1
|
Yang Y, Hao Z, An N, Han Y, Miao W, Storey KB, Lefai E, Liu X, Wang J, Liu S, Xie M, Chang H. Integrated transcriptomics and metabolomics reveal protective effects on heart of hibernating Daurian ground squirrels. J Cell Physiol 2023; 238:2724-2748. [PMID: 37733616 DOI: 10.1002/jcp.31123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Hibernating mammals are natural models of resistance to ischemia, hypoxia-reperfusion injury, and hypothermia. Daurian ground squirrels (spermophilus dauricus) can adapt to endure multiple torpor-arousal cycles without sustaining cardiac damage. However, the molecular regulatory mechanisms that underlie this adaptive response are not yet fully understood. This study investigates morphological, functional, genetic, and metabolic changes that occur in the heart of ground squirrels in three groups: summer active (SA), late torpor (LT), and interbout arousal (IBA). Morphological and functional changes in the heart were measured using hematoxylin-eosin (HE) staining, Masson staining, echocardiography, and enzyme-linked immunosorbent assay (ELISA). Results showed significant changes in cardiac function in the LT group as compared with SA or IBA groups, but no irreversible damage occurred. To understand the molecular mechanisms underlying these phenotypic changes, transcriptomic and metabolomic analyses were conducted to assess differential changes in gene expression and metabolite levels in the three groups of ground squirrels, with a focus on GO and KEGG pathway analysis. Transcriptomic analysis showed that differentially expressed genes were involved in the remodeling of cytoskeletal proteins, reduction in protein synthesis, and downregulation of the ubiquitin-proteasome pathway during hibernation (including LT and IBA groups), as compared with the SA group. Metabolomic analysis revealed increased free amino acids, activation of the glutathione antioxidant system, altered cardiac fatty acid metabolic preferences, and enhanced pentose phosphate pathway activity during hibernation as compared with the SA group. Combining the transcriptomic and metabolomic data, active mitochondrial oxidative phosphorylation and creatine-phosphocreatine energy shuttle systems were observed, as well as inhibition of ferroptosis signaling pathways during hibernation as compared with the SA group. In conclusion, these results provide new insights into cardio-protection in hibernators from the perspective of gene and metabolite changes and deepen our understanding of adaptive cardio-protection mechanisms in mammalian hibernators.
Collapse
Affiliation(s)
- Yingyu Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ziwei Hao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ning An
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Weilan Miao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Xiaoxuan Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Junshu Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuo Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
2
|
Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears. J Comp Physiol B 2016; 187:649-676. [PMID: 27987017 DOI: 10.1007/s00360-016-1050-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/06/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Grizzly bears (Ursus arctos horribilis) have evolved remarkable metabolic adaptations including enormous fat accumulation during the active season followed by fasting during hibernation. However, these fluctuations in body mass do not cause the same harmful effects associated with obesity in humans. To better understand these seasonal transitions, we performed insulin and glucose tolerance tests in captive grizzly bears, characterized the annual profiles of circulating adipokines, and tested the anorectic effects of centrally administered leptin at different times of the year. We also used bear gluteal adipocyte cultures to test insulin and beta-adrenergic sensitivity in vitro. Bears were insulin resistant during hibernation but were sensitive during the spring and fall active periods. Hibernating bears remained euglycemic, possibly due to hyperinsulinemia and hyperglucagonemia. Adipokine concentrations were relatively low throughout the active season but peaked in mid-October prior to hibernation when fat content was greatest. Serum glycerol was highest during hibernation, indicating ongoing lipolysis. Centrally administered leptin reduced food intake in October, but not in August, revealing seasonal variation in the brain's sensitivity to its anorectic effects. This was supported by strong phosphorylated signal transducer and activator of transcription 3 labeling within the hypothalamus of hibernating bears; labeling virtually disappeared in active bears. Adipocytes collected during hibernation were insulin resistant when cultured with hibernation serum but became sensitive when cultured with active season serum. Heat treatment of active serum blocked much of this action. Clarifying the cellular mechanisms responsible for the physiology of hibernating bears may inform new treatments for metabolic disorders.
