1
|
Oosterloo M, Touze A, Byrne LM, Achenbach J, Aksoy H, Coleman A, Lammert D, Nance M, Nopoulos P, Reilmann R, Saft C, Santini H, Squitieri F, Tabrizi S, Burgunder JM, Quarrell O. Clinical Review of Juvenile Huntington's Disease. J Huntingtons Dis 2024; 13:149-161. [PMID: 38669553 PMCID: PMC11307030 DOI: 10.3233/jhd-231523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Juvenile Huntington's disease (JHD) is rare. In the first decade of life speech difficulties, rigidity, and dystonia are common clinical motor symptoms, whereas onset in the second decade motor symptoms may sometimes resemble adult-onset Huntington's disease (AOHD). Cognitive decline is mostly detected by declining school performances. Behavioral symptoms in general do not differ from AOHD but may be confused with autism spectrum disorder or attention deficit hyperactivity disorder and lead to misdiagnosis and/or diagnostic delay. JHD specific features are epilepsy, ataxia, spasticity, pain, itching, and possibly liver steatosis. Disease progression of JHD is faster compared to AOHD and the disease duration is shorter, particularly in case of higher CAG repeat lengths. The diagnosis is based on clinical judgement in combination with a positive family history and/or DNA analysis after careful consideration. Repeat length in JHD is usually > 55 and caused by anticipation, usually via paternal transmission. There are no pharmacological and multidisciplinary guidelines for JHD treatment. Future perspectives for earlier diagnosis are better diagnostic markers such as qualitative MRI and neurofilament light in serum.
Collapse
Affiliation(s)
- Mayke Oosterloo
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alexiane Touze
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lauren M. Byrne
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jannis Achenbach
- Department of Neurology, Huntington Centre NRW, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Hande Aksoy
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Annabelle Coleman
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dawn Lammert
- Department of Neurology, Division of Child Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martha Nance
- Struthers Parkinson’s Center, Minneapolis, MN, USA
| | - Peggy Nopoulos
- Departments of Psychiatry, Pediatrics, & Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ralf Reilmann
- George-Huntington-Institute & Department of Radiology, University of Muenster, Muenster, Germany
- Department for Neurodegeneration, Hertie Institute for Clinical, Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Carsten Saft
- Department of Neurology, Huntington Centre NRW, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | | | - Ferdinando Squitieri
- Centre for Rare Neurological Diseases (CMRN), Italian League for Research on Huntington (LIRH) Foundation, Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Sarah Tabrizi
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jean-Marc Burgunder
- Neurozentrum Siloah and Department of Neurology, Swiss HD Center, University of Bern, Bern, Switzerland
| | - Oliver Quarrell
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, UK
- Department of Neurosciences University of Sheffield, Sheffield, UK
| | - on behalf of the Pediatric Huntington Disease Working Group of the European Huntington Disease Network
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Huntington Centre NRW, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Division of Child Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Struthers Parkinson’s Center, Minneapolis, MN, USA
- Departments of Psychiatry, Pediatrics, & Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- George-Huntington-Institute & Department of Radiology, University of Muenster, Muenster, Germany
- Department for Neurodegeneration, Hertie Institute for Clinical, Brain Research, University of Tuebingen, Tuebingen, Germany
- Huntington’s Disease Association, England and Wales
- Centre for Rare Neurological Diseases (CMRN), Italian League for Research on Huntington (LIRH) Foundation, Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
- Neurozentrum Siloah and Department of Neurology, Swiss HD Center, University of Bern, Bern, Switzerland
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, UK
- Department of Neurosciences University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Spagnoli C, Fusco C, Pisani F. Pediatric-Onset Epilepsy and Developmental Epileptic Encephalopathies Followed by Early-Onset Parkinsonism. Int J Mol Sci 2023; 24:ijms24043796. [PMID: 36835207 PMCID: PMC9965035 DOI: 10.3390/ijms24043796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic early-onset Parkinsonism is unique due to frequent co-occurrence of hyperkinetic movement disorder(s) (MD), or additional neurological of systemic findings, including epilepsy in up to 10-15% of cases. Based on both the classification of Parkinsonism in children proposed by Leuzzi and coworkers and the 2017 ILAE epilepsies classification, we performed a literature review in PubMed. A few discrete presentations can be identified: Parkinsonism as a late manifestation of complex neurodevelopmental disorders, characterized by developmental and epileptic encephalopathies (DE-EE), with multiple, refractory seizure types and severely abnormal EEG characteristics, with or without preceding hyperkinetic MD; Parkinsonism in the context of syndromic conditions with unspecific reduced seizure threshold in infancy and childhood; neurodegenerative conditions with brain iron accumulation, in which childhood DE-EE is followed by neurodegeneration; and finally, monogenic juvenile Parkinsonism, in which a subset of patients with intellectual disability or developmental delay (ID/DD) develop hypokinetic MD between 10 and 30 years of age, following unspecific, usually well-controlled, childhood epilepsy. This emerging group of genetic conditions leading to epilepsy or DE-EE in childhood followed by juvenile Parkinsonism highlights the need for careful long-term follow-up, especially in the context of ID/DD, in order to readily identify individuals at increased risk of later Parkinsonism.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-0522-296033
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Pisani
- Human Neurosciences Department, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Vishnevetsky A, Cornejo‐Olivas M, Sarapura‐Castro E, Inca‐Martinez M, Rabinowitz D, Milla‐Neyra K, Mazzetti P, Bird T. Juvenile-Onset Huntington's Disease in Peru: A Case Series of 32 Patients. Mov Disord Clin Pract 2023; 10:238-247. [PMID: 36825038 PMCID: PMC9941913 DOI: 10.1002/mdc3.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 10/06/2022] [Accepted: 11/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background Juvenile-onset Huntington's Disease (JoHD) or Huntington's disease (HD) with age of onset ≤20 years, is a rare clinical entity that often differs phenotypically from adult HD and represents only 1-15% of total HD cases. Objective To characterize the genetic and clinical characteristics of 32 JoHD patients seen in a Peruvian Neurogenetics clinic from 2000-2018. Methods This study is a retrospective clinical and genetic review. The clinical database in Lima, Peru was searched for HD patients seen in clinic between 2000 and 2018. Inclusion criteria were: (1) genetically confirmed disease; and (2) HD age of onset ≤20 years, according to the documented medical history. Results Among 475 patients with genetically confirmed HD in the database, 32 patients (6.7%) had symptom onset at ≤20 years. Among JoHD patients with a known transmitting parent (30 of 32), paternal transmission accounted for 77% of cases. Anticipation was higher with paternal transmission compared to maternal transmission (27.5 ± 11.5 vs. 11.3 ± 7.1 years). Overall expanded CAG repeat length ranged from 44 to 110, with a mean length of 65.6 ± 15.4, and 14 (44%) cases had repeat length under 60. Of the 32 patients included in the study, 25 had detailed clinical symptomatology available, and many patients had unique clinical features such as prominent sleep disturbance (60% of patients), or parkinsonism (73%). Conclusions This large case series of JoHD patients characterizes the Peruvian JoHD population, reports on unique familial relationships in JoHD, and highlights the varied symptomatic presentation of this rare disease.
