1
|
Jeseta M, Kalina J, Franzova K, Fialkova S, Hosek J, Mekinova L, Crha I, Kempisty B, Ventruba P, Navratilova J. Cross sectional study on exposure to BPA and its analogues and semen parameters in Czech men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123445. [PMID: 38325504 DOI: 10.1016/j.envpol.2024.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Exposure to bisphenols has been found to have adverse effects on male reproductive function in animals. Human exposure to bisphenols is widespread. Bisphenol A (BPA) and its analogues, including bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) are utilized in various consumer products such as food contact materials and dental resins. The effects of these compounds on male fertility and spermatogenesis are unclear and findings from human studies are inconsistent. In this cross-sectional study, we evaluated the influence of BPA, BPS, BPF, BPAF (BPs) measured in semen on number of spermatozoa, total motility, progressive motility, morphology, and DNA fragmentation. We also examined the association of bisphenols (BPs) exposure with patients' occupation. A total of 358 patients aged 17-62 years with BMI 18-42 were included in the study from 2019 to 2021. BPs were extracted using solvent extraction followed by preconcentration step and determined by high-performance liquid chromatography and tandem mass spectrometry (LC/MSMS). Bisphenols were detected in 343 from 349 analysed samples (98.3% of all the samples). In 6 samples, the concentration of all BPs was under the limit of detection and in 20 samples under the limit of quantification. We did not find a statistically significant relationship between occupation and BPs. However, we observed significant correlations between the concentration of BPA and a lower motility and normal morphology. For BPS, a significant correlation with a lower ejaculate volume and a lower total sperm count was found. BPF and BPAF were detected only in 14.3% and 23.9% of samples, respectively. For BPF and BPAF, no significant correlations with spermiogram parameters were observed. Our results show that BPs are widespread in the male population (more than 90% of analysed samples), independently of an occupation and in case of BPA and BPS having a negative impact on spermiogram parameters.
Collapse
Affiliation(s)
- Michal Jeseta
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Czech Republic.
| | - Jiri Kalina
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Franzova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sandra Fialkova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hosek
- Veterinary Research Institute, Hudcova 70, Brno, Czech Republic; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Lenka Mekinova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Crha
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Wroclaw Medical University, Poland; Physiology Graduate Faculty, North Carolina State University, Raleigh NC, USA
| | - Pavel Ventruba
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Navratilova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Maghraoui S, Florea A, Ayadi A, Matei H, Tekaya L. Changes in Organ Weight, Sperm Quality and Testosterone Levels After Aluminum (Al) and Indium (In) Administration to Wistar Rats. Biol Trace Elem Res 2023; 201:766-775. [PMID: 35262856 DOI: 10.1007/s12011-022-03180-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Aluminum and indium are widely used in industrial manufacturing, in pharmaceutical products, in medical treatments, and in food packaging, so they could reach organisms by different way. In order to clarify whether these elements are dangerous, we already demonstrated the ultrastructural modifications observed in the testicles, the epididymides, and the seminal vesicles of rat. Their pro-oxidative effect was also confirmed concomitantly to a decrease in anti-oxidant defenses in the blood, the testicles, and the liver. Thus, it seemed very logic to evaluate damages in the reproductive organs, especially on the exocrine and endocrine functions of the testicles. METHODS Aluminum and indium were intraperitoneally administered to male Wistar rats. Sperm solution was obtained from cauda epididymides. Motility, viability, density, and malformation of spermatozoa solution were assessed. Serum total unconjugated testosterone concentrations were measured using RIA technique. RESULTS Our results showed a decrease in weight of the testicles, epididymides, and seminal vesicles of indium-treated rats and an increase in the weight of their kidneys. A decrease in motility, viability, and density of epididymides stored sperm as well as generation of many spermatozoa malformations was also observed especially in indium-treated rats. Testosterone levels were increased in indium but were enhanced in aluminum group. This confirmed our previous studies showing that aluminum and indium are toxic for the testicular tissues. This could be explained by the generation of reactive oxygen species (ROS) affecting strongly the exocrine and the endocrine functions of the testicles. CONCLUSION Aluminum and indium are disturbing elements for the exocrine and endocrine functions of rat testicles.
