Casimir JR, Iterbeke K, Van Den Nest W, Trescol-Biémont MC, Dumortier H, Muller S, Gerlier D, Rabourdin-Combe C, Tourwé D, Paris J. Conformational restriction of the Tyr53 side-chain in the decapeptide HE.
THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000;
56:398-408. [PMID:
11152299 DOI:
10.1034/j.1399-3011.2000.00777.x]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of conformationally restricted analogs of the hen egg lysozyme (HEL) decapeptide 52-61 in which the conformationally flexible Tyr53 residue was replaced by several more constrained tyrosine and phenylalanine analogs was prepared. Among these tyrosine and phenylalanine analogs were 1,2,3,4-tetrahydro-7-hydroxyisoquinoline-3-carboxylic acid (Htc), 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic), 4-amino- 1,2,4,5-tetrahydro-8-hydroxy-2-benzazepine-3-one (Hba), 4-amino-1,2,4,5-tetrahydro-2-benzazepine-3-one (Aba), 2-amino-6-hydroxytetralin-2-carboxylic acid (Hat) and 2-amino-5-hydroxyindan-2-carboxylic acid (Hai) in which the rotations around Calpha-Cbeta and Cbeta-Cgamma were restricted because of cyclization of the side-chain to the backbone. Synthesis of Pht-Hba-Gly-OH using a modification of the Flynn and de Laszlo procedure is described. Analogs of beta-methyltyrosine (beta-MeTyr) in which the side-chains were biased to particular side-chain torsional angles because of substitution at the beta-hydrogens were also prepared. These analogs of HEL[52-61] peptide were tested for their ability to bind to the major histocompatibility complex class II I-Ak molecule and to be recognized in this context by two T-cell hybridomas, specific for the parent peptide HEL[52-61]. The data showed that the conformation and also the configuration of the Tyr53 residue influenced both the binding of the peptide to I-Ak and the recognition of the peptide/I-Ak complex by a T-cell receptor.
Collapse