1
|
Czerniel J, Gostyńska A, Jańczak J, Stawny M. A critical review of the novelties in the development of intravenous nanoemulsions. Eur J Pharm Biopharm 2023; 191:36-56. [PMID: 37586663 DOI: 10.1016/j.ejpb.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoemulsions have gained increasing attention in recent years as a drug delivery system due to their ability to improve the solubility and bioavailability of poorly water-soluble drugs. This systematic review aimed to collect and critically analyze recent novelties in developing, designing, and optimizing intravenous nanoemulsions appearing in articles published between 2017 and 2022. The applied methodology involved searching two electronic databases PubMed and Scopus, using the keyword "nanoemulsion" in combination with "intravenous" or "parenteral". The resulting original articles were classified by the method of preparation into different categories. An overview of the current methods used for the preparation of such formulations, including high- and low-energy emulsification, was provided. The advantages and disadvantages of these methods were discussed, as well as their potential impact on the properties of the developed intravenous nanoemulsions. The problem of inconsistency in intravenous nanoemulsion terminology may lead to misunderstandings and misinterpretations of their properties and applications was also undertaken. Finally, the regulatory aspects of intravenous nanoemulsions, the state of the art in the field of intravenous emulsifiers, and the future perspectives were presented.
Collapse
Affiliation(s)
- Joanna Czerniel
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Aleksandra Gostyńska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland.
| | - Julia Jańczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| |
Collapse
|
2
|
Daull P, Baudouin C, Liang H, Feraille L, Barabino S, Garrigue JS. Review of Preclinical Outcomes of a Topical Cationic Emulsion of Cyclosporine A for the Treatment of Ocular Surface Diseases. Ocul Immunol Inflamm 2022; 30:1945-1955. [PMID: 34348575 DOI: 10.1080/09273948.2021.1957124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cyclosporine A (CsA) has been used as a topical treatment for various ocular surface diseases including dry eye disease (DED). Several CsA formulations are available as solutions or emulsions. PURPOSE This review describes the development and the preclinical testing of a cationic oil-in-water emulsion of CsA (CE-CsA) in terms of pharmacodynamics, pharmacokinetics, and ocular tolerance. Due to the cationic charge, CE electrostatically interacts with the negatively-charged ocular surface, improving its residence time. Compared to other CsA formulations, CE-CsA and CE itself were found to reduce the signs and symptoms of DED, by restoring tear film stability and properties, and inhibiting the expression and secretion of pro-inflammatory factors. No delay in wound healing nor ocular toxicity were observed using CE formulations. CONCLUSION these findings indicate that the type of vehicle can significantly affect the performance of eye drops and play an ancillary role in DED treatment. CE appears as a promising strategy to deliver drugs to the ocular surface while maintaining its homeostasis.
Collapse
Affiliation(s)
| | - Christophe Baudouin
- CHNO des Quinze-Vingts, IHU FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Hong Liang
- CHNO des Quinze-Vingts, IHU FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France.,Sorbonne Universités, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stefano Barabino
- Ocular Surface and Dry Eye Center, Ospedale L. Sacco, University of Milan, Milan, Italy
| | | |
Collapse
|
3
|
Fernandes AR, Vidal LB, Sánchez-López E, Dos Santos T, Granja PL, Silva AM, Garcia ML, Souto EB. Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes. Int J Pharm 2022; 623:121938. [PMID: 35728716 DOI: 10.1016/j.ijpharm.2022.121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Customized cationic oil-in-water nanoemulsions (NEs) have been produced to improve the bioavailability of poorly water-soluble drugs, such as triamcinolone acetonide (TA). TA is a synthetic glucocorticoid with anti-inflammatory and antiangiogenic therapeutic properties and it is widely used as an effective treatment in ocular disorders. In this work, TA-NEs were characterized using two different custom-made cationic surfactants, showing a high positive surface charge favouring corneal penetration and a particle size below 300 nm. Both TA-NE formulations demonstrated to be stable at 4 °C during the first months of storage. Furthermore, TA-NEs were able to produce antiangiogenic effects in chicken membranes. The TA-NEs safety profile was evaluated using in vitro and in vivo ocular tolerance tests. Out of the two formulations, the one showing no irritant effects was screened in vivo demonstrating capacity to ameliorate ocular inflammation in New Zealand rabbits significantly, specially to reduce the risk of ocular inflammation processes, with antiangiogenic activity, and can therefore be exploited as a suitable formulation to avoid inflammatory reactions upon ocular surgical procedures, such as cataracts.
