1
|
Prolonged ethanol administration prevents the development of tolerance to morphine-induced respiratory depression. Drug Alcohol Depend 2019; 205:107674. [PMID: 31715438 DOI: 10.1016/j.drugalcdep.2019.107674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Opioid users regularly consume other drugs such as alcohol (ethanol). Acute administration of ethanol can rapidly reverse tolerance to morphine-induced respiratory depression. However, alcohol consumption by opioid users is likely to occur over prolonged time periods. We have therefore sought to determine the effect of prolonged alcohol consumption on the development of tolerance to opioid respiratory depression. METHODS Mice were fed control or ethanol (5%) liquid diet for 16 days. On days 9-16 morphine tolerance was induced by administration of 3 priming injections of morphine followed by subcutaneous implantation of a morphine-filled osmotic mini-pump. Control mice received saline. Respiration was measured by plethysmography and the effect of an acute morphine challenge dose was measured on day 16 to assess the development of morphine tolerance. RESULTS Prolonged ethanol consumption for 14 days did not alter the respiratory depressant effect of an acute dose of morphine. Control mice treated with prolonged morphine developed tolerance to acute morphine respiratory depression whereas ethanol diet fed mice treated with prolonged morphine showed significant respiratory depression during morphine-pump treatment and remained sensitive to the respiratory depressant effect of the acute challenge dose of morphine. The ethanol consumption did not alter blood or brain levels of morphine, whilst conversely prolonged morphine treatment did not alter blood levels of ethanol. CONCLUSIONS Prolonged ethanol consumption prevents the development and maintenance of tolerance to the respiratory depressant effect of morphine. These data suggest that ethanol inhibition of tolerance will greatly increase the risk of fatal heroin overdose in humans.
Collapse
|
2
|
Chao X, Wang S, Zhao K, Li Y, Williams JA, Li T, Chavan H, Krishnamurthy P, He XC, Li L, Ballabio A, Ni HM, Ding WX. Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis in Mice. Gastroenterology 2018; 155:865-879.e12. [PMID: 29782848 PMCID: PMC6120772 DOI: 10.1053/j.gastro.2018.05.027] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Defects in lysosome function and autophagy contribute to the pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes by evaluating the functions of transcription factor EB (TFEB), which regulates lysosomal biogenesis. METHODS We performed studies with GFP-LC3 mice, mice with liver-specific deletion of TFEB, mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB and TFE3 double-knockout mice), and Tfebflox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of regular ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice also were given injections of torin-1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time polymerase chain reaction to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. RESULTS Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB compared with control mice, and hepatocytes had decreased lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting in increased mTOR activation. Administration of torin-1 increased liver levels of TFEB and decreased steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in the liver developed less severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared with mice carrying a control vector. Mice with knockdown of TFEB and TFEB-TFE3 double-knockout mice developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues. CONCLUSIONS We found that ethanol feeding plus an acute binge decreased hepatic expression of TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect the liver from ethanol-induced damage.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Katrina Zhao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jessica A Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hemantkumar Chavan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Partha Krishnamurthy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy,Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA,Correspondence to: Wen-Xing Ding, Ph.D., Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Blvd., Kansas City, Kansas 66160, Phone: 913-588-9813; Fax: 913-588-7501, ; Hong-Min Ni, MD., Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018 3901 Rainbow Blvd., Kansas City, Kansas 66160, Phone: 913-588-9813; Fax: 913-588-7501,
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
3
|
Bartlett PJ, Antony AN, Agarwal A, Hilly M, Prince VL, Combettes L, Hoek JB, Gaspers LD. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes. J Physiol 2017; 595:3143-3164. [PMID: 28220501 DOI: 10.1113/jp273891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP3 ) production and does not involve changes in the sensitivity of the IP3 receptor or size of internal Ca2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca2+ ]i ) increases, which can adversely affect mitochondrial Ca2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca2+ -mobilizing hormones resulting in more sustained and prolonged [Ca2+ ]i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP3 ) accumulation and phospholipase C (PLC) activity were significantly potentiated in hepatocytes from alcohol-fed rats compared to controls. Removal of extracellular calcium, or chelation of intracellular calcium did not normalize the differences in hormone-stimulated PLC activity, indicating calcium-dependent PLCs are not upregulated by alcohol. We propose that the liver 'adapts' to chronic alcohol exposure by increasing hormone-dependent IP3 formation, leading to aberrant calcium increases, which may contribute to hepatocyte injury.