Collapse
Affiliation(s)
- Anastasia Vishnevetsky
- Neurogenetics Research Center, Instituto Nacional de Ciencias NeurológicasLimaPeru
- Northern Pacific Fogarty Global Health ScholarNIH Fogarty International CenterBethesdaUnited States
- Division of Neuroimmunology and Neuroinfectious DiseasesBostonMassachusettsUSA
| | - Mario Cornejo‐Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias NeurológicasLimaPeru
- School of MedicineUniversidad Nacional Mayor de San MarcosLimaPeru
- Universidad Científica del SurLimaPeru
| | - Elison Sarapura‐Castro
- Neurogenetics Research Center, Instituto Nacional de Ciencias NeurológicasLimaPeru
- Northern Pacific Fogarty Global Health ScholarNIH Fogarty International CenterBethesdaUnited States
| | - Miguel Inca‐Martinez
- Neurogenetics Research Center, Instituto Nacional de Ciencias NeurológicasLimaPeru
| | - Danielle Rabinowitz
- Harvard Medical SchoolBostonMassachusettsUSA
- Boston Children's HospitalBostonMassachusettsUSA
| | - Karina Milla‐Neyra
- Neurogenetics Research Center, Instituto Nacional de Ciencias NeurológicasLimaPeru
| | - Pilar Mazzetti
- Neurogenetics Research Center, Instituto Nacional de Ciencias NeurológicasLimaPeru
- Boston Children's HospitalBostonMassachusettsUSA
| | - Thomas Bird
- Departments of Neurology and MedicineUniversity of WashingtonSeattleWashingtonUSA
- Geriatrics ResearchVA Puget Sound Health Care SystemSeattleWashingtonUSA
| |
Collapse
|
4
|
Palaiogeorgou AM, Papakonstantinou E, Golfinopoulou R, Sigala M, Mitsis T, Papageorgiou L, Diakou I, Pierouli K, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Recent approaches on Huntington's disease (Review). Biomed Rep 2022; 18:5. [PMID: 36544856 PMCID: PMC9756286 DOI: 10.3892/br.2022.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by severe motor, cognitive and psychiatric symptoms. Patients of all ages can present with a dysfunction of the nervous system, which leads to the progressive loss of movement control and disabilities in speech, swallowing, communications, etc. The molecular basis of the disease is well-known, as HD is related to a mutated gene, a trinucleotide expansion, which encodes to the huntingtin protein. This protein is linked to neurogenesis and the loss of its function leads to neurodegenerative disorders. Although the genetic cause of the disorder has been known for decades, no effective treatment is yet available to prevent onset or to eliminate the progression of symptoms. Thus, the present review focused on the development of novel methods for the timely and accurate diagnosis of HD in an aim to aid the development of therapies which may reduce the severity of the symptoms and control their progression. The majority of the therapies include gene-silencing mechanisms of the mutated huntingtin gene aiming to suppress its expression, and the use of various substances as drugs with highly promising results. In the present review, the latest approaches on the diagnosis of HD are discussed along with the need for genetic counseling and an up-to-date presentation of the applied treatments.
Collapse
Affiliation(s)
- Anastasia Marina Palaiogeorgou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Rebecca Golfinopoulou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Markezina Sigala
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece,University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece,Correspondence to: Dr Dimitrios Vlachakis, Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
5
|
Bakels HS, Roos RA, van Roon‐Mom WM, de Bot ST. Juvenile-Onset Huntington Disease Pathophysiology and Neurodevelopment: A Review. Mov Disord 2022; 37:16-24. [PMID: 34636452 PMCID: PMC9291924 DOI: 10.1002/mds.28823] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022] Open
Abstract
Huntington disease is an autosomal dominant inherited brain disorder that typically becomes manifest in adulthood. Juvenile-onset Huntington disease refers to approximately 5% of patients with symptom onset before the age of 21 years. The causal factor is a pathologically expanded CAG repeat in the Huntingtin gene. Age at onset is inversely correlated with CAG repeat length. Juvenile-onset patients have distinct symptoms and signs with more severe pathology of involved brain structures in comparison with disease onset in adulthood. The aim of this review is to compare clinical and pathological features in juvenile- and adult-onset Huntington disease and to explore which processes potentially contribute to the observed differences. A specific focus is placed on molecular mechanisms of mutant huntingtin in early neurodevelopment and the interaction of a neurodegenerative disease and postnatal brain maturation. The importance of a better understanding of pathophysiological differences between juvenile- and adult-onset Huntington disease lies in development and implementation of new therapeutic strategies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hannah S. Bakels
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| | - Raymund A.C. Roos
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| | | | - Susanne T. de Bot
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
6
|
Cronin T, Rosser A, Massey T. Clinical Presentation and Features of Juvenile-Onset Huntington's Disease: A Systematic Review. J Huntingtons Dis 2020; 8:171-179. [PMID: 31045518 DOI: 10.3233/jhd-180339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Juvenile-onset Huntington's disease (JHD) is defined by onset at the age of 20 or younger and represents approximately 5% of all HD cases. Patients with JHD present with a broad range of symptoms and signs that only overlap partially with adult-onset HD. A greater awareness and understanding of the presentation of JHD would improve the diagnosis and treatment of this condition. OBJECTIVE To undertake a systematic review of the literature relating to the clinical features at first presentation of JHD. METHODS We searched MEDLINE and EMBASE for all studies describing presenting features of JHD patients, performed quality control, and collated and analysed the data. RESULTS We screened 2917 records for eligibility, and included 79 studies (n = 285 individuals) in the analysis. All were case reports and case series, synthesising data from 25 different countries. Thirty-four different clinical features at presentation were identified. Four groups of symptoms or signs were present in more than 15% of cases: behavioural disturbance, falls/gait disturbance, cognitive impairment and parkinsonian features. Where data were available, the median age of onset was 9 years, 52% were female, the mutant HTT allele was transmitted paternally in 80% of cases, and the median CAG repeat length was 64. CONCLUSIONS JHD can present with a wide variety of symptoms and signs, with non-motor characteristics being observed most frequently. Greater recognition of these presentations will facilitate early diagnosis and management. Tailored rating scales to score motor, non-motor, and functional impairments specifically in JHD are required to standardise research studies, and are under development.