Collapse
Affiliation(s)
- Ana R Fernandes
- i3s - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Lorena B Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Tiago Dos Santos
- i3s - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Pedro L Granja
- i3s - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Amelia M Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal.
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy of University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. MATERIALS 2021; 14:ma14247541. [PMID: 34947136 PMCID: PMC8706710 DOI: 10.3390/ma14247541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
The eye is a very complex organ comprising several physiological and physical barriers that compromise drug absorption into deeper layers. Nanoemulsions are promising delivery systems to be used in ocular drug delivery due to their innumerous advantages, such as high retention time onto the site of application and the modified release profile of loaded drugs, thereby contributing to increasing the bioavailability of drugs for the treatment of eye diseases, in particular those affecting the posterior segment. In this review, we address the main factors that govern the development of a suitable nanoemulsion formulation for eye administration to increase the patient’s compliance to the treatment. Appropriate lipid composition and type of surfactants (with a special emphasis on cationic compounds) are discussed, together with manufacturing techniques and characterization methods that are instrumental for the development of appropriate ophthalmic nanoemulsions.
Collapse
|
5
|
Singh M, Bharadwaj S, Lee KE, Kang SG. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J Control Release 2020; 328:895-916. [PMID: 33069743 DOI: 10.1016/j.jconrel.2020.10.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
The eye is the specialized part of the body and is comprised of numerous physiological ocular barriers that limit the drug absorption at the action site. Regardless of various efforts, efficient topical ophthalmic drug delivery remains unsolved, and thus, it is extremely necessary to advance the contemporary treatments of ocular disorders affecting the anterior and posterior cavities. Nowadays, the advent of nanotechnology-based multicomponent nanoemulsions for ophthalmic drug delivery has gained popularity due to the enhancement of ocular penetrability, improve bioavailability, increase solubility, and stability of lipophilic drugs. Nanoemulsions offer the sustained/controlled drug release and increase residence time which depend on viscosity, compositions, and stabilization process, etc.; hence, decrease the instillation frequency and improve patient compliance. Further, due to the nanosized of nanoemulsions, the sterilization process is easy as conventional solutions and cause no blur vision. The review aims to summarizes the various ocular barriers, manufacturing techniques, possible mechanisms to the retention and deep penetration into the eye, and appropriate excipients with their under-lying selection principles to prevent destabilization of nanoemulsions. This review also discusses the characterization parameters of ocular drug delivery to spike the interest of those contemplating a foray in this field. Here, in short, nanoemulsions are abridged with concepts to design clinically advantageous ocular drug delivery.
Collapse
Affiliation(s)
- Mahendra Singh
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shiv Bharadwaj
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kyung Eun Lee
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Sang Gu Kang
- Molecular Genetics Laboratory, Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
6
|
Silva SAME, Michniak-Kohn B, Leonardi GR. An overview about oxidation in clinical practice of skin aging. An Bras Dermatol 2017; 92:367-374. [PMID: 29186250 PMCID: PMC5514578 DOI: 10.1590/abd1806-4841.20175481] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/05/2016] [Indexed: 12/23/2022] Open
Abstract
Free radicals are unstable chemical species, highly reactive, being formed by cellular entities of different tissues. Increased production of these species without proper effective action of endogenous and exogenous antioxidant systems, generates a condition of oxidative stress, potentially provider of skin disorders that extend from functional impairments (skin cancer, dermatitis, chronic and acute inflammatory processes) even aesthetic character, with the destruction of structural proteins and cellular changes with the appearance of stains, marks and lines of expressions and other signs inherent to the intrinsic and extrinsic skin aging process. The antioxidants are chemical substances commonly used in clinical practice for topical application and may contribute in the fight against the radical species responsible for many skin damage. This paper summarized the main evidence of the benefits brought by the topical application of antioxidants in the skin, considering the amplitude of the indicative performance of antioxidant activity by in vitro and ex-vivo tests as well as in vivo tests. It is recognized that a breadth of product performance tests should be explored to truly identify the effectiveness of antioxidant products for an anti-aging effect.