Collapse
Affiliation(s)
- Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Anil Noronha Antony
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Amit Agarwal
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Mauricette Hilly
- INSERM UMR-S 757, Université de Paris-Sud, bât 443, 91405, Orsay, France
| | - Victoria L Prince
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Laurent Combettes
- INSERM UMR-S 757, Université de Paris-Sud, bât 443, 91405, Orsay, France
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lawrence D Gaspers
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| |
Collapse
|
4
|
Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6235641. [PMID: 27418953 PMCID: PMC4932173 DOI: 10.1155/2016/6235641] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.
Collapse
|
5
|
Sengupta D, Chowdhury KD, Sarkar A, Paul S, Sadhukhan GC. Berberine and S allyl cysteine mediated amelioration of DEN+CCl4 induced hepatocarcinoma. Biochim Biophys Acta Gen Subj 2014; 1840:219-44. [DOI: 10.1016/j.bbagen.2013.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 02/07/2023]
|
6
|
Protein kinase C: an attractive target for cancer therapy. Cancers (Basel) 2011; 3:531-67. [PMID: 24212628 PMCID: PMC3756376 DOI: 10.3390/cancers3010531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/19/2011] [Accepted: 01/26/2011] [Indexed: 12/21/2022] Open
Abstract
Apoptosis plays an important role during all stages of carcinogenesis and the development of chemoresistance in tumor cells may be due to their selective defects in the intracellular signaling proteins, central to apoptotic pathways. Consequently, many studies have focused on rendering the chemotherapy more effective in order to prevent chemoresistance and pre-clinical and clinical data has suggested that protein kinase C (PKC) may represent an attractive target for cancer therapy. Therefore, a complete understanding of how PKC regulates apoptosis and chemoresistance may lead to obtaining a PKC-based therapy that is able to reduce drug dosages and to prevent the development of chemoresistance.
Collapse
|
7
|
Roy DN, Sen G, Chowdhury KD, Biswas T. Combination therapy with andrographolide and d-penicillamine enhanced therapeutic advantage over monotherapy with d-penicillamine in attenuating fibrogenic response and cell death in the periportal zone of liver in rats during copper toxicosis. Toxicol Appl Pharmacol 2010; 250:54-68. [PMID: 20946909 DOI: 10.1016/j.taap.2010.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/21/2010] [Accepted: 09/30/2010] [Indexed: 01/19/2023]
Abstract
Long treatment regime with d-penicillamine is needed before it can exert clinically meaningful benefits in the treatment of copper toxicosis. The consequence of long-term d-penicillamine treatment is associated with numerous side effects. The limitations of d-penicillamine monotherapy prompted us to search for more effective treatment strategies that could decrease the duration of d-penicillamine therapy. The present study was designed to evaluate the therapeutic potential of d-penicillamine in combination with another hepatoprotective drug, andrographolide in treatment of copper toxicosis in rats. d-penicillamine treatment led to the excretion of copper through urine. Addition of andrographolide to d-penicillamine regime appeared to increase protection of liver by increasing the biliary excretion of copper and reduction in cholestatic injury. The early removal of the causative agent copper during combination treatment was the most effective therapeutic intervention that contributed to the early rectification of fibrosis in liver. Combination treatment reduced Kupffer cells accumulation and TNFα production in liver of copper exposed rats. In particular, andrographolide mediated the anti-inflammatory effect by inhibiting the cytokine production. However, another possible mechanism of cytoprotection of andrographolide was decreasing mitochondrial production of superoxide anions that resulted in better restoration of mitochondrial dysfunction during combination therapy than monotherapy. Furthermore, ROS inhibition by combination regimen resulted in significant decline in activation of caspase cascade. Inhibition of caspases attenuated apoptosis of hepatocytes, induced by chronic copper exposure. In summary, this study suggested that added benefit of combination treatment over use of either agent alone in alleviating the hepatotoxicity and fibrosis associated with copper toxicosis.