Collapse
Affiliation(s)
- Thomas Cronin
- Institute of Neuroscience, Newcastle University, Newcastle, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Brain Research and Intracranial Neurotherapeutics (BRAIN) unit
| | - Thomas Massey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Brain Research and Intracranial Neurotherapeutics (BRAIN) unit
| |
Collapse
|
7
|
Julayanont P, Heilman KM, McFarland NR. Early‐Motor Phenotype Relates to Neuropsychiatric and Cognitive Disorders in Huntington's Disease. Mov Disord 2020; 35:781-788. [DOI: 10.1002/mds.27980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 12/26/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Parunyou Julayanont
- Division of Behavioral and Cognitive Neurology, Department of NeurologyUniversity of Florida College of Medicine Gainesville Florida USA
| | - Kenneth M. Heilman
- Division of Behavioral and Cognitive Neurology, Department of NeurologyUniversity of Florida College of Medicine Gainesville Florida USA
- Malcom Randall Veterans Affairs Medical Center Gainesville Florida USA
| | - Nikolaus R. McFarland
- Fixel Institute for Neurological Diseases, Movement Disorders and Neurorestoration Program, Department of NeurologyUniversity of Florida College of Medicine Gainesville Florida USA
| |
Collapse
|
8
|
Tereshchenko A, Magnotta V, Epping E, Mathews K, Espe-Pfeifer P, Martin E, Dawson J, Duan W, Nopoulos P. Brain structure in juvenile-onset Huntington disease. Neurology 2019; 92:e1939-e1947. [PMID: 30971481 PMCID: PMC6511077 DOI: 10.1212/wnl.0000000000007355] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/27/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess brain morphometry in a sample of patients with juvenile-onset Huntington disease (JOHD) and several mouse models of Huntington disease (HD) that likely represent the human JOHD phenotype. METHODS Despite sharing the mutation in the Huntingtin gene, adult-onset HD characteristically presents as a hyperkinetic motor disorder, while JOHD typically presents as a hypokinetic motor disease. The University of Iowa Kids-JHD program enrolls individuals 5 to 25 years of age who have already received the clinical diagnosis. A total of 19 children with juvenile HD (JHD) (mean CAG = 72) were studied. Patients with JHD were compared to healthy controls (n = 234) using a cross-sectional study design. Volumetric data from structural MRI was compared between groups. In addition, we used the same procedure to evaluate brain morphology of R6/2, zQ175, HdhQ250 HD mice models. RESULTS Participants with JHD had substantially reduced intracranial volumes. After controlling for the small intracranial volume size, the volumes of subcortical regions (caudate, putamen, globus pallidus, and thalamus) and of cortical white matter were significantly decreased in patients with JHD. However, the cerebellum was proportionately enlarged in the JHD sample. The cerebral cortex was largely unaffected. Likewise, HD mice had a lower volume of striatum and a higher volume of cerebellum, mirroring the human MRI results. CONCLUSIONS The primary pathology of JOHD extends beyond changes in the striatal volume. Brain morphology in both mice and human patients with JHD shows proportional cerebellar enlargement. This pattern of brain changes may explain the unique picture of hypokinetic motor symptoms in JHD, which is not seen in the hyperkinetic chorea-like phenotype of adult-onset HD.
Collapse
Affiliation(s)
- Alexander Tereshchenko
- From the Departments of Psychiatry (A.T., E.E., V.M., P.E.-P., E.M.), Radiology (V.M.), Neurology (K.M., P.E.-P.), and Pediatrics (K.M.), University of Iowa Hospitals and Clinics, Iowa City; Department of Biostatistics (J.D.), University of Iowa College of Public Health, Iowa City; and Department of Psychiatry and Behavioral Sciences (W.D.), Johns Hopkins University, Baltimore, MD
| | - Vincent Magnotta
- From the Departments of Psychiatry (A.T., E.E., V.M., P.E.-P., E.M.), Radiology (V.M.), Neurology (K.M., P.E.-P.), and Pediatrics (K.M.), University of Iowa Hospitals and Clinics, Iowa City; Department of Biostatistics (J.D.), University of Iowa College of Public Health, Iowa City; and Department of Psychiatry and Behavioral Sciences (W.D.), Johns Hopkins University, Baltimore, MD
| | - Eric Epping
- From the Departments of Psychiatry (A.T., E.E., V.M., P.E.-P., E.M.), Radiology (V.M.), Neurology (K.M., P.E.-P.), and Pediatrics (K.M.), University of Iowa Hospitals and Clinics, Iowa City; Department of Biostatistics (J.D.), University of Iowa College of Public Health, Iowa City; and Department of Psychiatry and Behavioral Sciences (W.D.), Johns Hopkins University, Baltimore, MD
| | - Katherine Mathews
- From the Departments of Psychiatry (A.T., E.E., V.M., P.E.-P., E.M.), Radiology (V.M.), Neurology (K.M., P.E.-P.), and Pediatrics (K.M.), University of Iowa Hospitals and Clinics, Iowa City; Department of Biostatistics (J.D.), University of Iowa College of Public Health, Iowa City; and Department of Psychiatry and Behavioral Sciences (W.D.), Johns Hopkins University, Baltimore, MD
| | - Patricia Espe-Pfeifer
- From the Departments of Psychiatry (A.T., E.E., V.M., P.E.-P., E.M.), Radiology (V.M.), Neurology (K.M., P.E.-P.), and Pediatrics (K.M.), University of Iowa Hospitals and Clinics, Iowa City; Department of Biostatistics (J.D.), University of Iowa College of Public Health, Iowa City; and Department of Psychiatry and Behavioral Sciences (W.D.), Johns Hopkins University, Baltimore, MD
| | - Erin Martin
- From the Departments of Psychiatry (A.T., E.E., V.M., P.E.-P., E.M.), Radiology (V.M.), Neurology (K.M., P.E.-P.), and Pediatrics (K.M.), University of Iowa Hospitals and Clinics, Iowa City; Department of Biostatistics (J.D.), University of Iowa College of Public Health, Iowa City; and Department of Psychiatry and Behavioral Sciences (W.D.), Johns Hopkins University, Baltimore, MD
| | - Jeffrey Dawson
- From the Departments of Psychiatry (A.T., E.E., V.M., P.E.-P., E.M.), Radiology (V.M.), Neurology (K.M., P.E.-P.), and Pediatrics (K.M.), University of Iowa Hospitals and Clinics, Iowa City; Department of Biostatistics (J.D.), University of Iowa College of Public Health, Iowa City; and Department of Psychiatry and Behavioral Sciences (W.D.), Johns Hopkins University, Baltimore, MD
| | - Wenzhen Duan
- From the Departments of Psychiatry (A.T., E.E., V.M., P.E.-P., E.M.), Radiology (V.M.), Neurology (K.M., P.E.-P.), and Pediatrics (K.M.), University of Iowa Hospitals and Clinics, Iowa City; Department of Biostatistics (J.D.), University of Iowa College of Public Health, Iowa City; and Department of Psychiatry and Behavioral Sciences (W.D.), Johns Hopkins University, Baltimore, MD