Collapse
Affiliation(s)
- Samira Maghraoui
- Laboratory of Physiology, Faculty of Medicine of Tunis (University of Tunis El Manar), 15, Djebel Lakhdar Street, La Rabta, 1007, Tunis, Tunisia.
| | - Adrian Florea
- Department of Cell and Molecular Biology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 L. Pasteur St, 400349, Cluj-Napoca, Romania
| | - Ahlem Ayadi
- Research Unit: Valorization of Active Molecules, Higher Institute of Applied Biology Medenine (University of Gabes), El Jorf Road - Km 22.5-4119, Medenine, Tunisia
| | - Horea Matei
- Department of Cell and Molecular Biology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 L. Pasteur St, 400349, Cluj-Napoca, Romania
- Laboratory of Complementary Investigations, Institute of Legal Medicine, 3-5 Clinicilor St, 400006, Cluj-Napoca, Romania
| | - Leila Tekaya
- Laboratory of Physiology, Faculty of Medicine of Tunis (University of Tunis El Manar), 15, Djebel Lakhdar Street, La Rabta, 1007, Tunis, Tunisia
| |
Collapse
|
3
|
Rato L, Sousa ACA. The Impact of Endocrine-Disrupting Chemicals in Male Fertility: Focus on the Action of Obesogens. J Xenobiot 2021; 11:163-196. [PMID: 34940512 PMCID: PMC8709303 DOI: 10.3390/jox11040012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
The current scenario of male infertility is not yet fully elucidated; however, there is increasing evidence that it is associated with the widespread exposure to endocrine-disrupting chemicals (EDCs), and in particular to obesogens. These compounds interfere with hormones involved in the regulation of metabolism and are associated with weight gain, being also able to change the functioning of the male reproductive axis and, consequently, the testicular physiology and metabolism that are pivotal for spermatogenesis. The disruption of these tightly regulated metabolic pathways leads to adverse reproductive outcomes. The permanent exposure to obesogens has raised serious health concerns. Evidence suggests that obesogens are one of the leading causes of the marked decline of male fertility and key players in shaping the future health outcomes not only for those who are directly exposed but also for upcoming generations. In addition to the changes that lead to inefficient functioning of the male gametes, obesogens induce alterations that are “imprinted” on the genes of the male gametes, establishing a link between generations and contributing to the transmission of defects. Unveiling the molecular mechanisms by which obesogens induce toxicity that may end-up in epigenetic modifications is imperative. This review describes and discusses the suggested molecular targets and potential mechanisms for obesogenic–disrupting chemicals and the subsequent effects on male reproductive health.
Collapse
Affiliation(s)
- Luís Rato
- Health School of the Polytechnic Institute of Guarda, 6300-035 Guarda, Portugal
- Correspondence: (L.R.); (A.C.A.S.)
| | - Ana C. A. Sousa
- Department of Biology, School of Science and Technology, University of Évora, 7006-554 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-671 Évora, Portugal
- Correspondence: (L.R.); (A.C.A.S.)
| |
Collapse
|
4
|
Souza TL, Batschauer AR, Brito PM, Leão-Buchir J, Spercoski KM, Neto FF, Martino-Andrade AJ, Ortolani-Machado CF. Evaluation of Mn exposure in the male reproductive system and its relationship with reproductive dysfunction in mice. Toxicology 2020; 441:152504. [DOI: 10.1016/j.tox.2020.152504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
|
5
|
Maske P, Dighe V, Mote C, Vanage G. n-Butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:112957. [PMID: 31672375 DOI: 10.1016/j.envpol.2019.112957] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Parabens are class of preservatives used in vast majority of commercial products, and a potential Endocrine Disrupting Chemical (EDC). The present study was undertaken to delineate the effects of n-butylparaben on F1 male progeny exposed maternally through gestation and lactation via subcutaneous route. The F0 dams were given subcutaneous injections of n-butylparaben from gestation day (GD) 6 to postnatal day (PND) 21 with doses of 10, 100, 1000 mg/kg Bw/day in corn oil. The F1 male rats were monitored for pubertal development and sexual maturation; these were sacrificed on PND 30, 45 and 75. On PND 75, these F1 male rats were subjected for fertility assessment with unexposed female rats. A delayed testicular descent at 100 and 1000 mg/kg Bw dose and delayed preputial separation at 10 mg/kg Bw dose was observed in exposed F1 male rats. Decreased sperm count, motility and Daily Sperm Production was observed at 100 mg/kg Bw dose at PND 75. Interestingly, the sperm transit time in the epididymis was accelerated at this dose. Significant perturbed testicular expression of steroid receptors (ERα and β, AR), INSL3 and StAR genes with increased T and LH levels indicates direct effect on spermatogenesis and steroidogenesis. These F1 generation adult rats were sub-fertile with increased (%) pre- and post-implantation loss at 100 and 1000 mg/kg Bw/day dose. This is the first report on n-butylparaben highlighting the involvement of testicular leydig cells with accelerated sperm transit time leading to reduced fertility in the maternally exposed F1 male rats through estrogenic/anti-androgenic action.