Collapse
|
3
|
Vaughn LK, Denning G, Stuhr KL, de Wit H, Hill MN, Hillard CJ. Endocannabinoid signalling: has it got rhythm? Br J Pharmacol 2010; 160:530-43. [PMID: 20590563 DOI: 10.1111/j.1476-5381.2010.00790.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Endogenous cannabinoid signalling is widespread throughout the body, and considerable evidence supports its modulatory role in many fundamental physiological processes. The daily and seasonal cycles of the relationship of the earth and sun profoundly affect the terrestrial environment. Terrestrial species have adapted to these cycles in many ways, most well studied are circadian rhythms and hibernation. The purpose of this review was to examine literature support for three hypotheses: (i) endocannabinoid signalling exhibits brain region-specific circadian rhythms; (ii) endocannabinoid signalling modulates the rhythm of circadian processes in mammals; and (iii) changes in endocannabinoid signalling contribute to the state of hibernation. The results of two novel studies are presented. First, we report the results of a study of healthy humans demonstrating that plasma concentrations of the endocannabinoid, N-arachidonylethanolamine (anandamide), exhibit a circadian rhythm. Concentrations of anandamide are threefold higher at wakening than immediately before sleep, a relationship that is dysregulated by sleep deprivation. Second, we investigated differences in endocannabinoids and congeners in plasma from Marmota monax obtained in the summer and during the torpor state of hibernation. We report that 2-arachidonoylglycerol is below detection in M. monax plasma and that concentrations of anandamide are not different. However, plasma concentrations of the anorexigenic lipid oleoylethanolamide were significantly lower in hibernation, while the concentrations of palmitoylethanolamide and 2-oleoylglycerol were significantly greater in hibernation. We conclude that available data support a bidirectional relationship between endocannabinoid signalling and circadian processes, and investigation of the contribution of endocannabinoid signalling to the dramatic physiological changes that occur during hibernation is warranted.
Collapse
Affiliation(s)
- Linda K Vaughn
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
4
|
Bowers RR, Gettys TW, Prpic V, Harris RBS, Bartness TJ. Short photoperiod exposure increases adipocyte sensitivity to noradrenergic stimulation in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1354-60. [PMID: 15821285 DOI: 10.1152/ajpregu.00792.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Siberian hamsters (Phodopus sungorus) exhibit a naturally occurring, reversible seasonal obesity with body fat peaking in long "summerlike" days (LDs) and reaching a nadir in short "winterlike" days (SDs). These SD-induced decreases in adiposity are mediated largely via sympathetic nervous system (SNS) innervation of white adipose tissue (WAT), as indicated by increased WAT norepinephrine (NE) turnover. We examined whether SDs also increase sensitivity to NE-stimulated lipolysis. This was accomplished by measuring NE- and beta3-adrenoceptor (beta3-AR) agonist (BRL-37344)-induced lipolysis (glycerol release) as well as NE-induced cAMP accumulation by inguinal, epididymal, and retroperitoneal WAT (IWAT, EWAT, and RWAT) in isolated adipocytes of LD- and SD-housed hamsters. SDs increased potency/efficacy of NE-triggered lipolysis in a temporally and fat pad-specific manner. Thus when WAT pad mass decreased most rapidly (5 wk of SDs), potency (sensitivity/EC50) and efficacy (maximal response asymptote) of NE-stimulated lipolysis were increased for all WAT pads and also at 10 wk for IWAT compared with their LD counterparts. SD enhancement of lipolysis was similar for NE and BRL-37344 in IWAT adipocytes. These results, coupled with our previous demonstration that SDs upregulate WAT beta3-AR mRNA expression, suggest that increased beta3-ARs mediated the SD-induced increased NE sensitivity. NE-stimulated adipocyte accumulation of cAMP was greater after 5 wk of SDs for IWAT and EWAT and after 10 wk of SDs for IWAT compared with LDs, with no photoperiod effect for RWAT. Therefore, the SD-induced increase in SNS drive to WAT and increased sensitivity to this drive may work together to increase lipolysis in SDs.
Collapse
Affiliation(s)
- Robert R Bowers
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, USA
| | | | | | | | | |
Collapse
|
5
|
Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 2003; 83:1153-81. [PMID: 14506303 DOI: 10.1152/physrev.00008.2003] [Citation(s) in RCA: 792] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammalian hibernators undergo a remarkable phenotypic switch that involves profound changes in physiology, morphology, and behavior in response to periods of unfavorable environmental conditions. The ability to hibernate is found throughout the class Mammalia and appears to involve differential expression of genes common to all mammals, rather than the induction of novel gene products unique to the hibernating state. The hibernation season is characterized by extended bouts of torpor, during which minimal body temperature (Tb) can fall as low as -2.9 degrees C and metabolism can be reduced to 1% of euthermic rates. Many global biochemical and physiological processes exploit low temperatures to lower reaction rates but retain the ability to resume full activity upon rewarming. Other critical functions must continue at physiologically relevant levels during torpor and be precisely regulated even at Tb values near 0 degrees C. Research using new tools of molecular and cellular biology is beginning to reveal how hibernators survive repeated cycles of torpor and arousal during the hibernation season. Comprehensive approaches that exploit advances in genomic and proteomic technologies are needed to further define the differentially expressed genes that distinguish the summer euthermic from winter hibernating states. Detailed understanding of hibernation from the molecular to organismal levels should enable the translation of this information to the development of a variety of hypothermic and hypometabolic strategies to improve outcomes for human and animal health.
Collapse
Affiliation(s)
- Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|