| | - Peg Nopoulos
- From the Departments of Psychiatry (A.T., E.E., V.M., P.E.-P., E.M.), Radiology (V.M.), Neurology (K.M., P.E.-P.), and Pediatrics (K.M.), University of Iowa Hospitals and Clinics, Iowa City; Department of Biostatistics (J.D.), University of Iowa College of Public Health, Iowa City; and Department of Psychiatry and Behavioral Sciences (W.D.), Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
9
|
Holley SM, Kamdjou T, Reidling JC, Fury B, Coleal-Bergum D, Bauer G, Thompson LM, Levine MS, Cepeda C. Therapeutic effects of stem cells in rodent models of Huntington's disease: Review and electrophysiological findings. CNS Neurosci Ther 2018; 24:329-342. [PMID: 29512295 DOI: 10.1111/cns.12839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
The principal symptoms of Huntington's disease (HD), chorea, cognitive deficits, and psychiatric symptoms are associated with the massive loss of striatal and cortical projection neurons. As current drug therapies only partially alleviate symptoms, finding alternative treatments has become peremptory. Cell replacement using stem cells is a rapidly expanding field that offers such an alternative. In this review, we examine recent studies that use mesenchymal cells, as well as pluripotent, cell-derived products in animal models of HD. Additionally, we provide further electrophysiological characterization of a human neural stem cell line, ESI-017, which has already demonstrated disease-modifying properties in two mouse models of HD. Overall, the field of regenerative medicine represents a viable and promising avenue for the treatment of neurodegenerative disorders including HD.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA
| | - Brian Fury
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Dane Coleal-Bergum
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Gerhard Bauer
- Institute for Regenerative Cures, University of California, Davis, Sacramento, CA, USA
| | - Leslie M Thompson
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology & Behavior and Department of Psychiatry & Human Behavior, University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Risk factors for the onset and progression of Huntington disease. Neurotoxicology 2017; 61:79-99. [PMID: 28111121 DOI: 10.1016/j.neuro.2017.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 01/10/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by chorea, behavioural and psychiatric manifestations, and dementia, caused by a CAG triplet repeat expansion in the huntingtin gene. Systematic review of the literature was conducted to determine the risk factors for the onset and progression of HD. Multiple databases were searched, using terms specific to Huntington disease and to studies of aetiology, risk, prevention and genetics, limited to studies on human subjects published in English or French between 1950 and 2010. Two reviewers independently screened the abstracts and identified potentially relevant articles for full-text review using predetermined inclusion criteria. Three major categories of risk factors for onset of HD were identified: CAG repeat length in the huntingtin gene, CAG instability, and genetic modifiers. Of these, CAG repeat length in the huntingtin gene is the most important risk factor. For the progression of HD: genetic, demographic, past medical/clinical and environmental risk factors have been studied. Of these factors, genetic factors appear to play the most important role in the progression of HD. Among the potential risk factors, CAG repeat length in the mutant allele was found to be a relatively consistent and significant risk factor for the progression of HD, especially in motor, cognitive, and other neurological symptom deterioration. In addition, there were many consistent results in the literature indicating that a higher number of CAG repeats was associated with shorter survival, faster institutionalization, and earlier percutaneous endoscopic gastrostomy.
Collapse
|
11
|
Abstract
Huntington disease (HD) is an autosomal dominant, neurodegenerative disorder with a primary etiology of striatal pathology. The Huntingtin gene (HTT) has a unique feature of a DNA trinucleotide (triplet) repeat, with repeat length ranging from 10 to 35 in the normal population. Repeat lengths between 36 and 39 cause HD at reduced penetrance (some will get the disease, others won't) and when expanded to 40 or more repeats (mHTT), causes HD at full penetrance (every person with this length or beyond will definitely develop the disease). The symptoms of HD may be motor, cognitive, and psychiatric, and are consistent with the pathophysiology of frontostriatal circuitry malfunction. Expressed ubiquitously and throughout the entire life cycle (development through adulthood), mHTT causes initial dysfunction and eventual death of a specific cell population within the striatum. Although all areas of the brain are eventually affected, the primary pathology of the disease is regionally specific. As a single-gene disorder, HD has the distinction of having the potential of treatment that is aimed directly at the known pathogenic mechanism by gene silencing, providing hope for neuroprotection and ultimately, prevention.
Collapse
Affiliation(s)
- Peggy C Nopoulos
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Gatto EM, Parisi V, Etcheverry JL, Sanguinetti A, Cordi L, Binelli A, Persi G, Squitieri F. Juvenile Huntington disease in Argentina. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 74:50-4. [PMID: 26602194 DOI: 10.1590/0004-282x20150192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/18/2015] [Indexed: 11/21/2022]
Abstract
We analyzed demographic, clinical and genetic characteristics of juvenile Huntington disease (JHD) and it frequency in an Argentinean cohort. Age at onset was defined as the age at which behavioral, cognitive, psychiatric or motor abnormalities suggestive of JHD were first reported. Clinical and genetic data were similar to other international series, however, in this context we identified the highest JHD frequency reported so far (19.72%; 14/71). Age at onset of JHD is challenging and still under discussion. Our findings reinforce the hypothesis that clinical manifestations, other than the typical movement disorder, may anticipate age at onset of even many years. Analyses of JHD cohorts are required to explore it frequency in populations with different backgrounds to avoid an underestimation of this rare phenotype. Moreover, data from selected populations may open new pathways in therapeutic approaches and may explain new potential correlations between HD presentations and environmental or biological factors.