Collapse
Affiliation(s)
- Priyanka Maske
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra, India
| | - Chandrashekhar Mote
- Krantisinh Nana Patil College of Veterinary Science, Shirval, Maharashtra, India
| | - Geeta Vanage
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra, India.
| |
Collapse
|
6
|
Reproductive effects of the psychoactive beverage ayahuasca in male Wistar rats after chronic exposure. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Borges CDS, Dias AFM, Silva PV, Rosa JL, Guerra MT, Silva RF, Kiguti LRA, Pupo AS, Kempinas WDG. Long-term adverse effects on reproductive function in male rats exposed prenatally to the glucocorticoid betamethasone. Toxicology 2017; 376:15-22. [DOI: 10.1016/j.tox.2016.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/06/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023]
|
8
|
Souza ACF, Marchesi SC, Ferraz RP, Lima GDDA, de Oliveira JA, Machado-Neves M. Effects of sodium arsenate and arsenite on male reproductive functions in Wistar rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:274-286. [PMID: 27029432 DOI: 10.1080/15287394.2016.1150926] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arsenic (As), in the form of trivalent arsenite or pentavalent arsenate, is a ubiquitous toxic compound naturally occurring in the environment. This study aimed to evaluate the impact of two different forms of inorganic As on reproductive parameters following oral exposure. Adult Wistar male rats were exposed to sodium arsenite or arsenate at concentrations of 0.01 mg/L or 10 mg/L for 56 d in drinking water. Sodium arsenite at both concentrations and sodium arsenate at 10 mg/L produced reduction in daily sperm production, in number of spermatids in the testis, and in sperm in the epididymal caput/corpus regions. Changes in epididymal morphometry were variable and region specific. Total and progressive sperm motility and sperm morphology did not differ markedly between controls and animals exposed to As. The body and reproductive organs weights, as well as testosterone concentration, remained unchanged among all groups. In conclusion, As exposure in drinking water over 56 d produced damage in male reproductive functions in adult rats, suggesting that fertility problems might occur. Therefore, additional studies need to be undertaken to investigate potential mechanisms underlying sodium arsenite- and arsenate-induced disturbances in fertility and reproductive performance.
Collapse
Affiliation(s)
| | - Sarah Cozzer Marchesi
- a Department of General Biology , Federal University of Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Rafael Penha Ferraz
- a Department of General Biology , Federal University of Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | | | - Juraci Alves de Oliveira
- a Department of General Biology , Federal University of Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Mariana Machado-Neves
- a Department of General Biology , Federal University of Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| |
Collapse
|
9
|
De Grava Kempinas W, Klinefelter GR. Interpreting histopathology in the epididymis. SPERMATOGENESIS 2015; 4:e979114. [PMID: 26413396 DOI: 10.4161/21565562.2014.979114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022]
Abstract
While most of this Special Issue is devoted to the testis (which is where most drug and chemically induced toxicity of the male reproductive tract is identified), being able to recognize and understand the potential effects of toxicants on the epididymis is immensely important and an area that is often overlooked. The epididymis is the organ where the post-testicular sperm differentiation occurs, through a complex and still not completely understood sperm maturation process, allowing them to fertilize the oocyte. Also in the epididymis, sperm are stored until ejaculation, while being protected from immunogenic reaction by a blood-epididymis barrier. From a toxicologic perspective the epididymis is inherently complicated as its structure and function can be altered both indirectly and directly. In this review we will discuss the factors that must be considered when attempting to distinguish between indirect and direct epididymal toxicity and highlight what is currently known about mechanisms of epididymal toxicants, using the rat as a reference model. We identify 2 distinguishable signature lesions - one representing androgen deprivation (secondary to Leydig cell toxicity in the testis) and another representing a direct acting toxicant. Other commonly observed alterations will also be shown and discussed. Finally, we point out that many of the key functions of the epididymis can be altered in the absence of a detectable change in tissue structure. Collectively, we hope this will provide pathologists with increased confidence in identification of epididymal toxicity and enable more informed guidance as mechanism of action is considered.