Collapse
Affiliation(s)
- Dijendra Nath Roy
- Cell Biology and Physiology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
8
|
Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 2010; 13:1051-85. [PMID: 20136499 DOI: 10.1089/ars.2009.2825] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hormones, growth factors, electrical stimulation, and cell-cell interactions regulate numerous cellular processes by altering the levels of second messengers, thus influencing biochemical reactions inside the cells. The Protein Kinase C family (PKCs) is a group of serine/threonine kinases that are dependent on calcium (Ca(2+)), diacylglycerol, and phospholipids. Signaling pathways that induce variations on the levels of PKC activators have been implicated in the regulation of diverse cellular functions and, in turn, PKCs are key regulators of a plethora of cellular processes, including proliferation, differentiation, and tumorigenesis. Importantly, PKCs contain regions, both in the N-terminal regulatory domain and in the C-terminal catalytic domain, that are susceptible to redox modifications. In several pathophysiological conditions when the balance between oxidants, antioxidants, and alkylants is compromised, cells undergo redox stress. PKCs are cell-signaling proteins that are particularly sensitive to redox stress because modification of their redox-sensitive regions interferes with their activity and, thus, with their biological effects. In this review, we summarize the involvement of PKCs in health and disease and the importance of redox signaling in the regulation of this family of kinases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), BioPharmaNet, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Roy DN, Mandal S, Sen G, Biswas T. Superoxide anion mediated mitochondrial dysfunction leads to hepatocyte apoptosis preferentially in the periportal region during copper toxicity in rats. Chem Biol Interact 2009; 182:136-47. [PMID: 19715684 DOI: 10.1016/j.cbi.2009.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/11/2022]
Abstract
Chronic exposure to copper induces hepatocellular apoptosis with greater injury in the periportal region compared to the perivenous region. Here we have identified the factors responsible for the development of regional damage in the liver under in vivo conditions. Enhanced production of reactive oxygen species (ROS) with predominance of superoxide radical (O(2)(-)) indicates the contribution of redox imbalance in the process. This may be linked with copper catalyzed oxidation of GSH to GSSG resulting in the generation of O(2)(-). Downregulation of Cu-Zn SOD in consequence of the degradation of this enzyme, causes decreased dismutation of O(2)(-), that further contributes to the enhanced level of O(2)(-) in the periportal region. Decreased functioning of Mn SOD activity, reduction in mitochondrial thiol/disulphide ratio and generation of O(2)(-) were much higher in the mitochondria from periportal region, which point to the involvement of this organelle in the regional hepatotoxicity observed during copper exposure. This was supported by copper-mediated enhanced mitochondrial dysfunction as evident from ATP depletion, collapse of mitochondrial membrane potential (MMP) and induction of mitochondrial permeability transition (MPT). Results suggest the active participation of O(2)(-) in inducing mitochondrial dysfunction preferentially in the periportal region that eventually leads to the development of hepatotoxicity due to copper exposure under in vivo condition.