Collapse
Affiliation(s)
- Emilia Mabel Gatto
- Departamento de Movimientos Anormales, Instituto Neurociencias de Buenos Aires, Buenos Aires, Argentina
| | - Virginia Parisi
- Departamento de Neurología, Sanatorio de la Trinidad Mitre, Buenos Aires, Argentina
| | - José Luis Etcheverry
- Departamento de Movimientos Anormales, Instituto Neurociencias de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sanguinetti
- Departamento de Movimientos Anormales, Instituto Neurociencias de Buenos Aires, Buenos Aires, Argentina
| | - Lorena Cordi
- Departamento de Neuropediatría, Hospital Pedro de Elizalde, Buenos Aires, Argentina
| | - Adrian Binelli
- Departamento de Neuropediatría, Hospital Pedro de Elizalde, Buenos Aires, Argentina
| | - Gabriel Persi
- Departamento de Neurología, Sanatorio de la Trinidad Mitre, Buenos Aires, Argentina
| | - Ferdinando Squitieri
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo and Mendel Institute of Human Genetics, Rome, Italy
| |
Collapse
|
13
|
Schiefer J, Werner CJ, Reetz K. Clinical diagnosis and management in early Huntington's disease: a review. Degener Neurol Neuromuscul Dis 2015; 5:37-50. [PMID: 32669911 PMCID: PMC7337146 DOI: 10.2147/dnnd.s49135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022] Open
Abstract
This review focuses on clinical diagnosis and both pharmacological and nonpharmacological therapeutic options in early stages of the autosomal dominant inherited neurodegenerative Huntington's disease (HD). The available literature has been reviewed for motor, cognitive, and psychiatric alterations, which are the three major symptom domains of this devastating progressive disease. From a clinical point of view, one has to be aware that the HD phenotype can vary highly across individuals and during the course of the disease. Also, symptoms in juvenile HD can differ substantially from those with adult-onset of HD. Although there is no cure of HD and management is limited, motor and psychiatric symptoms often respond to pharmacotherapy, and nonpharmacological approaches as well as supportive care are essential. International treatment recommendations based on study results, critical statements, and expert opinions have been included. This review is restricted to symptomatic and supportive approaches since all attempts to establish a cure for the disease or modifying therapies have failed so far.
Collapse
Affiliation(s)
| | | | - Kathrin Reetz
- Euregional Huntington Center
- Jülich Aachen Research Alliance (JARA) – Translational Brain Medicine, Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet 2014; 5:279. [PMID: 25250042 PMCID: PMC4155875 DOI: 10.3389/fgene.2014.00279] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022] Open
Abstract
Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
Collapse
Affiliation(s)
- Adanna G Alexander
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| | - Vanessa Marfil
- Department of Biology, City College of New York New York, NY, USA
| | - Chris Li
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| |
Collapse
|
15
|
Howland DS, Munoz-Sanjuan I. Mind the gap: models in multiple species needed for therapeutic development in Huntington's disease. Mov Disord 2014; 29:1397-403. [PMID: 25155258 DOI: 10.1002/mds.26008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/08/2022] Open
Abstract
Unraveling the pathophysiology and testing candidate therapeutics in neurodegenerative disorders is, necessarily, highly dependent on model systems. Because Huntington's disease (HD) is caused by a single (expanded CAG tract) mutation in the huntingtin (HTT) gene, a richness of model systems, particularly mice, have been engineered to both dissect disease mechanisms and test potential therapeutics. Even so, as with other neurodegenerative diseases, very little success has been achieved in translating HD mouse model drug testing results to the clinic. Because of the considerable costs-human, opportunity, and financial-there is a pressing need to improve the use of existing HD models and also to develop models in higher species beyond rodent, such as sheep, minipig, and nonhuman primate, to bridge the translational gap from preclinical to clinical testing of candidate therapeutics.
Collapse
|
16
|
Abstract
INTRODUCTION Tremor is the most prevalent movement disorder, defined as rhythmic oscillations of a body part, caused by alternating or synchronic contractions of agonistic or antagonistic muscles. The aim of the study was to assess prevalence and to characterize parameters of tremor accompanying de-generative ataxias, Huntington disease (HD) and tic disorders in comparison with a control group. MATERIAL AND METHODS Forty-three patients with degenerative ataxias, 28 with HD and 26 with tic disorders together with 51 healthy controls were included in the study. For each participant, clinical and instrumental assessment (accelerometer, electromyography [EMG], graphic tablet) of hand tremor was performed. Frequency and severity of tremor were assessed in three positions: at rest (rest tremor), with hands extended (postural tremor), during the 'finger-to-nose' test and during Archimedes spiral drawing (kinetic tremor). Based on the mass load test, the type of tremor was determined as essential tremor type or enhanced physiological tremor type. RESULTS The incidence of tremor in the accelerometry in patients with degenerative ataxia (50%) significantly differs from controls (10%) (p = 0.001). The dominant tremor was postural, low-intense, with 7-Hz frequency, essential tremor (23%) or other tremor type (23%), while enhanced physiological tremor was the least frequent (2%). Tremor in patients with HD and tic disorders was found in 10% and 20% of patients, respectively, similarly to the control group. Tremor was mild, postural and of essential tremor type, less frequently of enhanced physiological tremor type. No correlation between severity of tremor and severity of disease was found. CONCLUSIONS The prevalence of tremor is considerably higher among patients with degenerative ataxias compared with HD, tic disorder and the control group. The most common type of tremor accompanying ataxias, HD and tic disorders is essential tremor type.
Collapse
|
17
|
Quarrell OWJ, Nance MA, Nopoulos P, Paulsen JS, Smith JA, Squitieri F. Managing juvenile Huntington's disease. Neurodegener Dis Manag 2013; 3:10.2217/nmt.13.18. [PMID: 24416077 PMCID: PMC3883192 DOI: 10.2217/nmt.13.18] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Huntington's disease (HD) is a well-recognized progressive neurodegenerative disorder that follows an autosomal dominant pattern of inheritance. Onset is insidious and can occur at almost any age, but most commonly the diagnosis is made between the ages of 35 and 55 years. Onset ≤20 years of age is classified as juvenile HD (JHD). This age-based definition is arbitrary but remains convenient. There is overlap between the clinical pathological and genetic features seen in JHD and more traditional adult-onset HD. Nonetheless, the frequent predominance of bradykinesia and dystonia early in the course of the illness, more frequent occurrence of epilepsy and myoclonus, more widespread pathology, and larger genetic lesion means that the distinction is still relevant. In addition, the relative rarity of JHD means that the clinician managing the patient is often doing so for the first time. Management is, at best, symptomatic and supportive with few or no evidence-based guidelines. In this article, the authors will review what is known of the condition and present some suggestions based on their experience.
Collapse
Affiliation(s)
| | - Martha A. Nance
- Struthers Parkinson’s Center, 6701 Country Club Drive, Golden Valley, MN 55427, USA
| | - Peggy Nopoulos
- University of Iowa Carver College of Medicine W278 GH 200, Hawkins Drive, Iowa City, IA 52242, USA
| | - Jane S. Paulsen
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242-1000, USA
| | - Jonathan A. Smith
- Department of Psychological Sciences, Birkbeck University of London, London, UK
| | - Ferdinando Squitieri
- Centre for Neurogenetics & Rare Diseases Neurological Research Institute Neuromed Via Atinense, 18-8607, Pozzilli (IS), Italy
| |
Collapse
|
18
|
Abstract
Huntington's disease (HD) is a dominantly inherited, fatal neurodegenerative disease. This incurable illness is characterized by a triad of a movement disorder, cognitive decline and psychiatric manifestations. Although most patients with HD have disease onset in the adult years, a small but significant proportion present with pediatric HD. It has been long known that patients with early-onset HD commonly exhibit prominent parkinsonism, known as the Westphal variant of HD. However, even among patients with pediatric HD there are differential clinical features depending on the age of onset, with younger patients frequently presenting diagnostic challenges. In his chapter, the characteristics of patients with childhood- and adolescence-onset HD are discussed, focusing on the differential clinical features that can aid the clinical reach a correct diagnosis, the indications and rational use of genetic testing and the currently available options for symptomatic treatment.