Collapse
Affiliation(s)
- Wilma De Grava Kempinas
- Department of Morphology; Institute of Biosciences; UNESP Univ Estadual Paulista ; Botucatu, Brazil
| | - Gary Robert Klinefelter
- National Health and Environmental Research Laboratory; Reproductive Toxicology Division; US Environmental Protection Agency ; Research Triangle Park, NC USA
| |
Collapse
|
10
|
Sanabria M, Pessin A, Zanutto MR, Perobelli JE, Guerra MT, Banzato TP, Borges CDS, Kempinas WDG. Absence of effects on the rat sperm quality after subacute exposure to low doses of fungicide prochloraz. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:481-491. [PMID: 25849765 DOI: 10.1080/15287394.2015.1010463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Prochloraz (PCZ) is a fungicide and androgen-receptor antagonist used worldwide in horticulture and agriculture. Pre- and perinatal exposure to this pesticide during sexual differentiation is deleterious for male offspring. Since data on the effects of PCZ on epididymal functions are scarce, and because sperm maturation occurs in this organ, the present investigation aimed to determine whether low PCZ doses administered to rats during the phase of sperm transit through the epididymis might affect the morphophysiology of this organ and sperm quality. Adult male Wistar rats were assigned to 4 different groups: 0 (control, vehicle) or 10, 15, or 30 mg/kg bw/d PCZ diluted in corn oil administered orally for 4 consecutive days. Morphofunctional parameters of the male reproductive tract, hormone concentrations, sperm evaluations, and fertility and histopathologic analysis of testis and epididymis were assessed. There were no statistically significant differences between treated and control groups in relation to all evaluated parameters. Data demonstrated show that PCZ exposure for a brief 4-d exposure and low doses did not produce reproductive toxicity or compromise sperm quality in adult rats.
Collapse
Affiliation(s)
- Marciana Sanabria
- a Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology , Institute of Biosciences, UNESP-Universidade Estadual Paulista , Botucatu , São Paulo , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gorowska E, Zarzycka M, Chojnacka K, Bilinska B, Hejmej A. Postnatal exposure to flutamide affects CDH1 and CTNNB1 gene expression in adult pig epididymis and prostate and alters metabolism of testosterone. Andrology 2013; 2:186-97. [PMID: 24353261 DOI: 10.1111/j.2047-2927.2013.00172.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 12/01/2022]
Abstract
In both epididymis and prostate the dynamic cross-talk between the cells is hormonally regulated and, in part, through direct cell-to-cell interactions. Functionality of the male reproductive organs may be affected by exposure to specific chemicals, so-called 'reprotoxicants'. In this study we tested whether early postnatal and prepubertal exposure to anti-androgen flutamide altered the expression of adherens junction genes encoding E-cadherin (CDH1) and β-catenin (CTNNB1) in adult pig epididymis and prostate. In addition, the expression of mRNAs and proteins for 5α-reductase (ST5AR2) and aromatase (CYP19A1) were examined to show whether flutamide alters metabolism of testosterone. Thus, flutamide was injected into male piglets between Days 2 and 10 and between Days 90 and 98 postnatally (PD2 and PD90; 50 mg/kg bw), tissues that were obtained on postnatal Day 270. To assess the expression of the genes and proteins, real-time RT-PCR and Western blot were performed respectively. Moreover, adherens junction proteins were localized by immunohistochemistry. In response to flutamide, CDH1 and CTNNB1 expressions were down-regulated along the epididymis, mostly in PD2 group (p < 0.001, p < 0.01). In the prostate, CDH1 mRNA and protein expressions were significantly down-regulated (p < 0.01), whereas CTNNB1 mRNA was slightly up-regulated in both flutamide-treated groups. CTNNB1 protein level was markedly elevated in both PD2 (p < 0.001) and PD90 (p < 0.01) groups. In the epididymis, the expression of ST5AR2 and CYP19A1 was down- and up-regulated, respectively (p < 0.05), whereas in the prostate evident decrease in CYP19A1 expression (p < 0.001, p < 0.01, p < 0.05) was demonstrated. In both tissues, membranous immunolocalization of CTNNB1 suggests its involvement in cell-cell adhesion. Overall, flutamide administration resulted in suppression of androgen action in the epididymis and prostate leading to deregulation of CDH1 and CTNNB1 gene expressions which is probably caused by the alterations in the expression of ST5AR2 and CYP19A1 in both reproductive organs.
