1
|
Singh Nee Priyadarshini P, Lal B. Seasonal variations in cellular expression of neuropeptide Y (NPY) in testis of the catfish, Clarias batrachus and its potential role in regulation of steroidogenesis. Peptides 2018; 103:19-25. [PMID: 29548972 DOI: 10.1016/j.peptides.2018.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/14/2018] [Accepted: 03/12/2018] [Indexed: 11/19/2022]
Abstract
The present study demonstrates seasonal variation in the cellular expression of neuropeptide Y (NPY), a known orexigenic neuropeptide, in the testis of the catfish, Clarias batrachus and its relation with testicular steroids. In vitro effects of NPY on androgen production and activities of steroidogenic enzymes were also analyzed to reaffirm the relation between NPY and steroids. NPY-immunoprecipitation was observed in Sertoli cells, interstitial cells and germ cells in recrudescing testis. Intensity of NPY-immunoreaction in the interstitial cells increased steadily with initiation of spermatogenesis and reached maximal in fully grown testes, and then decreased suddenly in the spermiating/spent testis. NPY was also expressed considerably in Sertoli cells in recrudescing testis, but disappeared in the fully grown testis. A moderate NPY-immunoreactivity was also seen in spermatogonial cells in recrudescing testis, but intense NPY-immunoprecipitation was detected in advanced germ cells (spermatids/spermatozoa) in fully mature testis. NPY-immunoreation intensity in interstitial cells showed positive correlation with increasing levels of testicular testosterone and 11-ketotestosterone, and with activities of 3β-HSD & 17β-HSD coinciding with advancing testicular activities. NPY treatment of testicular fragments in vitro stimulated the activities of 3β-HSD & 17β-HSD and increased testosterone & 11-ketotestosterone levels. This study for the first time demonstrates the existence of NPY peptide at cellular levels in fish testis, which stimulates androgen production by acting directly at testicular level.
Collapse
Affiliation(s)
| | - Bechan Lal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
De Miguel E, Álvarez-Otero R. Development of the cerebellum in turbot (Psetta maxima): Analysis of cell proliferation and distribution of calcium binding proteins. J Chem Neuroanat 2017; 85:60-68. [PMID: 28712785 DOI: 10.1016/j.jchemneu.2017.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
The morphogenesis, cell proliferation and neuronal differentiation of the turbot (Psetta maxima) cerebellum has been studied using conventional histological techniques and immunohistochemical methods for proliferating cell nuclear antigen and calcium binding proteins. As in other vertebrates, the cerebellar anlage emerges as proliferative plates of neural tissue during the embryonic period. The anlage of the cerebellum persists without morphological changes until the end of the larval life when the mantle zone is differentiated. The major ontogenetic changesthat drive the formation of the cerebellar subdivisions begin in late premetamorphic larvae when cerebellar plates growth and merge medially. This transformation is accomplished by the reorganization of proliferative zones as well as by the onset of cell differentiation. The cerebellum becomes fully differentiated during metamorphosis when parvalbumin and calretinin were detected in Purkinje and eurydendroid cells. Sustained proliferation is maintained in all subdivisions of the cerebellum and this support the robust growth of this part of the brain that takes place during the metamorphic and juvenile periods.The location and histological organization of the proliferative activity in the turbot mature cerebellum are described and their functional significance was analyzed in light of the information available for other teleosts.