Collapse
Affiliation(s)
- Derek Letort
- Division of Movement Disorders, Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
19
|
Cloud LJ, Rosenblatt A, Margolis RL, Ross CA, Pillai JA, Corey-Bloom J, Tully HM, Bird T, Panegyres PK, Nichter CA, Higgins DS, Helmers SL, Factor SA, Jones R, Testa CM. Seizures in juvenile Huntington's disease: frequency and characterization in a multicenter cohort. Mov Disord 2012; 27:1797-800. [PMID: 23124580 DOI: 10.1002/mds.25237] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/20/2012] [Indexed: 11/08/2022] Open
Abstract
Little is known about the epilepsy that often occurs in the juvenile form of Huntington's disease (HD), but is absent from the adult-onset form. The primary aim of this study was to characterize the seizures in juvenile HD (JHD) subjects with regard to frequency, semiology, defining EEG characteristics, and response to antiepileptic agents. A multicenter, retrospective cohort was identified by database query and/or chart review. Data on age of HD onset, primary HD manifestations, number of CAG repeats, the presence or absence of seizures, seizure type(s), antiepileptic drugs used, subjects' response to antiepileptic drugs (AEDs), and EEG results were assembled, where available. Ninety subjects with genetically confirmed JHD were included. Seizures were present in 38% of subjects and were more likely to occur with younger ages of HD onset. Generalized tonic-clonic seizures were the most common seizure type, followed by tonic, myoclonic, and staring spells. Multiple seizure types commonly occurred within the same individual. Data on EEG findings and AED usage are presented. Seizure risk in JHD increases with younger age of HD onset. Our ability to draw firm conclusions about defining EEG characteristics and response to AEDs was limited by the retrospective nature of the study. Future prospective studies are required.
Collapse
Affiliation(s)
- Leslie J Cloud
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia 23298-0539, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rossi Sebastiano D, Soliveri P, Panzica F, Moroni I, Gellera C, Gilioli I, Nardocci N, Ciano C, Albanese A, Franceschetti S, Canafoglia L. Cortical myoclonus in childhood and juvenile onset Huntington's disease. Parkinsonism Relat Disord 2012; 18:794-7. [DOI: 10.1016/j.parkreldis.2012.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 11/30/2022]
|
21
|
Roze E, Cahill E, Martin E, Bonnet C, Vanhoutte P, Betuing S, Caboche J. Huntington's Disease and Striatal Signaling. Front Neuroanat 2011; 5:55. [PMID: 22007160 PMCID: PMC3188786 DOI: 10.3389/fnana.2011.00055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/04/2011] [Indexed: 12/05/2022] Open
Abstract
Huntington’s Disease (HD) is the most frequent neurodegenerative disease caused by an expansion of polyglutamines (CAG). The main clinical manifestations of HD are chorea, cognitive impairment, and psychiatric disorders. The transmission of HD is autosomal dominant with a complete penetrance. HD has a single genetic cause, a well-defined neuropathology, and informative pre-manifest genetic testing of the disease is available. Striatal atrophy begins as early as 15 years before disease onset and continues throughout the period of manifest illness. Therefore, patients could theoretically benefit from therapy at early stages of the disease. One important characteristic of HD is the striatal vulnerability to neurodegeneration, despite similar expression of the protein in other brain areas. Aggregation of the mutated Huntingtin (HTT), impaired axonal transport, excitotoxicity, transcriptional dysregulation as well as mitochondrial dysfunction, and energy deficits, are all part of the cellular events that underlie neuronal dysfunction and striatal death. Among these non-exclusive mechanisms, an alteration of striatal signaling is thought to orchestrate the downstream events involved in the cascade of striatal dysfunction.
Collapse
Affiliation(s)
- Emmanuel Roze
- UMRS 952, INSERM, UMR 7224, CNRS Université Pierre et Marie Curie - Paris-6 Paris, France
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Biglan KM, Ross CA, Langbehn DR, Aylward EH, Stout JC, Queller S, Carlozzi NE, Duff K, Beglinger LJ, Paulsen JS. Motor abnormalities in premanifest persons with Huntington's disease: the PREDICT-HD study. Mov Disord 2009; 24:1763-72. [PMID: 19562761 DOI: 10.1002/mds.22601] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The PREDICT-HD study seeks to identify clinical and biological markers of Huntington's disease in premanifest individuals who have undergone predictive genetic testing. We compared baseline motor data between gene-expansion carriers (cases) and nongene-expansion carriers (controls) using t-tests and Chi-square. Cases were categorized as near, mid, or far from diagnosis using a CAG-based formula. Striatal volumes were calculated using volumetric magnetic resonance imaging measurements. Multiple linear regression associated total motor score, motor domains, and individual motor items with estimated diagnosis and striatal volumes. Elevated total motor scores at baseline were associated with higher genetic probability of disease diagnosis in the near future (partial R(2) 0.14, P < 0.0001) and smaller striatal volumes (partial R(2) 0.15, P < 0.0001). Nearly all motor domain scores showed greater abnormality with increasing proximity to diagnosis, although bradykinesia and chorea were most highly associated with diagnostic immediacy. Among individual motor items, worse scores on finger tapping, tandem gait, Luria, saccade initiation, and chorea show unique association with diagnosis probability. Even in this premanifest population, subtle motor abnormalities were associated with a higher probability of disease diagnosis and smaller striatal volumes. Longitudinal assessment will help inform whether motor items will be useful measures in preventive clinical trials.
Collapse
|
24
|
Abstract
Tremor in childhood is not commonly described in the literature; but it is also likely underappreciated. The etiology of childhood tremor encompasses a wide variety of pathologic processes. Tremor may occur in isolation, or in association with other neurologic findings or systemic disorders. This article aims to provide an overview of tremorogenic mechanisms with respect to neuroanatomy and neurophysiology, particularly as they relate to children. Classification of tremors, diagnostic entities in childhood, and treatment will also be discussed. With improved recognition and characterization of childhood tremors, we may gain a better understanding of the pathophysiology of the disease and determine more age-appropriate treatment strategies.
