1
|
Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev 2022; 185:114240. [PMID: 35378216 DOI: 10.1016/j.addr.2022.114240] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Extracellular matrix (ECM) proteins confer biomechanical properties, maintain cell phenotype and mediate tissue repair (via release of sequestered cytokines and proteases). In contrast to intracellular proteomes, where proteins are monitored and replaced over short time periods, many ECM proteins function for years (decades in humans) without replacement. The longevity of abundant ECM proteins, such as collagen I and elastin, leaves them vulnerable to damage accumulation and their host organs prone to chronic, age-related diseases. However, ECM protein fragmentation can potentially produce peptide cytokines (matrikines) which may exacerbate and/or ameliorate age- and disease-related ECM remodelling. In this review, we discuss ECM composition, function and degradation and highlight examples of endogenous matrikines. We then critically and comprehensively analyse published studies of matrix-derived peptides used as topical skin treatments, before considering the potential for improvements in the discovery and delivery of novel matrix-derived peptides to skin and internal organs. From this, we conclude that while the translational impact of matrix-derived peptide therapeutics is evident, the mechanisms of action of these peptides are poorly defined. Further, well-designed, multimodal studies are required.
Collapse
|
2
|
Fhayli W, Boëté Q, Harki O, Briançon-Marjollet A, Jacob MP, Faury G. Rise and fall of elastic fibers from development to aging. Consequences on arterial structure-function and therapeutical perspectives. Matrix Biol 2019; 84:41-56. [PMID: 31493460 DOI: 10.1016/j.matbio.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
In the arteries of vertebrates, evolution has given rise to resilient macromolecular structures, elastin and elastic fibers, capable of sustaining an elevated blood pressure and smoothening the discontinuous blood flow and pressure generated by the heart. Elastic fibers are produced only during development and childhood, before being progressively degraded by mechanical stress and enzymatic activities during adulthood and aging. During this period, arterial elastic fiber calcification and loading of lipids also occur, all of these events conducting to arteriosclerosis. This leads to a progressive dysfunction of the large elastic arteries inducing elevated blood pressure as well as altered hemodynamics and organ perfusion, which induce more global malfunctions of the body during normal aging. Additionally, some arterial conditions occur more frequently with advancing age, such as atherosclerosis or aneurysms, which are called age-related diseases or pathological aging. The physiological or pathological degradation of elastic fibers and function of elastic arteries seemed to be rather inevitable over time. However, during the recent years, different molecules - including several ATP-dependent potassium channel openers, such as minoxidil - have been shown to re-induce elastin production and elastic fiber assembly, leading to improvements in the arterial structure and function or in organ perfusion. This review summarizes the changes in the arterial elastic fibers and structure from development until aging, and presents some of the potential pharmacotherapies leading to elastic fiber neosynthesis and arterial function improvement.
Collapse
Affiliation(s)
- Wassim Fhayli
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Quentin Boëté
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | - Olfa Harki
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France
| | | | - Marie-Paule Jacob
- INSERM, U1148, and Hopital Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 Paris, France
| | - Gilles Faury
- Univ. Grenoble Alpes, Inserm U1042, CHU Grenoble Alpes, HP2, 38000 Grenoble, France.
| |
Collapse
|
3
|
Wahart A, Hocine T, Albrecht C, Henry A, Sarazin T, Martiny L, El Btaouri H, Maurice P, Bennasroune A, Romier-Crouzet B, Blaise S, Duca L. Role of elastin peptides and elastin receptor complex in metabolic and cardiovascular diseases. FEBS J 2019; 286:2980-2993. [PMID: 30946528 DOI: 10.1111/febs.14836] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/23/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The Cardiovascular Continuum describes a sequence of events from cardiovascular risk factors to end-stage heart disease. It includes conventional pathologies affecting cardiovascular functions such as hypertension, atherosclerosis or thrombosis and was traditionally considered from the metabolic point of view. This Cardiovascular Continuum, originally described by Dzau and Braunwald, was extended by O'Rourke to consider also the crucial role played by degradation of elastic fibers, occurring during aging, in the appearance of vascular stiffness, another deleterious risk factor of the continuum. However, the involvement of the elastin degradation products, named elastin-derived peptides, to the Cardiovascular Continuum progression has not been considered before. Data from our laboratory and others clearly showed that these bioactive peptides are central regulators of this continuum, thereby amplifying appearance and evolution of cardiovascular risk factors such as diabetes or hypertension, of vascular alterations such as atherothrombosis and calcification, but also nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. The Elastin Receptor Complex has been shown to be a crucial actor in these processes. We propose here the participation of these elastin-derived peptides and of the Elastin Receptor Complex in these events, and introduce a revisited Cardiovascular Continuum based on their involvement, for which elastin-based pharmacological strategies could have a strong impact in the future.