Collapse
Affiliation(s)
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, Rutgers-The State University of New
Jersey, Ernest Mario School of Pharmacy - New Jersey, United States of
America
| | - Gislaine Ricci Leonardi
- Faculty of Pharmaceutical Sciences, Universidade Estadual de
Campinas (UNICAMP) - Campinas (SP), Brazil
| |
Collapse
|
7
|
Zorzi GK, Caregnato F, Moreira JCF, Teixeira HF, Carvalho ELS. Antioxidant Effect of Nanoemulsions Containing Extract of Achyrocline satureioides (Lam) D.C.-Asteraceae. AAPS PharmSciTech 2016; 17:844-50. [PMID: 26361953 DOI: 10.1208/s12249-015-0408-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Ethanolic extracts of Achyrocline satureioides have pronounced antioxidant activity mainly due to the presence of the flavonoid quercetin. However, direct topical application of the extract is not possible due to the presence of high amounts of ethanol. In this sense, nanoemulsions arise as an alternative for topical formulation associating molecules with limited aqueous solubility. This article describes the development of topical nanoemulsions containing either A. satureioides extract or one of its most abundant flavonoid, quercetin. Nanoemulsions composed of octyldodecanol, egg lecithin, water and extract (NEE), or quercetin (NEQ) were prepared by spontaneous emulsification. This process led to monodisperse nanoemulsions presenting a mean droplet size of approximately 200-300 nm, negative zeta potential, and high association efficiency. A study of quercetin skin retention using porcine skin which was performed using a Franz diffusion cell revealed a higher accumulation of quercetin in skin for NEE when compared to NEQ. Finally, the antioxidant activity of formulations was measured by thiobarbituric acid-reactive species and the APPH model. A lower lipoperoxidation for the extract in respect to quercetin solution was observed. However, no difference between NEQ and NEE lipoperoxidation could be seen. The protection against lipoperoxidation by the formulations was also measured in the skin, where lower formation of reactive species was observed after treatment with NEE. In conclusion, this study shows the formulation effect on the physicochemical properties of nanoemulsions as well as on the skin retention and antioxidant activity of quercetin.
Collapse
|
8
|
Gad SC, Spainhour CB, Shoemake C, Pallman DRS, Stricker-Krongrad A, Downing PA, Seals RE, Eagle LA, Polhamus K, Daly J. Tolerable Levels of Nonclinical Vehicles and Formulations Used in Studies by Multiple Routes in Multiple Species With Notes on Methods to Improve Utility. Int J Toxicol 2016; 35:95-178. [PMID: 26755718 DOI: 10.1177/1091581815622442] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Formulation of nonclinical evaluations is a challenge, with the fundamental need to achieve multiples of the clinical exposure complicated by differences in species and routes of administration-specific tolerances, depending on concentrations, volumes, dosing regimen, duration of each administration, and study duration. Current practice to approach these differences is based on individual experience and scattered literature with no comprehensive data source (the most notable exception being our 2006 publication on this same subject). Lack of formulation tolerance data results in excessive animal use, unplanned delays in the evaluation and development of drugs, and vehicle-dependent results. A consulting firm, a chemical company, and 4 contract research organizations conducted a rigorous data mining operation of vehicle data from studies dating from 1991 to 2015, enhancing the data from this author's 2006 publication (3 of the six 2015 contributors were also 2006 contributors). Additional data were found in the published literature. The results identified 108 single-component vehicles (and 305 combination formulations) used in more than 1,040 studies across multiple species (dog, primate, rat, mouse, rabbit, guinea pig, minipig, pig, chick embryo, and cat) by multiple routes for a wide range of study durations. The tabulated data include maximum tolerated use levels by species, route, duration of study, dose-limiting toxicity where reported, review of the available literature on each vehicle, guidance on syringe selection, volume and pH limits by route with basic guidance on nonclinical formulation development, and guidance on factors to be considered in nonclinical route selection.