Collapse
Affiliation(s)
- Stephanie Keller
- Department of Pediatrics, Division of Child Neurology, University of Alabama at Birmingham, The Children's Hospital of Alabama, Birmingham, AL 35233, USA.
| | | |
Collapse
|
25
|
Phillips W, Shannon KM, Barker RA. The current clinical management of Huntington's disease. Mov Disord 2009; 23:1491-504. [PMID: 18581443 DOI: 10.1002/mds.21971] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Huntington's disease is a neurodegenerative condition, characterized by movement disorders, cognitive decline, and psychiatric disturbance. We review the pharmacological management of the various movement disorders associated with the disease, the cognitive decline and the commonly encountered behavioral disturbances. We discuss the nonclassical features of the disease, important in the management of these patients. Nonpharmacological support including genetic counseling and therapy and the importance of palliative care are also addressed. Finally, experimental approaches that may soon impact upon clinical practice are discussed.
Collapse
Affiliation(s)
- Wendy Phillips
- Cambridge Centre for Brain Repair, E.D. Adrian Building, Forvie Site, Cambridge, United Kingdom
| | | | | |
Collapse
|
26
|
Roze E, Betuing S, Deyts C, Vidailhet M, Caboche J. Physiopathologie de la maladie de Huntington : état des connaissances. Rev Neurol (Paris) 2008; 164:977-94. [DOI: 10.1016/j.neurol.2008.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/28/2008] [Accepted: 03/26/2008] [Indexed: 12/16/2022]
|
27
|
Anderson K, Weiner W. Chorea and action-induced myoclonus. Mov Disord 2008. [DOI: 10.3109/9780203008454-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Waugh JL, Miller VS, Chudnow RS, Dowling MM. Juvenile Huntington disease exacerbated by methylphenidate: case report. J Child Neurol 2008; 23:807-9. [PMID: 18658080 DOI: 10.1177/0883073808314152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The authors describe the case of an 8-year-old boy, otherwise healthy, who presented with symptoms consistent with attention-deficit hyperactivity disorder (ADHD) and was started on a trial of methylphenidate. Within 4 weeks, he experienced a rapid decline in fine motor skills, with dysarthria, intention tremor, motor impersistence, and diffusely increased tone. Symptoms persisted despite cessation of methylphenidate. At that time, a paternal history of Huntington disease was disclosed. Molecular analysis revealed an expansion in CAG repeats to 75 copies, within the range characteristic of juvenile Huntington disease. This report raises the possibility that use of dopaminergic agonists in patients with a family history of Huntington disease may lead to clinical exacerbation of motor symptoms and/or unwitting diagnosis in an unprepared family.
Collapse
Affiliation(s)
- Jeff L Waugh
- Department of Pediatrics, Children's Medical Center of Dallas, Texas, USA.
| | | | | | | |
Collapse
|
29
|
Disorders of Movement. PEDIATRIC EMERGENCY MEDICINE 2008. [PMCID: PMC7170199 DOI: 10.1016/b978-141600087-7.50049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
30
|
Abstract
Although available treatments for Huntington's disease (HD) are imperfect, thoughtful application can positively impact quality of life. Dopamine antagonists can provide control of the troublesome hyperkinetic movements. These agents can also diminish the frequency of hallucinations and delusions when symptoms of psychosis occur. Classical neuroleptics have the widest utilization, although atypical antipsychotics are being increasingly used. Suppression of choreiform movements has also been reported with amantadine and tetrabenazine, which is not currently approved in the United States but under investigation. Alteration in mood can be successfully managed with a variety of antidepressant medications. Superior tolerability and value in the management of a variety of behavioral disturbances have lead to extensive use of serotonin reuptake inhibitors. Modest disturbance of mood can sometimes be addressed with anticonvulsant medications. Considered a manifestation of advanced disease, dementia is less commonly addressed therapeutically. However, gathering experience suggests improved cognitive function can occur with cholinesterase inhibitor therapy. Frequently overlooked is the value of rehabilitation services in the management of diverse symptoms. Although the value of a dysphagia evaluation is apparent, the benefit to be derived from physical and occupational therapy involvement cannot be overstated. Current therapeutic trials will undoubtedly provide additional therapies to moderate symptoms, but once the mechanism(s) of selective striatal projection neuron degeneration are delineated, a revolution in the management of HD will occur.
Collapse
Affiliation(s)
- Donald S Higgins
- Parkinson's Disease and Movement Disorders Center, Albany Medical College, 215 Washington Avenue Extension, Albany, NY 12205, USA.
| |
Collapse
|
31
|
Gonzalez-Alegre P, Afifi AK. Clinical characteristics of childhood-onset (juvenile) Huntington disease: report of 12 patients and review of the literature. J Child Neurol 2006; 21:223-9. [PMID: 16901424 DOI: 10.2310/7010.2006.00055] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whereas adult-onset Huntington disease is a well-characterized clinical entity, childhood-onset cases have not received as much attention. In this report, the clinical, demographic, and genetic characteristics in 12 patients with childhood-onset Huntington disease are presented and compared with data in the literature. The patients were divided into two groups based on age at onset of symptoms (< 10 or > or = 10 years old). The majority of patients had onset of symptoms before 10 years of age and most at or below 5 years of age. The delay in diagnosis was longer in those with earlier onset of symptoms. Inheritance was paternal in all patients with onset beyond 10 years of age. We found a preponderance of male patients in the younger age at onset group and of female patients in the older age at onset group. The most frequent heralding symptom was cognitive decline in the group with earlier onset and oropharyngeal dysfunction in the later-onset group. Seizures occurred only in the younger age at onset group. Chorea was not a presenting sign but developed later in the course of the disease and, with dystonia, was more prevalent in the early age at onset group, whereas rigidity and bradykinesia were more prevalent in the older age at onset group. Patients in both groups developed gait, cognitive, and behavioral disorders at some point during the course of the disease. Furthermore, a slow and steady decline in IQ was observed on serial neuropsychologic testing in patients from both groups. Imaging studies were normal early and most commonly revealed neostriatal atrophy later in the course of the disease. In this report, we describe the characteristics of 12 patients with childhood-onset Huntington disease and review those previously reported, expanding our knowledge about the features of childhood-onset Huntington disease, underlining the differences with patients with adult-onset Huntington disease, and suggesting a differential phenotype within patients with childhood-onset Huntington disease depending on the age at onset.