Collapse
Affiliation(s)
- Encarnación De Miguel
- CINBIO, Centro Singular de Investigación de Galicia 2016-2019, University of Vigo, 36200 Vigo, Spain.
| | - Rosa Álvarez-Otero
- Department of Functional Biology and Health Science, University of Vigo, 36200 Vigo, Spain
| |
Collapse
|
3
|
Cid P, Doldán MJ, De Miguel Villegas E. Morphogenesis of the saccus vasculosus of turbot Scophthalmus maximus: assessment of cell proliferation and distribution of parvalbumin and calretinin during ontogeny. JOURNAL OF FISH BIOLOGY 2015; 87:17-27. [PMID: 25973992 DOI: 10.1111/jfb.12681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
The ontogenesis of the saccus vasculosus (SV) of turbot Scophthalmus maximus is described using histological and immunohistochemical methods to assess the general morphology, as well as the distribution of proliferative cells and several calcium-binding proteins (CaBP). The results reveal that the SV begins to differentiate on hatching, when immature coronet cells are morphologically distinguishable. Further morphogenesis involves the formation of a tubular avascular SV, which remains until premetamorphic larval stages. Folding and vascularization of the SV occurs mostly during metamorphosis, when S. maximus settle down on the bottom. Proliferative cells were placed within the SV itself and in the neighbouring infundibular hypothalamus. Their putative relationship with the growth of the SV is discussed. The CaBPs analysed are expressed in coronet cells. Parvalbumin is expressed in these cells from the beginning of their differentiation, while calretinin expression arises in the tubular SV and becomes more widespread over time. These data emphasize the importance of calcium buffering in the function of coronet cells.
Collapse
Affiliation(s)
- P Cid
- Laboratory of Cell Biology, Department of Functional Biology, University of Vigo, 36200 Vigo, Spain
| | - M J Doldán
- Laboratory of Cell Biology, Department of Functional Biology, University of Vigo, 36200 Vigo, Spain
| | - E De Miguel Villegas
- Laboratory of Cell Biology, Department of Functional Biology, University of Vigo, 36200 Vigo, Spain
| |
Collapse
|
4
|
Quintana-Urzainqui I, Anadón R, Candal E, Rodríguez-Moldes I. Development of the terminal nerve system in the shark Scyliorhinus canicula. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:277-87. [PMID: 25402659 DOI: 10.1159/000367839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/23/2014] [Indexed: 11/19/2022]
Abstract
The nervus terminalis (or terminal nerve) system was discovered in an elasmobranch species more than a century ago. Over the past century, it has also been recognized in other vertebrate groups, from agnathans to mammals. However, its origin, functions or relationship with the olfactory system are still under debate. Despite the abundant literature about the nervus terminalis system in adult elasmobranchs, its development has been overlooked. Studies in other vertebrates have reported newly differentiated neurons of the terminal nerve system migrating from the olfactory epithelium to the telencephalon as part of a 'migratory mass' of cells associated with the olfactory nerve. Whether the same occurs in developing elasmobranchs (adults showing anatomically separated nervus terminalis and olfactory systems) has not yet been determined. In this work we characterized for the first time the development of the terminal nerve and ganglia in an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula), by means of tract-tracing techniques combined with immunohistochemical markers for the terminal nerve (such as FMRF-amide peptide), for the developing components of the olfactory system (Gα0 protein, GFAP, Pax6), and markers for early postmitotic neurons (HuC/D) and migrating immature neurons (DCX). We discriminated between embryonic olfactory and terminal nerve systems and determined that both components may share a common origin in the migratory mass. We also localized the exact point where they split off near the olfactory nerve-olfactory bulb junction. The study of the development of the terminal nerve system in a basal gnathostome contributes to the knowledge of the ancestral features of this system in vertebrates, shedding light on its evolution and highlighting the importance of elasmobranchs for developmental and evolutionary studies.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Departamento de Bioloxía Celular e Ecoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
5
|
Doldán MJ, Cid P, Mantilla L, de Miguel Villegas E. Development of the olfactory system in turbot (Psetta maxima L.). J Chem Neuroanat 2011; 41:148-57. [PMID: 21291997 DOI: 10.1016/j.jchemneu.2011.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 11/26/2022]
Abstract
We have examined the histogenesis of the olfactory system during turbot development using histological and immunohistochemical methods. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was used to detect dividing cells, whereas calretinin (CR) immunohistochemistry was used to distinguish some neuronal components of the olfactory system. Around hatching, the olfactory placode of embryos transforms into an olfactory pit, which enlarges progressively during development. In metamorphic turbots, the right olfactory organ moves to the tip of the head. Each olfactory chamber opens to the external medium by two nostrils and accessory nasal sacs develop during metamorphosis. The order of birth of olfactory receptor cells in the sensory epithelium follows the pattern of most teleosts: ciliated cells differentiate prior to microvillous cells in turbot larvae, and crypt cells are generated during metamorphosis. Axons of olfactory sensory neurons reach the rostral forebrain by hatching, and calretinin-immunoreactive (CR-ir) glomerular fields were apparent during the subsequent larval development. During metamorphosis olfactory bulbs become strongly distorted by head torsion and glomeruli acquire asymmetric organization. The spatio-temporal course of proliferation in the olfactory system reveals changes in the distribution of dividing cells in the sensory epithelium throughout the developmental period investigated. In the olfactory bulb, proliferative activity becomes restricted to the ventral periventricular zone in turbot larvae, as well as in metamorphic specimens.