Collapse
|
9
|
|
10
|
Hegde RR, Bhattacharya SS, Verma A, Ghosh A. Physicochemical and Pharmacological Investigation of Water/Oil Microemulsion of Non-Selective Beta Blocker for Treatment of Glaucoma. Curr Eye Res 2013; 39:155-63. [DOI: 10.3109/02713683.2013.833630] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Mosallaei N, Banaee T, Farzadnia M, Abedini E, Ashraf H, Malaekeh-Nikouei B. Safety Evaluation of Nanoliposomes Containing Cyclosporine A After Ocular Administration. Curr Eye Res 2012; 37:453-6. [DOI: 10.3109/02713683.2012.660595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Optimization of headspace solid-phase microextraction for analysis of β-caryophyllene in a nanoemulsion dosage form prepared with copaiba (Copaifera multijuga Hayne) oil. Anal Chim Acta 2012; 721:79-84. [DOI: 10.1016/j.aca.2012.01.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
|
13
|
Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. JOURNAL OF DRUG DELIVERY 2012; 2012:604204. [PMID: 22506123 PMCID: PMC3313063 DOI: 10.1155/2012/604204] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/09/2011] [Indexed: 01/24/2023]
Abstract
Topical ophthalmic delivery of active ingredients can be achieved using cationic nanoemulsions. In the last decade, Novagali Pharma has successfully developed and marketed Novasorb, an advanced pharmaceutical technology for the treatment of ophthalmic diseases. This paper describes the main steps in the development of cationic nanoemulsions from formulation to evaluation in clinical trials. A major challenge of the formulation work was the selection of a cationic agent with an acceptable safety profile that would ensure a sufficient ocular surface retention time. Then, toxicity and pharmacokinetic studies were performed showing that the cationic emulsions were safe and well tolerated. Even in the absence of an active ingredient, cationic emulsions were observed in preclinical studies to have an inherent benefit on the ocular surface. Moreover, clinical trials demonstrated the efficacy and safety of cationic emulsions loaded with cyclosporine A in patients with dry eye disease. Ongoing studies evaluating latanoprost emulsion in patients with ocular surface disease and glaucoma suggest that the beneficial effects on reducing ocular surface damage may also extend to this patient population. The culmination of these efforts has been the marketing of Cationorm, a preservative-free cationic emulsion indicated for the symptomatic treatment of dry eye.
