• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4693415)   Today's Articles (337)
For: Peng J, Qiao H, Xu ZB. A new approach to stability of neural networks with time-varying delays. Neural Netw 2002;15:95-103. [PMID: 11958493 DOI: 10.1016/s0893-6080(01)00095-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Number Cited by Other Article(s)
1
Wu Y, Chen J, Qiao H. Anti-interference analysis of bio-inspired musculoskeletal robotic system. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
2
Composite dynamic movement primitives based on neural networks for human–robot skill transfer. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
3
Arbi A, Aouiti C, Chérif F, Touati A, Alimi AM. Stability analysis for delayed high-order type of Hopfield neural networks with impulses. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
4
Stability analysis of delayed Hopfield Neural Networks with impulses via inequality techniques. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.10.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
5
Towards establishing a meaningful and practical dynamics results for the unified RNN model. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
6
Zheng C, Li N, Cao J. Matrix measure based stability criteria for high-order neural networks with proportional delay. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
7
Song X, Xin X, Huang W. Exponential stability of delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions. Neural Netw 2012;29-30:80-90. [PMID: 22425550 DOI: 10.1016/j.neunet.2012.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/10/2012] [Accepted: 01/27/2012] [Indexed: 11/17/2022]
8
Hu C, Jiang H, Teng Z. Globally Exponential Stability for Delayed Neural Networks Under Impulsive Control. Neural Process Lett 2010. [DOI: 10.1007/s11063-009-9128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
9
Boundedness, periodic solutions and global stability for cellular neural networks with variable coefficients and infinite delays. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2008.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Lin KH, Shih CW. Multiple Almost Periodic Solutions in Nonautonomous Delayed Neural Networks. Neural Comput 2007;19:3392-420. [DOI: 10.1162/neco.2007.19.12.3392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
11
Modeling and prediction with a class of time delay dynamic neural networks. Appl Soft Comput 2007. [DOI: 10.1016/j.asoc.2006.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
12
Qiu J. Exponential stability of impulsive neural networks with time-varying delays and reaction–diffusion terms. Neurocomputing 2007. [DOI: 10.1016/j.neucom.2006.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
13
Zeng Z, Wang J. Global exponential stability of recurrent neural networks with time-varying delays in the presence of strong external stimuli. Neural Netw 2006;19:1528-37. [PMID: 17045459 DOI: 10.1016/j.neunet.2006.08.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 08/18/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
14
Jiang H, Cao J. Global exponential stability of periodic neural networks with time-varying delays. Neurocomputing 2006. [DOI: 10.1016/j.neucom.2006.01.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
15
Jiang H, Teng Z. Dynamics of neural networks with variable coefficients and time-varying delays. Neural Netw 2006;19:676-83. [PMID: 16198541 DOI: 10.1016/j.neunet.2005.06.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 06/17/2005] [Accepted: 06/17/2005] [Indexed: 11/25/2022]
16
Lisheng Wang, Zongben Xu. Sufficient and necessary conditions for global exponential stability of discrete-time recurrent neural networks. ACTA ACUST UNITED AC 2006. [DOI: 10.1109/tcsi.2006.874179] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
17
Zeng Z, Wang J. Improved conditions for global exponential stability of recurrent neural networks with time-varying delays. ACTA ACUST UNITED AC 2006;17:623-35. [PMID: 16722168 DOI: 10.1109/tnn.2006.873283] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
18
Li C, Liao X, Zhang R. A global exponential robust stability criterion for interval delayed neural networks with variable delays. Neurocomputing 2006. [DOI: 10.1016/j.neucom.2005.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
19
Exponential stability of a class of generalized neural networks with time-varying delays. Neurocomputing 2006. [DOI: 10.1016/j.neucom.2005.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Liu X, Teo KL, Xu B. Exponential Stability of Impulsive High-Order Hopfield-Type Neural Networks With Time-Varying Delays. ACTA ACUST UNITED AC 2005;16:1329-39. [PMID: 16342478 DOI: 10.1109/tnn.2005.857949] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
21
Huang H, Ho DWC, Cao J. Analysis of global exponential stability and periodic solutions of neural networks with time-varying delays. Neural Netw 2005;18:161-70. [PMID: 15795113 DOI: 10.1016/j.neunet.2004.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 09/14/2004] [Accepted: 09/14/2004] [Indexed: 11/28/2022]
22
Qiang Z, Wei X, Xu J. Global Asymptotic Stability Analysis of Neural Networks with Time-Varying Delays. Neural Process Lett 2005. [DOI: 10.1007/s11063-004-3426-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
23
Jiang H, Teng Z. Global eponential stability of cellular neural networks with time-varying coefficients and delays. Neural Netw 2004;17:1415-25. [PMID: 15541944 DOI: 10.1016/j.neunet.2004.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
24
Zhang J, Suda Y, Iwasa T. Absolutely exponential stability of a class of neural networks with unbounded delay. Neural Netw 2004;17:391-7. [PMID: 15037356 DOI: 10.1016/j.neunet.2003.09.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 11/28/2022]
25
Singh V. Robust stability of cellular neural networks with delay: linear matrix inequality approach. ACTA ACUST UNITED AC 2004. [DOI: 10.1049/ip-cta:20040091] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
26
Tokuda I, Tokunaga R, Aihara K. Back-propagation learning of infinite-dimensional dynamical systems. Neural Netw 2003;16:1179-93. [PMID: 13678621 DOI: 10.1016/s0893-6080(03)00076-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
27
Zhigang Zeng, Jun Wang, Xiaoxin Liao. Global exponential stability of a general class of recurrent neural networks with time-varying delays. ACTA ACUST UNITED AC 2003. [DOI: 10.1109/tcsi.2003.817760] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
28
Lu W, Rong L, Chen T. Global convergence of delayed neural network systems. Int J Neural Syst 2003;13:193-204. [PMID: 12884452 DOI: 10.1142/s0129065703001534] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 04/28/2003] [Indexed: 11/18/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA