018; 84:AEM.02120-17. [PMID: 29196291 DOI: 10.1128/aem.02120-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/14/2017] [Indexed: 11/20/2022] Open
Abstract
Changes in the microbial gene content and abundance can be analyzed to detect shifts in the microbiota composition due to the use of a starter culture in the food fermentation process, with the consequent shift of key metabolic pathways directly connected with product acceptance. Meat fermentation is a complex process involving microbes that metabolize the main components in meat. The breakdown of carbohydrates, proteins, and lipids can lead to the formation of volatile organic compounds (VOCs) that can drastically affect the organoleptic characteristics of the final products. The present meta-analysis, performed with the shotgun DNA metagenomic approach, focuses on studying the microbiota and its gene content in an Italian fermented sausage produced by using a commercial starter culture (a mix of Lactobacillus sakei and Staphylococcus xylosus), with the aim to discover the connections between the microbiota, microbiome, and the release of volatile metabolites during ripening. The inoculated fermentation with the starter culture limited the development of Enterobacteriaceae and reduced the microbial diversity compared to that from spontaneous fermentation. KEGG database genes associated with the reduction of acetaldehyde to ethanol (EC 1.1.1.1), acetyl phosphate to acetate (EC 2.7.2.1), and 2,3-butanediol to acetoin (EC 1.1.1.4) were most abundant in inoculated samples (I) compared to those in spontaneous fermentation samples (S). The volatilome profiles were highly consistent with the abundance of the genes; elevated acetic acid (1,173.85 μg/kg), ethyl acetate (251.58 μg/kg), and acetoin (1,100.19 μg/kg) were observed in the presence of the starters at the end of fermentation. Significant differences were found in the liking of samples based on flavor and odor, suggesting a higher preference by consumers for the spontaneous fermentation samples. Inoculated samples exhibited the lowest scores for the liking data, which were clearly associated with the highest concentration of acetic acid.IMPORTANCE We present an advance in the understanding of meat fermentation by coupling DNA sequencing metagenomics and metabolomics approaches to describe the microbial function during this process. Very few studies using this global approach have been dedicated to food, and none have examined sausage fermentation, underlying the originality of the study. The starter culture drastically affected the organoleptic properties of the products. This finding underlines the importance of starter culture selection that takes into consideration the functional characteristics of the microorganism to optimize production efficiency and product quality.
Collapse
|
7
|
Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: a review. Int J Food Microbiol 2017; 247:24-37. [DOI: 10.1016/j.ijfoodmicro.2016.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/15/2016] [Accepted: 05/15/2016] [Indexed: 12/16/2022]
|
8
|
Eisinaite V, Vinauskiene R, Viskelis P, Leskauskaite D. Effects of Freeze-Dried Vegetable Products on the Technological Process and the Quality of Dry Fermented Sausages. J Food Sci 2016; 81:C2175-82. [DOI: 10.1111/1750-3841.13413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Viktorija Eisinaite
- Dept. of Food Science and Technology; Kaunas Univ. of Technology; Radvilenu pl 19 Kaunas LT- 50254 Lithuania
| | - Rimante Vinauskiene
- Dept. of Food Science and Technology; Kaunas Univ. of Technology; Radvilenu pl 19 Kaunas LT- 50254 Lithuania
| | - Pranas Viskelis
- Dept. of Food Science and Technology; Kaunas Univ. of Technology; Radvilenu pl 19 Kaunas LT- 50254 Lithuania
| | - Daiva Leskauskaite
- Dept. of Food Science and Technology; Kaunas Univ. of Technology; Radvilenu pl 19 Kaunas LT- 50254 Lithuania
| |
Collapse
|
9
|
Vermassen A, Dordet-Frisoni E, de La Foye A, Micheau P, Laroute V, Leroy S, Talon R. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model. Front Microbiol 2016; 7:87. [PMID: 26903967 PMCID: PMC4742526 DOI: 10.3389/fmicb.2016.00087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/18/2016] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40-50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na(+) and H(+) extrusion.