Collapse
Affiliation(s)
- Frederic Lallemand
- Research and Development Department, Novagali Pharma SA, 1 rue Pierre Fontaine, 91058 Evry Cedex, France
| | - Philippe Daull
- Research and Development Department, Novagali Pharma SA, 1 rue Pierre Fontaine, 91058 Evry Cedex, France
| | - Simon Benita
- The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, POB 12065, 91120 Jerusalem, Israel
| | - Ronald Buggage
- Research and Development Department, Novagali Pharma SA, 1 rue Pierre Fontaine, 91058 Evry Cedex, France
| | - Jean-Sebastien Garrigue
- Research and Development Department, Novagali Pharma SA, 1 rue Pierre Fontaine, 91058 Evry Cedex, France
| |
Collapse
|
14
|
Araújo J, Gonzalez-Mira E, Egea M, Garcia M, Souto E. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm 2010; 393:167-75. [DOI: 10.1016/j.ijpharm.2010.03.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
|
15
|
Araújo J, Vega E, Lopes C, Egea M, Garcia M, Souto E. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. Colloids Surf B Biointerfaces 2009; 72:48-56. [DOI: 10.1016/j.colsurfb.2009.03.028] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/18/2009] [Accepted: 03/17/2009] [Indexed: 11/27/2022]
|
16
|
In vivo studies of polyacrylate nanoparticle emulsions for topical and systemic applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2009; 5:46-54. [DOI: 10.1016/j.nano.2008.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/29/2008] [Accepted: 07/08/2008] [Indexed: 11/24/2022]
|
17
|
Poullain-Termeau S, Crauste-Manciet S, Brossard D, Muhamed S, Nicolaos G, Farinotti R, Barthélémy C, Robert H, Odou P. Effect of Oil-in-Water Submicron Emulsion Surface Charge on Oral Absorption of a Poorly Water-Soluble Drug in Rats. Drug Deliv 2008; 15:503-14. [DOI: 10.1080/10717540802321792] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
18
|
Kuo YC, Lin SC. Effect of Glutamate on the Electrical Properties of Cationic Solid Lipid Nanoparticles Containing Stearylamine and Dioctadecyldimethyl Ammonium Bromide. J Phys Chem B 2008; 112:4454-60. [DOI: 10.1021/jp711420g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Shao-Cheng Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
19
|
Fasolo D, Schwingel L, Holzschuh M, Bassani V, Teixeira H. Validation of an isocratic LC method for determination of quercetin and methylquercetin in topical nanoemulsions. J Pharm Biomed Anal 2007; 44:1174-7. [PMID: 17540529 DOI: 10.1016/j.jpba.2007.04.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 04/09/2007] [Accepted: 04/12/2007] [Indexed: 11/25/2022]
Abstract
The aim of this study was to validate an isocratic LC method for the quantification of either quercetin (Q) or methylquercetin (MQ) incorporated in topical nanoemulsions. The analyses were performed at room temperature on a reversed-phase C(18) column using a mobile phase composed of methanol/water (70:30, v/v) and trifluoracetic acid 0.1% at 0.8 mL min(-1). The detection was carried out on a UV detector at 368 or 354 nm for Q and MQ, respectively. The linearity, in the range of 0.15-1.5 microg/mL, presented a determination coefficient (r(2)) higher than 0.99, calculated by the least square method for both flavonoids. No interferences from the excipients (egg-lecithin or octyldodecanol) were detected. The R.S.D. values for intra- and inter-day precision experiments were lower than 2% for both flavonoids. The recovery ranged from 98.9% to 103.46% for Q and from 98.9% to 102.92% for MQ.
Collapse
Affiliation(s)
- Daniel Fasolo
- Universidade Federal do Rio Grande do Sul, Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
20
|
Gad SC, Cassidy CD, Aubert N, Spainhour B, Robbe H. Nonclinical vehicle use in studies by multiple routes in multiple species. Int J Toxicol 2007; 25:499-521. [PMID: 17132609 DOI: 10.1080/10915810600961531] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The laboratory toxicologist is frequently faced with the challenge of selecting appropriate vehicles or developing utilitarian formulations for use in in vivo nonclinical safety assessment studies. Although there are many vehicles available that may meet physical and chemical requirements for chemical or pharmaceutical formulation, there are wide differences in species and route of administration specific to tolerances to these vehicles. In current practice, these differences are largely approached on a basis of individual experience as there is only scattered literature on individual vehicles and no comprehensive treatment or information source. This approach leads to excessive animal use and unplanned delays in testing and development. To address this need, a consulting firm and three contract research organizations conducted a rigorous data mining operation of control (vehicle) data from studies dating from 1991 to present. The results identified 65 single component vehicles used in 368 studies across multiple species (dog, primate, rat, mouse, rabbit, guinea pig, minipig, chick embryo, and cat) by multiple routes. Reported here are the results of this effort, including maximum tolerated use levels by species, route, and duration of study, with accompanying dose limiting toxicity. Also included are basic chemical information and a review of available literature on each vehicle, as well as guidance on volume limits and pH by route and some basic guidance on nonclinical formulation development.