Collapse
Affiliation(s)
- M J Doldán
- Laboratory of Cell Biology, Department of Functional Biology, University of Vigo, 36200 Vigo, Spain
| | | | | | | |
Collapse
|
6
|
Repérant J, Médina M, Ward R, Miceli D, Kenigfest N, Rio J, Vesselkin N. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. ACTA ACUST UNITED AC 2007; 53:161-97. [DOI: 10.1016/j.brainresrev.2006.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/23/2022]
|
7
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
8
|
Chiba A. Neuropeptide Y-immunoreactive (NPY-ir) structures in the brain of the gar Lepisosteus oculatus (Lepisosteiformes, Osteichthyes) with special regard to their anatomical relations to gonadotropin-releasing hormone (GnRH)-ir structures in the hypothalamus and the terminal nerve. Gen Comp Endocrinol 2005; 142:336-46. [PMID: 15935160 DOI: 10.1016/j.ygcen.2005.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/07/2005] [Accepted: 02/09/2005] [Indexed: 11/30/2022]
Abstract
The present paper describes neuropeptide Y-like-immunoreactive (NPY-ir) structures in the brain of the spotted gar, Lepisosteus oculatus, with special regard to their anatomical relations to gonadotropin-releasing hormone (GnRH)-ir structures in the hypothalamus and the terminal nerve (TN). NPY-ir cells were found in various locations including the TN, the medial zone of the area dorsalis telencephali, the ventral nucleus of the area ventralis telencephali, the habenula, the dorsal posterior nucleus, the periventricular nucleus of the hypothalamus, the posterior tubercle, the optic tectum, and the lateral part of the tegmentum. NPY-ir fibers were widely distributed throughout the brain except for the cerebellum. They were locally dense in the ventral telencephalon, in the periventricular gray matter of the thalamus and the hypothalamus, and in the ventromedial part of the brainstem, but sparse in the olfactory system. Light-microscopic double immunohistochemistry demonstrated distinct NPY-ir and GnRH-ir structures in the ventral hypothalamus: the NPY-ir system was associated mainly with the periventricular gray matter, whereas the GnRH-ir system was prominent in the external zone of the preoptico-tubero-infundibular area including the median eminence (ME). Here, NPY-ir varicose fibers occasionally abutted on GnRH-ir cells and varicosities or invested GnRH-ir cells, suggesting that NPY directly regulates the function of the hypothalamic GnRHergic neuron system. On the other hand, the TN cells and fibers in the olfactory system were doubly labeled by the antibodies against NPY and GnRH. Immuno-electron-microscopic data strongly suggested that some of the TN fibers projected to the ME.