Collapse
Affiliation(s)
- E Gorowska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|
12
|
Narotsky MG, Klinefelter GR, Goldman JM, Best DS, McDonald A, Strader LF, Suarez JD, Murr AS, Thillainadarajah I, Hunter ES, Richardson SD, Speth TF, Miltner RJ, Pressman JG, Teuschler LK, Rice GE, Moser VC, Luebke RW, Simmons JE. Comprehensive assessment of a chlorinated drinking water concentrate in a rat multigenerational reproductive toxicity study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10653-10659. [PMID: 23909560 DOI: 10.1021/es402646c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Some epidemiological studies report associations between drinking water disinfection byproducts (DBPs) and adverse reproductive/developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. Using a multigenerational rat bioassay, we evaluated an environmentally relevant "whole" mixture of DBPs representative of chlorinated drinking water, including unidentified DBPs as well as realistic proportions of known DBPs at low-toxicity concentrations. Source water from a water utility was concentrated 136-fold, chlorinated, and provided as drinking water to Sprague-Dawley rats. Timed-pregnant females (P0 generation) were exposed during gestation and lactation. Weanlings (F1 generation) continued exposures and were bred to produce an F2 generation. Large sample sizes enhanced statistical power, particularly for pup weight and prenatal loss. No adverse effects were observed for pup weight, prenatal loss, pregnancy rate, gestation length, puberty onset in males, growth, estrous cycles, hormone levels, immunological end points, and most neurobehavioral end points. Significant, albeit slight, effects included delayed puberty for F1 females, reduced caput epidydimal sperm counts in F1 adult males, and increased incidences of thyroid follicular cell hypertrophy in adult females. These results highlight areas for future research, while the largely negative findings, particularly for pup weight and prenatal loss, are notable.
Collapse
Affiliation(s)
- Michael G Narotsky
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Perobelli JE, Patrão MT, Fernandez CD, Sanabria M, Klinefelter GR, Avellar MCW, Kempinas WD. Androgen deprivation from pre-puberty to peripuberty interferes in proteins expression in pubertal and adult rat epididymis. Reprod Toxicol 2013; 38:65-71. [DOI: 10.1016/j.reprotox.2013.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 02/21/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
14
|
Cai J, Wang C, Huang L, Chen M, Zuo Z. A Novel Effect of Polychlorinated Biphenyls: Impairment of the Tight Junctions in the Mouse Epididymis. Toxicol Sci 2013; 134:382-90. [DOI: 10.1093/toxsci/kft106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Impairment on sperm quality and fertility of adult rats after antiandrogen exposure during prepuberty. Reprod Toxicol 2012; 33:308-15. [DOI: 10.1016/j.reprotox.2011.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 11/17/2022]
|
16
|
Lydka M, Kopera-Sobota I, Kotula-Balak M, Chojnacka K, Zak D, Bilinska B. Morphological and functional alterations in adult boar epididymis: Effects of prenatal and postnatal administration of flutamide. Acta Vet Scand 2011; 53:12. [PMID: 21342526 PMCID: PMC3050768 DOI: 10.1186/1751-0147-53-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
Abstract
Background The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Thus, a question arised whether prenatal or postnatal exposure to an anti-androgen flutamide alters the expression of gap junction protein - connexin43 (Cx43) and androgen receptor (AR) expression in the caput, corpus and cauda epididymis and leads to delayed effects on morphology and function of adult pig epididymis. Methods First two experimental groups received flutamide prenatally on gestational days 20-28 and 80-88 (GD20 and GD80) and further two groups were exposed to flutamide postanatally on days 2-10 and 90-98 after birth (PD2 and PD90). Epididymides were collected from adult boars. Routine histology was performed using hematoxylin-eosin staining. The expression of Cx43 and AR were analyzed using immunohistochemistry and Western blotting. Both analyses were supported by quantitative approaches to demonstrate the variations of the expression levels following the treatment. Apoptotic cells were identified using TUNEL assay. Results Histological examination revealed differences in epididymal morphology of flutamide-exposed boars when compared to controls. Scarce spermatic content were seen within the corpus and cauda lumina of GD20, PD2 and PD90 groups. Concomitantly, frequency of epididymal cell apoptosis was significantly higher (p < 0.05) after exposure to flutamide at GD20. Moreover, in GD20, PD2, and PD90 groups, significantly lower AR expression (p < 0.05) was found in the principal and basal cells of the corpus and cauda regions, while in the stromal cells AR expression was significantly reduced (p < 0.05) along the epididymal duct. Concomitantly, a decrease in Cx43 expression (p < 0.05) was noticed in the stromal cells of the cauda region of GD20 and PD2 groups. This indicates high sensitivity of the stromal cells to androgen withdrawal. Conclusions The region-specific alterations in the epididymis morphology and scarce spermatic content within the lumina of the corpus and cauda indicate that flutamide can induce delayed effects on the epididymal function of the adult boar by decrease in AR protein levels that results in altered androgen signaling. This may cause disturbances in androgen-dependent processes including Cx43 (de)regulation, however, we can not exclude the possibility that in response to flutamide decreased Cx43 expression may represent one mechanism responsible for functional disturbance of the boar epididymis.