Collapse
Affiliation(s)
- Amandine Wahart
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Thinhinane Hocine
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Camille Albrecht
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Auberi Henry
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Thomas Sarazin
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Laurent Martiny
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Hassan El Btaouri
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Amar Bennasroune
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | | | - Sébastien Blaise
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, SFR CAP-Santé, Université de Reims Champagne-Ardenne, France
| |
Collapse
|
4
|
Robinet A, Millart H, Oszust F, Hornebeck W, Bellon G. Binding of elastin peptides to S-Gal protects the heart against ischemia/reperfusion injury by triggering the RISK pathway. FASEB J 2007; 21:1968-78. [PMID: 17341689 DOI: 10.1096/fj.06-6477com] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Elastin peptides (EPs) generated by hydrolysis of elastic fibers by elastinolytic enzymes display a wide spectrum of biological activities. Here, we investigated their influence on rat heart ischemia-mediated injury using the Langendorff ex vivo model. EPs, i.e., kappa elastin, at 1.32- and 660-nM concentrations, when administered before the ischemia period, elicited a beneficial influence against ischemia by accelerating the recovery rate of heart contractile parameters and by decreasing significantly creatine kinase release and heart necrosis area when measured at the onset of the reperfusion. All effects were S-Gal-dependent, as being reproduced by (VGVAPG)3 and as being inhibited by receptor antagonists, such as lactose and V14 peptide (VVGSPSAQDEASPL). EPs interaction with S-Gal triggered NO release and activation of PI3-kinase/Akt and ERK1/2 in human coronary endothelial cells (HCAECs) and rat neonatal cardiomyocytes (RCs). This signaling pathway, as designated as RISK, for reperfusion injury salvage kinase pathway, was shown to be responsible for the beneficial influence of EPs on ischemia/reperfusion injury on the basis of its inhibition by specific pharmacological inhibitors. EPs survival activity was attained at a concentration averaging that present into the blood circulation, supporting the contention that these matrikines might offer a natural protection against cardiac injury in young and adult individuals. Such protective effect might be lost with aging, since we found that hearts from 24-month-old rats did not respond to EPs.
Collapse
Affiliation(s)
- Arnaud Robinet
- Laboratoire de Pharmacologie Médicale, Université de Reims-Champagne-Ardenne, Faculté de Médecine, Reims, France
| | | | | | | | | |
Collapse
|
5
|
The elastin–laminin receptor-mediated matrix degradation. Effect of glucose concentration. Role in atherosclerosis. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0531-5131(03)01734-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Abstract
This introductory chapter tentatively draws a parallel between some of the highlights of basic aging research and their incidence for the understanding of age-associated pathologies. Some of the most important mechanisms described for cell- and tissue-aging, such as limited cell-proliferation, "parasitic" reactions, such as non-enzymatic glycation, ROS-production, uncontrolled proteolysis involving matricryptic sites, receptor loss and uncoupling appear to be the most promising links between those two approaches to fundamental and clinical gerontology. Some of the "parasitic", epigenetic, post-translational reactions lead to vicious circles which over the years might well produce cell- and tissue-damage as seen in most age-associated diseases. There is little doubt that the better understanding of these relationships will also prove helpful for pharmacological research as related to the age-associated pathologies.
Collapse
Affiliation(s)
- L Robert
- Laboratoire de Recherche Ophtalmologique, Université Paris 6, Hôpital Hôtel Dieu, 1, place du Parvis-Notre-Dame, 75181 Paris 4, France.
| | | |
Collapse
|