Collapse
Affiliation(s)
- Pedro Gonzalez-Alegre
- Department of Neurology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
32
|
Saft C, Lauter T, Kraus PH, Przuntek H, Andrich JE. Dose-dependent improvement of myoclonic hyperkinesia due to Valproic acid in eight Huntington's Disease patients: a case series. BMC Neurol 2006; 6:11. [PMID: 16507108 PMCID: PMC1413552 DOI: 10.1186/1471-2377-6-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 02/28/2006] [Indexed: 11/26/2022] Open
Abstract
Background Chorea in Huntington's Disease (HD) is usually treated with antidopaminergic neuroleptics like haloperidol, olanzapine and tiaprid or dopamine depleting drugs like tetrabenazine. Some patients with hyperkinesia, however, react to treatment with antidopaminergic drugs by developing extrapyramidal side effects. In earlier studies valproic acid showed no beneficial effect on involuntary choreatic movements. Myoclonus is rare in HD and is often overseen or misdiagnosed as chorea. Methods In this report, we present eight patients whose main symptom is myoclonic hyperkinesia. All patients were treated with valproic acid and scored by using the Unified Huntington's Disease Rating Scale (UHDRS) motor score before and after treatment. In addition to this, two patients agreed to be videotaped. Results In seven patients myoclonus and, therefore the UHDRS motor score improved in a dose dependent manner. In three of these patients antidopaminergic medication could be reduced. Conclusion In the rare subgroup of HD patients suffering from myoclonic hyperkinesia, valproic acid is a possible alternative treatment.
Collapse
Affiliation(s)
- Carsten Saft
- Department of Neurology, Huntington-Center NRW, St. Josef Hospital, Bochum, Germany
| | - Thorsten Lauter
- Department of Neurology, Huntington-Center NRW, St. Josef Hospital, Bochum, Germany
| | - Peter H Kraus
- Department of Neurology, Huntington-Center NRW, St. Josef Hospital, Bochum, Germany
| | - Horst Przuntek
- Department of Neurology, Huntington-Center NRW, St. Josef Hospital, Bochum, Germany
| | - Juergen E Andrich
- Department of Neurology, Huntington-Center NRW, St. Josef Hospital, Bochum, Germany
| |
Collapse
|
33
|
Abstract
The presentation of juvenile Huntington's disease can cause diagnostic difficulties. The genetics and pathogenesis of the condition are discussed. The diagnosis will depend on the symptoms raising suspicions and the exclusion of other disorders, especially by genetic studies.
Collapse
|
34
|
Milunsky JM, Maher TA, Loose BA, Darras BT, Ito M. XL PCR for the detection of large trinucleotide expansions in juvenile Huntington's disease. Clin Genet 2003; 64:70-3. [PMID: 12791042 DOI: 10.1034/j.1399-0004.2003.00108.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Juvenile Huntington's disease (HD) becomes clinically manifest before 20 years of age. The diagnosis of HD is based on family history, characteristic clinical findings, and the detection of an expansion of a CAG polyglutamine tract in the Huntingtin gene. Juvenile HD is characterized by paternal anticipation and large CAG expansions that may be missed using routine molecular analysis. We have developed an easy, rapid, and reliable modified PCR method using XL (Extra Long) PCR that allowed us to diagnose one of the youngest children reported with juvenile HD. Without this innovation we would not have been able to demonstrate the large CAG expansion. This assay could become part of a standard protocol for HD testing in molecular diagnostic laboratories.
Collapse
Affiliation(s)
- J M Milunsky
- Center for Human Genetics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Huntington's disease is an autosomal dominant progressive neurodegenerative disorder characterized by involuntary movements, cognitive decline, and behavioral disorders leading to functional disability. In contrast to patients with adult onset, in which chorea is the major motor abnormality, children often present with spasticity, rigidity, and significant intellectual decline associated with a more rapidly progressive course. An unusual early-onset Huntington's disease case of an 11-year-old boy with severe hypokinetic/rigid syndrome appearing at the age of 2.5 years is presented. Clinical diagnosis was confirmed by polymerase chain reaction study of the expanded IT-15 allele with a compatible size of 102 cytosine-adenosine-guanosine repeats L-Dopa mildly ameliorated rigidity, bradykinesia, and dystonia. We conclude that Huntington's disease should be included in the differential diagnoses of regressive syndromes of early childhood.
Collapse
|
36
|
Abstract
Juvenile parkinsonism (JP) is a clinically and etiologically heterogeneous entity. Unlike in the adult form, secondary causes, hereditary and metabolic conditions, are the predominant causes of JP. Idiopathic Parkinson's disease is very rare in this age group. In most cases of JP, parkinsonism is accompanied by other neurologic features, such as dystonia, cognitive impairment, seizures, oculomotor and visual dysfunction, and ataxia. Systemic findings, such as liver dysfunction or hepatosplenomegaly, may be present depending on the cause. This review article describes the clinical characteristics, classification, genetic basis, pathophysiology, biochemistry, pathology, and treatment of JP.
Collapse
Affiliation(s)
- Ergun Y Uc
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
37
|
Abstract
Chorea and athetosis are rare presenting symptoms in childhood. Chorea can be a presenting symptom in a number of hereditary diseases, including neurodegenerative diseases, paroxysmal diseases, and metabolic diseases. In these situations, family history, associated symptoms, and other physical findings will often enable a correct diagnosis. Benign childhood chorea is probably a genetically heterogeneous group of disorders, generally without other symptoms. Clinical aspects of these disorders are reviewed here.
Collapse
MESH Headings
- Athetosis/diagnosis
- Athetosis/genetics
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/pathology
- Child
- Chorea/diagnosis
- Chorea/genetics
- Chorea/pathology
- Ethics, Clinical
- Heredodegenerative Disorders, Nervous System/diagnosis
- Heredodegenerative Disorders, Nervous System/genetics
- Heredodegenerative Disorders, Nervous System/pathology
- Humans
- Prognosis
Collapse
|
38
|
Abstract
Chorea (Greek for "dance") refers to irregular, rapid, flowing, non-stereotyped and random involuntary movements that often possess a writhing quality, referred to as choreoathetosis. When mild, it may be difficult to differentiate from restlessness. The movements can be strikingly asymmetric, as in hemichorea, or generalized. When chorea is proximal and of large amplitude, it is called ballism. Chorea is worsened by stress and anxiety and subsides during sleep. Movements can interfere with the completion of many daily activities, making fastening a button a substantial effort. Chorea often is incorporated into a purposeful activity in an attempt to disguise it. Motor impersistence is a common associated feature, demonstrated by varying intensity of grip strength (milkmaid's grasp) or by an inability to sustain eye closure or tongue protrusion.
Collapse
Affiliation(s)
- D S Higgins
- Parkinson Disease and Movement Disorder Center, Department of Neurology, Albany Medical College, Albany, New York 12208, USA.
| |
Collapse
|
39
|
Affiliation(s)
- S Frucht
- Columbia-Presbyterian Medical Center, New York, NY, USA
| | | | | | | |
Collapse
|