Collapse
|
17
|
Effects of methylmercury on male reproductive functions in Wistar rats. Reprod Toxicol 2011; 31:431-9. [PMID: 21262343 DOI: 10.1016/j.reprotox.2011.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 12/15/2010] [Accepted: 01/11/2011] [Indexed: 11/22/2022]
Abstract
In this study we investigated the effects of subacute exposure to methylmercury (MeHg) on male reproductive functions in rats by means of determination of alterations in structural and functional parameters. Adult male Wistar rats received 0, 0.5, 1.0 or 3.0 mg/kg/body weight/day orally, daily MeHg for 14 days. Sperm motility, the relative sperm count and transit time in the caput/corpus epididymis, were all reduced at all doses. The lowest dose increased the number of sperm head abnormalities; daily sperm production was elevated at the intermediate dose; while at the highest dose there was a decrease in serum testosterone levels and a rise in mercury (Hg) content in reproductive organs, liver and kidneys. In conclusion, MeHg exposure produced damages on male reproductive functions which may be attributed, at least in part, to the reduction in serum testosterone levels. These consequences could potentially result in infertility in rats.
Collapse
|
18
|
|
19
|
Effet de l'hexachlorobenzène sur certains paramètres de la fonction de reproduction mâle chez Meriones unguiculatus. C R Biol 2008; 331:380-8. [DOI: 10.1016/j.crvi.2008.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
|
20
|
Fernandez CDB, Porto EM, Arena AC, Kempinas WDG. Effects of altered epididymal sperm transit time on sperm quality. ACTA ACUST UNITED AC 2007; 31:427-37. [PMID: 17822422 DOI: 10.1111/j.1365-2605.2007.00788.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The epididymal sperm transit time seems to have an important role in the process of sperm maturation, and it seems that alterations to the transit can harm the process. The aim of the present work was to evaluate the influence of altered sperm transit time through the epididymis on sperm parameters and fertility of rats, as well as the role of testosterone in the alterations. Sprague-Dawley adult male rats were randomly assigned to four different groups and were treated for 12 days: (i) 10 microg/rat/day DES, to accelerate the transit; (ii) 6.25 mg/kg/day guanethidine sulphate, to delay the transit; (iii) same treatment as group 1, plus androgen supplementation; (iv) control animals received the vehicles. Guanethidine treatment delayed the sperm transit time through the epididymal cauda, provoking increased sperm reserves in this region. Animals exposed to DES showed an acceleration of sperm transit time in the epididymis, and consequently decreased sperm density in both epididymal regions, the caput-corpus and cauda, and diminished sperm motility. In both cases sperm production was not altered. Testosterone supplementation was able to restore the transit time to values close to normality, as they were higher than in the control rats. The same occurred in relation to sperm motility. Rats exposed to DES presented lower fertility after in utero artificial insemination using sperm collected from the proximal cauda epididymis. Therefore, it was concluded that the acceleration of rat sperm transit time appeared to harm normal sperm maturation, thus decreasing sperm quality and fertility capacity, in an androgen-dependent way.