Collapse
|
10
|
PKCdelta mediates thrombin-augmented fibroblast-mediated collagen gel contraction. Biochem Biophys Res Commun 2008; 369:1199-203. [PMID: 18342628 DOI: 10.1016/j.bbrc.2008.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/21/2022]
Abstract
Fibroblast-mediated collagen gel contraction has been used as an in vitro model of tissue remodeling. Thrombin is one of the mediators present in the milieu of airway inflammation and may be involved in airway tissue remodeling. We have previously reported that thrombin stimulates fibroblast-mediated collagen gel contraction partially through the PAR1/PKCepsilon signaling pathway [Q. Fang, X. Liu, S. Abe, T. Kobayashi, X.Q. Wang, T. Kohyama, M. Hashimoto, T. Wyatt, S.I. Rennard, Thrombin induces collagen gel contraction partially through PAR1 activation and PKC-epsilon, Eur. Respir. J. 24 (2004) 918-924]. Here, we further report that the delta-isoform of PKC (PKCdelta) is also activated by thrombin and involved in the thrombin-mediated augmentation of collagen gel contraction. Thrombin (10nM) significantly increased PKCdelta activity (over 5-fold increase after 15-30min stimulation) and stimulated phosphorylation of PKCdelta. Rottlerin, a PKCdelta inhibitor, completely inhibited activation of PKCdelta and partially blocked collagen gel contraction stimulated by thrombin. Similarly, PKCdelta-specific siRNA significantly inhibited PKCdelta activation without affecting PKCepsilon expression and activation. Furthermore, suppression of PKCdelta by siRNA resulted in partial blockade of thrombin-augmented collagen gel contraction. These results suggest that thrombin contributes to the tissue remodeling in inflammatory airways and lung diseases at least partially through both PKCdelta and PKCepsilon signaling.
Collapse
|
11
|
PKC signaling in oxidative hepatic damage. Mol Aspects Med 2007; 29:36-42. [PMID: 18035409 DOI: 10.1016/j.mam.2007.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 09/28/2007] [Indexed: 12/16/2022]
Abstract
Protein kinase C (PKC) is a family of isoenzymes differently involved in cell response to injury and many studies describe their role as "stress sensors". Oxidative stress is strictly involved in the pathogenesis of chronic liver diseases including alcohol- or drug-induced hepatotoxicity, iron overload, hepatitis and hepatocarcinoma development, but molecular mechanisms are not really defined. A crucial role of PKC as a redox sensitive signaling molecule has been widely accepted.
Collapse
|
12
|
Castello L, Marengo B, Nitti M, Froio T, Domenicotti C, Biasi F, Leonarduzzi G, Pronzato MA, Marinari UM, Poli G, Chiarpotto E. 4-Hydroxynonenal signalling to apoptosis in isolated rat hepatocytes: the role of PKC-delta. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1737:83-93. [PMID: 16311069 DOI: 10.1016/j.bbalip.2005.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 09/30/2005] [Accepted: 10/18/2005] [Indexed: 11/16/2022]
Abstract
4-Hydroxynonenal, a significant aldehyde end product of membrane lipid peroxidation with numerous biochemical activities, has consistently been detected in various human diseases. Concentrations actually detectable in vivo (0.1-5 microM) have been shown to up-regulate different genes and modulate various enzyme activities. In connection with the latter aspect, we show here that, in isolated rat hepatocytes, 1 microM 4-hydroxynonenal selectively activates protein kinase C-delta, involved in apoptosis of many cell types; it also induces very early activation of Jun N-terminal kinase, in parallel increasing activator protein-1 DNA-binding activity in a time-dependent manner and triggering apoptosis after only 120 min treatment. These phenomena are likely protein kinase C-delta-dependent, being significantly reduced or annulled by cell co-treatment with rottlerin, a selective inhibitor of protein kinase C-delta. We suggest that 4-hydroxynonenal may induce apoptosis through activation of protein kinase C-delta and of Jun N-terminal kinase, and consequent up-regulation of activator protein-1 DNA binding.