Collapse
Affiliation(s)
- Shayne C Gad
- Gad Consulting Services, Cary, North Carolina 27518, USA.
| | | | | | | | | |
Collapse
|
21
|
Pignatello R, Ricupero N, Bucolo C, Maugeri F, Maltese A, Puglisi G. Preparation and characterization of eudragit retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech 2006; 7:E192-E198. [PMID: 16584158 PMCID: PMC2750734 DOI: 10.1208/pt070127] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 02/06/2006] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to improve the stability of cloricromene (AD6) in ophthalmic formulations and its drug availability at the ocular level. To this end, AD6-loaded polymeric nanoparticle suspensions were made using inert polymer resins (Eudragit RS100 and RL100). We modified the quasi-emulsion solvent diffusion technique by varying some formulation parameters (the drug-to-polymer ratio, the total drug and polymer amount, and the stirring speed). The chemical stability of AD6 in the nanosuspensions was assessed by preparing some formulations using (unbuffered) isotonic saline or a pH 7 phosphate buffer solution as the dispersing medium. The formulations were stored at 4 degrees C, and the rate of degradation of AD6 was followed by high performance liquid chromatography (HPLC). The obtained nanosuspensions showed mean sizes and a positive surface charge (zeta-potential) that make them suitable for an ophthalmic application; these properties were maintained upon storage at 4 degrees C for several months. In vitro dissolution tests confirmed a modified release of the drug from the polymer matrixes. Nanosuspensions prepared with saline solution and no or lower amounts of surfactant (Tween 80) showed an enhanced stability of the ester drug for several months, with respect to an AD6 aqueous solution. Based on the technological results, AD6-loaded Eudragit Retard nanoparticle suspensions appear to offer promise as a means to improving the shelf life and bioavailability of this drug after ophthalmic application.
Collapse
Affiliation(s)
- Rosario Pignatello
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Catania; Città Universitaria, Viale A Doria, 6, 95125 Catania, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Rabinovich-Guilatt L, Couvreur P, Lambert G, Goldstein D, Benita S, Dubernet C. Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions. Chem Phys Lipids 2004; 131:1-13. [PMID: 15210360 DOI: 10.1016/j.chemphyslip.2004.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 03/15/2004] [Accepted: 03/19/2004] [Indexed: 11/18/2022]
Abstract
The present study is aimed to characterize the electrostatic parameters of oil in water emulsion droplets composed of MCT (medium chain triglycerides), PL (phospholipids) and Poloxamer and containing increasing concentrations of the cationic lipid oleylamine (OA), in Hepes 20 mM pH 7.4. The initial zeta-potential data suggesting saturation of the droplet surface at high OA concentrations were completed by supplementary analysis: the distribution of the oleylamine within the droplet was determined by reacting the amino groups with the hydrophilic TNBS (trinitrobenzenesulfonic acid), the method being initially standardised with vesicles. In addition, surface potential and pH at the droplet surface were monitored by the pH-sensitive fluorophore 4-heptadecyl-7-hydroxycoumarin. Our results demonstrate that almost all the OA is localised and fully ionised at the droplet surface for all concentrations and that the observed plateau in the zeta-potential values obeys the Gouy-Chapman theory of ion condensation. It is also shown that the slipping plane separation as estimated by the Eversole-Boardman equation is higher that the expected values of 0.2 nm as a result of the relative position of the fluorophore and the outer boundary of the lipid interface thickness and the Poloxamer anchored at the interface only plays a minor role.
Collapse
Affiliation(s)
- Laura Rabinovich-Guilatt
- UMR CNRS 8612, School of Pharmacy, Université Paris Sud, 5 rue JB Clément, Châtenay Malabry Cedex 92296, France
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
|