Li J, Zhou M, Sun Q, Dai X, Yu X. Colored Traveling Salesman Problem.
IEEE TRANSACTIONS ON CYBERNETICS 2015;
45:2390-2401. [PMID:
25494521 DOI:
10.1109/tcyb.2014.2371918]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The multiple traveling salesman problem (MTSP) is an important combinatorial optimization problem. It has been widely and successfully applied to the practical cases in which multiple traveling individuals (salesmen) share the common workspace (city set). However, it cannot represent some application problems where multiple traveling individuals not only have their own exclusive tasks but also share a group of tasks with each other. This work proposes a new MTSP called colored traveling salesman problem (CTSP) for handling such cases. Two types of city groups are defined, i.e., each group of exclusive cities of a single color for a salesman to visit and a group of shared cities of multiple colors allowing all salesmen to visit. Evidences show that CTSP is NP-hard and a multidepot MTSP and multiple single traveling salesman problems are its special cases. We present a genetic algorithm (GA) with dual-chromosome coding for CTSP and analyze the corresponding solution space. Then, GA is improved by incorporating greedy, hill-climbing (HC), and simulated annealing (SA) operations to achieve better performance. By experiments, the limitation of the exact solution method is revealed and the performance of the presented GAs is compared. The results suggest that SAGA can achieve the best quality of solutions and HCGA should be the choice making good tradeoff between the solution quality and computing time.
Collapse