Collapse
Affiliation(s)
- L Castello
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Marengo B, Raffaghello L, Pistoia V, Cottalasso D, Pronzato MA, Marinari UM, Domenicotti C. Reactive oxygen species: Biological stimuli of neuroblastoma cell response. Cancer Lett 2005; 228:111-6. [PMID: 15916847 DOI: 10.1016/j.canlet.2005.01.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
Reactive oxygen species play a critical role in differentiation, proliferation and apoptosis acting as 'second messengers' able to regulate sulphydryl groups in signaling molecules as protein kinase C, a family of isoenzymes involved in many cellular responses and implicated in cell transformation. Neuroblastoma is characterised by the production of oxygen intermediates and L-buthionine-S,R-sulfoximine, a glutathione-depleting agent that has been tested in the clinics, exploits this biological peculiarity to induce cell death. The latter process is mediated by the oxidative activation of PKC delta which might be involved also in the production of reactive oxygen species, thus amplifying the apoptotic cascade.
Collapse
Affiliation(s)
- Barbara Marengo
- Department of Experimental Medicine, Section of General Pathology, University of Genova, Via L.B. Alberti, 2, 16132, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Domenicotti C, Marengo B, Nitti M, Verzola D, Garibotto G, Cottalasso D, Poli G, Melloni E, Pronzato MA, Marinari UM. A novel role of protein kinase C-δ in cell signaling triggered by glutathione depletion. Biochem Pharmacol 2003; 66:1521-6. [PMID: 14555230 DOI: 10.1016/s0006-2952(03)00507-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Current evidence demonstrates that protein kinase C (PKC) belongs to a group of cell-signaling molecules that are sensitive targets for redox modifications and functional alterations that mediate oxidant-induced cellular responses. Our studies have demonstrated that diminished intracellular GSH was associated to inactivation of classic isoforms and increased activity of novel PKCs, and triggered molecular signals important for cell survival. Loss of GSH and oxidative damage are probably an early signaling event in apoptotic death, which is characterized by the activation of PKC-delta. Apoptotic process consequent to GSH depletion was inhibited by rottlerin, a PKC-delta-specific inhibitor, which exerted a negative effect on oxyradical production. Therefore, it may be concluded that PKC-delta activity is related to reactive oxygen species production and is involved in the pathway leading to apoptosis and growth arrest.
Collapse
Affiliation(s)
- Cinzia Domenicotti
- Section of General Pathology, Department of Experimental Medicine, University of Genova, via L.B. Alberti, 2, 16132 Genoa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Marinari UM, Nitti M, Pronzato MA, Domenicotti C. Role of PKC-dependent pathways in HNE-induced cell protein transport and secretion. Mol Aspects Med 2003; 24:205-11. [PMID: 12892998 DOI: 10.1016/s0098-2997(03)00015-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The beta isoforms of protein Kinase C (PKC) are closely involved in the regulation of cell protein transport and secretion. We have shown in different cellular types that treatment with HNE in a concentration range detectable in many pathophysiological conditions is able to induce selective activation of betaPKCs through direct interaction between the aldehyde and these isoenzymes. In isolated rat hepatocytes this specific isoenzyme activation plays a key role in the transport of procathepsin D from the trans-Golgi network to the endosomal-lysosomal compartment and in the exocytosis of mature cathepsin D. In NT2 neurons, HNE-mediated betaPKC activation induces an increase in intracellular amyloid beta production, without affecting full-length amyloid precursor protein expression. In a mouse macrophage-like cell line, the same beta isoform activation increases the release of the MCP-1 chemokine. Thus, pathophysiological HNE concentrations (0.1-1 microM) derived from a slight imbalance of the redox state are able to alter protein trafficking through beta PKC activation. These results suggest that mild oxidative stress and the PKC signal transduction pathway are closely involved in the pathophysiology of many diseases caused by changes in protein trafficking and release.
Collapse
Affiliation(s)
- Umberto Maria Marinari
- Department of Experimental Medicine, General Pathology Section, University of Genova, Via L.B. Alberti 2, Genova 16132, Italy
| | | | | | | |
Collapse
|
16
|
Othman T, Sinclair CJD, Haughey N, Geiger JD, Parkinson FE. Ethanol alters glutamate but not adenosine uptake in rat astrocytes: evidence for protein kinase C involvement. Neurochem Res 2002; 27:289-96. [PMID: 11958530 DOI: 10.1023/a:1014955111742] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in brain. By stimulating neuronal activity, glutamate increases cellular energy utilization, enhances ATP hydrolysis and promotes the formation of adenosine. Adenosine has receptor-mediated effects that reduce or oppose the excitatory effects of glutamate. As a possible mechanism for ethanol's ability to inhibit excitatory effects of glutamate and enhance inhibitory effects of adenosine, we tested the hypothesis that ethanol promotes [3H]glutamate uptake and inhibits [3H]adenosine uptake. Using primary cultures of rat astrocytes, we found that acute treatment with ethanol (50 mM, 30 min) inhibited [3H]glutamate uptake and reduced protein kinase C (PKC)-induced stimulation of [3H]glutamate uptake. Prolonged treatment (50 mM, 3 day) with ethanol, however, increased both [3H]glutamate uptake and PKC activity. Contrary to other cell types, neither acute or chronic ethanol exposure affected [3H]adenosine uptake in astrocytes. These data indicate that in rat cortical astrocytes ethanol affects [3H]glutamate uptake but not [3H]adenosine uptake by affecting PKC modulation of transporter activity.
Collapse
Affiliation(s)
- Timothy Othman
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
17
|
Domenicotti C, Paola D, Vitali A, Nitti M, d'Abramo C, Cottalasso D, Maloberti G, Biasi F, Poli G, Chiarpotto E, Marinari UM, Pronzato MA. Glutathione depletion induces apoptosis of rat hepatocytes through activation of protein kinase C novel isoforms and dependent increase in AP-1 nuclear binding. Free Radic Biol Med 2000; 29:1280-90. [PMID: 11118818 DOI: 10.1016/s0891-5849(00)00429-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of isolated rat hepatocytes with the glutathione depleting agents L-buthionine-S,R-sulfoximine or diethylmaleate reproduced various cellular conditions of glutathione depletion, from moderate to severe, similar to those occurring in a wide spectrum of human liver diseases. To evaluate molecular changes and possible cellular dysfunction and damage consequent to a pathophysiologic level of GSH depletion, the effects of this condition on protein kinase C (PKC) isoforms were investigated, since these are involved in the intracellular specific regulatory processes and are potentially sensitive to redox changes. Moreover, a moderate perturbation of cellular redox state was found to activate novel PKC isoforms, and a clear relationship was shown between novel kinase activation and nuclear binding of the redox-sensitive transcription factor, activator protein-1 (AP-1). Apoptotic death of a significant number of cells, confirmed in terms of internucleosomal DNA fragmentation was a possible effect of these molecular reactions, and was triggered by a condition of glutathione depletion usually detected in human liver diseases. Finally, the inhibition of novel PKC enzymatic activity in cells co-treated with rottlerin, a selective novel kinase inhibitor, prevented glutathione-dependent novel PKC up-regulation, markedly moderated AP-1 activation, and protected cells against apoptotic death. Taken together, these findings indicate the existence of an apoptotic pathway dependent on glutathione depletion, which occurs through the up-regulation of novel PKCs and AP-1.
Collapse
Affiliation(s)
- C Domenicotti
- Department of Experimental Medicine, General Pathology Section, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Domenicotti C, Paola D, Vitali A, Nitti M, Cottalasso D, Poli G, Pronzato MA, Marinari UM. Primary role of alcohol dehydrogenase pathway in acute ethanol-induced impairment of protein kinase C-dependent signaling system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:321-30. [PMID: 10352701 DOI: 10.1007/978-1-4615-4735-8_39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- C Domenicotti
- Department of Experimental Medicine, University of Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|