Collapse
Affiliation(s)
- A Chiba
- Department of Biology, Nippon Dental University School of Dentistry at Niigata, Japan.
| |
Collapse
|
9
|
Pinelli C, D'Aniello B, Polese G, Rastogi RK. Extrabulbar olfactory system and nervus terminalis FMRFamide immunoreactive components in Xenopus laevis ontogenesis. J Chem Neuroanat 2004; 28:37-46. [PMID: 15363489 DOI: 10.1016/j.jchemneu.2004.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 02/12/2004] [Accepted: 06/01/2004] [Indexed: 11/28/2022]
Abstract
The extrabulbar olfactory system (EBOS) is a collection of nerve fibers which originate from primary olfactory receptor-like neurons and penetrate into the brain bypassing the olfactory bulbs. Our description is based upon the application of two neuronal tracers (biocytin, carbocyanine DiI) in the olfactory sac, at the cut end of the olfactory nerve and in the telencephalon of the developing clawed frog. The extrabulbar olfactory system was observed already at stage 45, which is the first developmental stage compatible with our techniques; at this stage, the extrabulbar olfactory system fibers terminated diffusely in the preoptic area. A little later in development, i.e. at stage 50, the extrabulbar olfactory system was maximally developed, extending as far caudally as the rhombencephalon. In the metamorphosing specimens, the extrabulbar olfactory system appeared reduced in extension; caudally, the fiber terminals did not extend beyond the diencephalon. While a substantial overlapping of biocytin/FMRFamide immunoreactivity was observed along the olfactory pathways as well as in the telencephalon, FMRFamide immunoreactivity was never observed to be colocalized in the same cellular or fiber components visualized by tracer molecules. The question whether the extrabulbar olfactory system and the nervus terminalis (NT) are separate anatomical entities or represent an integrated system is discussed.
Collapse
Affiliation(s)
- Claudia Pinelli
- Department of Life Sciences, Second University of Naples, I-81100 Caserta, Italy
| | | | | | | |
Collapse
|
10
|
Gaikwad A, Biju KC, Saha SG, Subhedar N. Neuropeptide Y in the olfactory system, forebrain and pituitary of the teleost, Clarias batrachus. J Chem Neuroanat 2004; 27:55-70. [PMID: 15036363 DOI: 10.1016/j.jchemneu.2003.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 10/14/2003] [Accepted: 11/29/2003] [Indexed: 11/15/2022]
Abstract
Distribution of neuropeptide Y (NPY)-like immunoreactivity in the forebrain of catfish Clarias batrachus was examined with immunocytochemistry. Conspicuous immunoreactivity was seen in the olfactory receptor neurons (ORNs), their projections in the olfactory nerve, fascicles of the olfactory nerve layer in the periphery of bulb and in the medial olfactory tracts as they extend to the telencephalic lobes. Ablation of the olfactory organ resulted in loss of immunoreactivity in the olfactory nerve layer of the bulb and also in the fascicles of the medial olfactory tracts. This evidence suggests that NPY may serve as a neurotransmitter in the ORNs and convey chemosensory information to the olfactory bulb, and also to the telencephalon over the extrabulbar projections. In addition, network of beaded immunoreactive fibers was noticed throughout the olfactory bulb, which did not respond to ablation experiment. These fibers may represent centrifugal innervation of the bulb. Strong immunoreactivity was encountered in some ganglion cells of nervus terminalis. Immunoreactive fibers and terminal fields were widely distributed in the telencephalon. Several neurons of nucleus entopeduncularis were moderately immunoreactive; and a small population of neurons in nucleus preopticus periventricularis was also labeled. Immunoreactive terminal fields were particularly conspicuous in the preoptic, the tuberal areas, and the periventricular zone around the third ventricle and inferior lobes. NPY immunoreactive cells and fibers were detected in all the lobes of the pituitary gland. Present results describing the localization of NPY in the forebrain of C. batrachus are in concurrence with the pattern of the immunoreactivity encountered in other teleosts. However, NPY in olfactory system of C. batrachus is a novel feature that suggests a role for the peptide in processing of chemosensory information.
Collapse
Affiliation(s)
- Archana Gaikwad
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | | | |
Collapse
|