Collapse
|
21
|
Takahashi KL, Takahashi N, Hojo H, Kuwahara M, Aoyama H, Teramoto S. Pathogenetic transition in the morphology of abnormal sperm in the testes and the caput, corpus, and cauda epididymides of male rats after treatment with 4,6-dinitro-o-cresol. Reprod Toxicol 2006; 22:501-7. [PMID: 16713173 DOI: 10.1016/j.reprotox.2006.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 03/07/2006] [Accepted: 03/30/2006] [Indexed: 11/26/2022]
Abstract
In order to elucidate the pathogenesis of tailless sperm, 4,6-dinitro-o-cresol (DNOC) was administered to Jcl:SD male rats at daily oral doses of 0, 10 or 15mg/kg for 5 days. Sperm were collected from the caput, corpus, and cauda epididymides on days 1, 7 and 14 after the last dosing (D1, D7 and D14, respectively), counted and examined morphologically by phase-contrast and scanning electron microscopy. The incidence of abnormal sperm was significantly increased in the DNOC 15mg/kg group. On D1, peeled sperm (loss of mitochondrial sheath at the proximal end of the middle piece) was frequently observed in the caput epididymides, whereas sperm in the corpus and cauda epididymides had normal morphology. Distribution of the peeled sperm changed as time passed and the corpus epididymides showed a peak incidence on D7. On D14, the highest incidence of abnormal sperm was observed in the cauda epididymides, where the major abnormality was tailless. Similar effects were also found in the 10mg/kg group but were less potent. Transmission electron microscopy of testicular sperm on D1 revealed the presence of elongated spermatids that lacked the mitochondrial sheath at the proximal end of the middle piece, although the round and elongating spermatids looked normal. These results suggest that DNOC exposure of male rats primarily causes partial loss of the mitochondrial sheath in the testicular elongated spermatids, and that the affected sperm become tailless by D14 after reaching the cauda epididymides.
Collapse
Affiliation(s)
- Ken L Takahashi
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Saradha B, Mathur PP. Effect of environmental contaminants on male reproduction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 21:34-41. [PMID: 21783636 DOI: 10.1016/j.etap.2005.06.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 06/18/2005] [Indexed: 05/31/2023]
Abstract
A substantial body of evidence has accumulated in recent years that consistently indicate various adverse effects of environmental contaminants on human health. Decreasing trend of male fertility in terms of sperm counts and sperm quality, along with other changes in male reproductive health, including congenital malformations and testicular cancer in humans, and similar problems in wildlife has been correlated to the exposure to environmental contaminants. Many environmental chemicals have been reported to cause these reproductive abnormalities by eliciting changes in endocrine control of reproduction; however the specific underlying mechanisms are poorly understood. The present review summarizes recent studies on environmental contaminants and associated possible mechanism leading to adverse effects on male reproduction. Numerous studies demonstrate the interaction of environmental toxicants with steroid receptors and thereby causing interference with developmental and functional aspects of testis, epididymis and accessory sex organs. Induction of reactive oxygen species (ROS) by environmental contaminants and associated oxidative stress also have role in defective sperm function and male infertility.
Collapse
Affiliation(s)
- B Saradha
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India
| | | |
Collapse
|
23
|
França LR, Avelar GF, Almeida FFL. Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology 2005; 63:300-18. [PMID: 15626401 DOI: 10.1016/j.theriogenology.2004.09.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Starting from the period of testis differentiation, the Sertoli cell plays a pivotal role in the development of a functional testis. FSH is the major mitotic factor for Sertoli cells. Because the supporting capacity of Sertoli cells is relatively fixed for each species, their total number per testis, established just before puberty (approximately 4 months in pigs), dictates the potential for sperm production. In contrast to Sertoli cells that are still undifferentiated, mature Leydig cells are already present at birth in pigs. Spermatogenesis lasts from 30 to 75 days in mammals, and this time period is under the control of the germ cell genotype. In boars, each spermatogenic cycle and the entire spermatogenic process lasts 8.6-9.0 and approximately 40 days, respectively. The sperm transit through the epididymis takes approximately 10 days in pigs and this is within the range cited for most mammals. Germ cell loss occurs normally during spermatogenesis, mainly during the spermatogonial and meiotic phases. In pigs, significant germ cell loss also takes place during spermiogenesis. In mammals in general, including pigs, only 2-3 out of a possible 10 spermatozoa are produced from each differentiated type A1 spermatogonium. The high supporting capacity of Sertoli cells and the short duration of the spermatogenic cycle are the main factors responsible for the comparatively high spermatogenic efficiency of pigs.