Collapse
Affiliation(s)
| | | | - Anne de La Foye
- INRA, Plateforme d'Exploration du MétabolismeSaint-Genès Champanelle, France
| | - Pierre Micheau
- INRA, UR454 MicrobiologieSaint-Genès Champanelle, France
| | - Valérie Laroute
- Université de Toulouse, INSA, UPS, INP, LISBPToulouse, France
| | - Sabine Leroy
- INRA, UR454 MicrobiologieSaint-Genès Champanelle, France
| | - Régine Talon
- INRA, UR454 MicrobiologieSaint-Genès Champanelle, France
| |
Collapse
|
10
|
Gao P, Wang W, Xia W, Xu Y, Jiang Q. Lipolysis and lipid oxidation caused byStaphylococcus xylosus135 andSaccharomyces cerevisiae31 isolated from Suan yu, a traditional Chinese low-salt fermented fish. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12997] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Pei Gao
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| | - Weixin Wang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu1800 Wuxi Jiangsu 214122 China
| |
Collapse
|
11
|
Marques RV, Duval EH, Corrêa LB, Corrêa ÉK. Increase of Unsaturated Fatty Acids (Low Melting Point) of Broiler Fatty Waste Obtained Through Staphylococcus xylosus Fermentation. Curr Microbiol 2015; 71:601-6. [PMID: 26289722 DOI: 10.1007/s00284-015-0890-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
The increasing rise in the production of meat around the world causes a significant generation of agro-industrial waste--most of it with a low value added. Fatty wastes have the potential of being converted into biodiesel, given the overcome of technological and economical barriers, as well as its presentation in solid form. Therefore, the aim of this work was to investigate the capacity of Staphylococcus xylosus strains to modify the chemical structure of chicken fatty wastes intending to reduce the melting points of the wastes to mild temperatures, thereby breaking new ground in the production of biodiesel from these sources in an economically attractive and sustainable manner. The effects in time of fermentation and concentration of the fat in the medium were investigated, assessing the melting point and profile of fatty acids. The melting temperature showed a decrease of approximately 22 °C in the best operational conditions, due to reduction in the content of saturated fatty acids (high melting point) and increase of unsaturated fatty acids (low melting point).
Collapse
Affiliation(s)
- Roger V Marques
- Laboratory of Wastes, Engineering Center, Federal University of Pelotas, Rua Benjamin Constant, 989, Sala 200, Pelotas/RS, 96010020, Brazil.
| | - Eduarda H Duval
- Animal Products Inspection Laboratory, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão/RS, 96010900, Brazil
| | - Luciara B Corrêa
- Laboratory of Wastes, Engineering Center, Federal University of Pelotas, Rua Benjamin Constant, 989, Sala 200, Pelotas/RS, 96010020, Brazil
| | - Érico K Corrêa
- Laboratory of Wastes, Engineering Center, Federal University of Pelotas, Rua Benjamin Constant, 989, Sala 200, Pelotas/RS, 96010020, Brazil
| |
Collapse
|
12
|
El Adab S, Essid I, Hassouna M. Microbiological, Biochemical and Textural Characteristics of a Tunisian Dry Fermented Poultry Meat Sausage Inoculated With Selected Starter Cultures. J Food Saf 2014. [DOI: 10.1111/jfs.12164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sabrine El Adab
- Research Unity “Food and Science Technologies-UR 04 AGR02”; High Food Industries School of Tunisia; 58 Avenue Alain Savary Tunis El Khadra 1003 Tunisia
| | - Ines Essid
- Research Unity “Food and Science Technologies-UR 04 AGR02”; High Food Industries School of Tunisia; 58 Avenue Alain Savary Tunis El Khadra 1003 Tunisia
- Department of Animal Resources, Fisheries and Food Technology; National Agronomic Institute of Tunisia; Tunis-Mahrajène Tunisia
| | - Mnasser Hassouna
- Research Unity “Food and Science Technologies-UR 04 AGR02”; High Food Industries School of Tunisia; 58 Avenue Alain Savary Tunis El Khadra 1003 Tunisia
| |
Collapse
|
13
|
Effects of aw at packaging time and atmosphere composition on aroma profile, biogenic amine content and microbiological features of dry fermented sausages. Meat Sci 2013; 94:177-86. [DOI: 10.1016/j.meatsci.2013.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 11/20/2022]
|
14
|
Tabanelli G, Coloretti F, Chiavari C, Grazia L, Lanciotti R, Gardini F. Effects of starter cultures and fermentation climate on the properties of two types of typical Italian dry fermented sausages produced under industrial conditions. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.01.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Ravyts F, Vuyst LD, Leroy F. Bacterial diversity and functionalities in food fermentations. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100119] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Ravyts F, Steen L, Goemaere O, Paelinck H, De Vuyst L, Leroy F. The application of staphylococci with flavour-generating potential is affected by acidification in fermented dry sausages. Food Microbiol 2010; 27:945-54. [DOI: 10.1016/j.fm.2010.05.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
|
17
|
Gorski L, Liang AS. Effect of enrichment medium on real-time detection of Salmonella enterica from lettuce and tomato enrichment cultures. J Food Prot 2010; 73:1047-56. [PMID: 20537259 DOI: 10.4315/0362-028x-73.6.1047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three enrichment broths commonly used for detection of Salmonella (buffered peptone water [BPW], tryptic soy broth [TSB], and universal preenrichment broth [UPB]) were compared for use in real-time SYBR Green PCR detection of Salmonella introduced into enrichment cultures made from store-bought lettuce and tomatoes. The produce served as a source of normal plant microbiota to measure how well DNA-based detection methods for Salmonella work in a suspension of plant-associated bacteria that may be closely related to Salmonella. A qualitative assessment of the background microbiota that grew in the three enrichment broths cultures from tomato and lettuce samples revealed that different bacteria predominated in the different broths. Results obtained with five produce-related outbreak Salmonella strains and PCR primers directed toward three different Salmonella genes suggest that the ability to detect Salmonella from these enrichment cultures by real-time PCR was 10 to 1,000 times better with TSB enrichment cultures. Detection levels were similar between the different enrichment media when an immunomagnetic separation method was used; however, the immunological technique did not enhance detection from TSB enrichment cultures. Detection could be affected by the medium and by the background microbiota. An immunomagnetic separation method may be useful in BPW and UPB enrichment cultures but not in TSB enrichment cultures.
Collapse
Affiliation(s)
- Lisa Gorski
- U.S. Department of Agriculture, Agricultural Research Service, Produce Safety and Microbiology Research Unit, Albany, California 94710, USA.
| | | |
Collapse
|
18
|
ENSOY Ã, KOLSARICI NURAY, CANDOÄAN KEZBAN, KARSLIOÄLU BETÃ. CHANGES IN BIOCHEMICAL AND MICROBIOLOGICAL CHARACTERISTICS OF TURKEY SUCUKS AS AFFECTED BY PROCESSING AND STARTER CULTURE UTILIZATION. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1745-4573.2009.00173.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Smit BA, Engels WJM, Smit G. Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods. Appl Microbiol Biotechnol 2008; 81:987-99. [PMID: 19015847 PMCID: PMC7419363 DOI: 10.1007/s00253-008-1758-x] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/16/2008] [Accepted: 10/18/2008] [Indexed: 11/28/2022]
Abstract
Branched aldehydes, such as 2-methyl propanal and 2- and 3-methyl butanal, are important flavour compounds in many food products, both fermented and non-fermented (heat-treated) products. The production and degradation of these aldehydes from amino acids is described and reviewed extensively in literature. This paper reviews aspects influencing the formation of these aldehydes at the level of metabolic conversions, microbial and food composition. Special emphasis was on 3-methyl butanal and its presence in various food products. Knowledge gained about the generation pathways of these flavour compounds is essential for being able to control the formation of desired levels of these aldehydes.
Collapse
Affiliation(s)
- Bart A Smit
- Campina Innovation, Nieuwe Kanaal 7C, 6709PA Wageningen, The Netherlands
| | | | | |
Collapse
|
20
|
Tjener K, Stahnke LH, Andersen L, Martinussen J. The pH-unrelated influence of salt, temperature and manganese on aroma formation by Staphylococcus xylosus and Staphylococcus carnosus in a fermented meat model system. Int J Food Microbiol 2004; 97:31-42. [PMID: 15527916 DOI: 10.1016/j.ijfoodmicro.2004.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 12/22/2003] [Accepted: 04/04/2004] [Indexed: 11/23/2022]
Abstract
The influence of manganese (0.01-0.1-1.0 microg/g), temperature (15-24 degrees C) and salt (3-4% w/w) on volatile formation in model minces inoculated with Pediococcus pentosaceus and either Staphylococcus xylosus or Staphylococcus carnosus was studied in a full factorial experiment. In order to study the direct, pH-unrelated effect of the parameters, data were analysed by use of multiple linear regression and partial least-squares regression both before and after transformation of the volatile responses into pH-orthogonal (pH-unrelated) responses. By using the pH-orthogonalised data, the overall interpretability of the experiment was increased, and new cause-and-effect relations were suggested. Approximately 50% of the total variance in volatile levels was due to differences caused by S. xylosus and S. carnosus, and another 30% was related to differences in pH development. The remaining 20% covered pH-orthogonal effects of manganese, temperature and salt plus the experimental noise. From this, it was concluded that most of the variation in volatile profiles caused by manganese, temperature and salt was in fact directly or indirectly caused by changes in lactic acid bacterial activity and pH.
Collapse
Affiliation(s)
- Karsten Tjener
- Chr. Hansen A/S, Bøge Allé 10-12, DK-2970, Hørsholm, Denmark.
| | | | | | | |
Collapse
|