Collapse
Affiliation(s)
- Luiz R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | | | | |
Collapse
|
24
|
Kempinas WD, Suarez JD, Roberts NL, Strader L, Ferrell J, Goldman JM, Klinefelter GR. Rat epididymal sperm quantity, quality, and transit time after guanethidine-induced sympathectomy. Biol Reprod 1998; 59:890-6. [PMID: 9746740 DOI: 10.1095/biolreprod59.4.890] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Guanethidine, a chemical that selectively abolishes peripheral noradrenergic nerves, was used to investigate the role of sympathetic innervation in the maintenance of epididymal sperm quantity and quality. Four groups of 10 adult male rats each were treated daily for 21 days, by i.p. injections, with either 0 (saline vehicle), 6.25, 12.5, or 25 mg/kg guanethidine. Norepinephrine content was reduced to undetectable levels in the cauda epididymidis in all guanethidine groups after 3 wk of treatment and was reduced to 7.4% of the control values after 1 wk of 6.25 mg/kg treatment. While body weight gain was significantly decreased at 12.5 and 25 mg/kg compared to that in controls, there was a significant increase in the weights of the seminal vesicles/coagulating glands in all treated groups. The number of homogenization-resistant spermatids per testis and the daily sperm production per testis remained unchanged. The weight of the epididymis was significantly increased at 6.25 and 12.5 mg/kg. Moreover, the number of cauda epididymal sperm and the transit time were increased significantly at 6.25 mg/kg (10.2 days) compared to values in the control cauda (6.3 days). Neither serum testosterone levels nor LH was affected in a dosage-related manner. There were no effects of guanethidine treatment on cauda epididymal sperm motility or morphology. A quantitative analysis of detergent-extracted cauda epididymal sperm proteins by SDS-PAGE revealed no differences, but there were diminutions in seven proteins in homogenates of caput/corpus tissue. Histologic analysis of testis and epididymis sections revealed no differences between control and denervated animals. In a subsequent experiment the lowest effective dosage (6.25 mg/kg) was given to rats for 1 wk, and an increased number of cauda epididymal sperm and a delay in sperm transit were observed. Our results indicate that low-dosage guanethidine exposure denervates the epididymis within 1 wk, thereby delaying epididymal transit; however, neither 1- nor 3-wk exposure produces qualitative changes in the sperm.
Collapse
Affiliation(s)
- W D Kempinas
- Departamento de Morfologia, Instituto de Biociências - UNESP, Botucatu, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hoyt JA, Fisher LF, Swisher DK, Byrd RA, Francis PC. The selective estrogen receptor modulator, raloxifene: reproductive assessments in adult male rats. Reprod Toxicol 1998; 12:223-32. [PMID: 9628547 DOI: 10.1016/s0890-6238(98)00004-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Raloxifene HCl is a nonsteroidal, selective estrogen receptor modulator developed for postmenopausal osteoporosis. Reproductive toxicity of raloxifene was examined in adult male CD rats after the oral administration of doses of 0, 10, 30, or 100 mg/kg/d. In the first study, males (12/group) were treated for 2 weeks followed by 2 weeks without treatment. After dose administration on Day 13, 6 males/group were cohabited with untreated females (1:2) for up to 7 d. Males were killed on Day 14 or 28 (6/group each day). Sperm were collected from the right cauda epididymis and evaluated for relative concentration, motion characteristics, and breakage. The kinetics of spermatogenesis were examined by DNA flow cytometry. The left testis and epididymis were preserved for histopathologic evaluation. Females were examined for reproductive status on Gestation Day 13. In a second study, males (20/group) were treated for 7 weeks (4 weeks prior to cohabitation during a 2-week cohabitation period, and for 1 additional week). Treated males were cohabited with untreated females (1:1). On Gestation Day 20, untreated females were examined for reproductive status and fetuses were examined for viability, weight, gender, and morphology. At necropsy, male reproductive tissues were collected, weighed, and preserved for histopathologic evaluation. In both studies, male body weight gain and food consumption were depressed at all dose levels. There was no indication in either study that raloxifene caused important changes in sperm production, sperm quality, or male reproductive performance at doses as high as 100 mg/kg/d.
Collapse
Affiliation(s)
- J A Hoyt
- Toxicology and Drug Disposition, Lilly Research Laboratories, A Division of Eli Lilly and Company, Greenfield, Indiana 46140, USA.
| | | | | | | | | |
Collapse
|