1
|
Komiya S, Takekawa Y, Ohmori C, Takahashi J, Koga E, Yamauchi M, Takahashi K, Kamiya A, Ishizuka M, Nakajima M, Yamada D, Saitoh A. 5-Aminolevulinic acid improves spatial recognition memory in mice. Eur J Pharmacol 2025; 999:177658. [PMID: 40288558 DOI: 10.1016/j.ejphar.2025.177658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The production of 5-aminolevulinic acid (5-ALA) is the rate-limiting step in heme biosynthesis, and is thus essential for maintaining cellular respiration and the activities of various heme-containing enzymes. Recently, it was reported that exogenous 5-ALA can alleviate cognitive impairments in animal models. To elucidate the contributions of 5-ALA to cognition and investigate the underlying molecular mechanisms, we examined the impact of 5-ALA administration on both novel objective recognition (NOR) and spatial recognition memories in male ddY mice and on long-term potentiation (LTP) in hippocampal slices isolated from these mice. Both intracerebroventricular and oral administration of 5-ALA enhanced object recognition memory as evidenced by increased time spent investigating a novel object compared to a familiar object in the NOR test. Further, oral administration of 5-ALA improved the spontaneous alternation performance in the Y-maze test. Administration of 5-ALA also increased the glutamate/GABA ratio in dorsal hippocampus, ventral hippocampus, and entorhinal cortex, brain regions essential for recognition memory. Further, direct 5-ALA administration increased the LTP of excitatory postsynaptic potentials in hippocampal slices induced by theta-burst stimulation (TBS), and this LTP enhancement was completely mitigated by pretreatment with 1-naphthyl acetyl spermine, an antagonist of Ca2+-permeable AMPA receptors lacking the GluR2 subunit (CP-AMPARs). We suggest that 5-ALA improves spatial recognition memory by enhancing the TBS-induced expression or activity of postsynaptic CP-AMPARs, resulting in greater and longer-lasting LTP. Endogenous 5-ALA appears critical for maintaining cognitive function in the mammalian central nervous system, while exogenous supplementation could be a useful strategy for the treatment of cognitive dysfunction.
Collapse
Affiliation(s)
- Sora Komiya
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yukako Takekawa
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Chinatsu Ohmori
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Junpei Takahashi
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Eri Koga
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Mitsugu Yamauchi
- SBI Pharmaceuticals Co., Ltd., Izumi Garden Tower 13F, 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6013, Japan
| | - Kiwamu Takahashi
- SBI Pharmaceuticals Co., Ltd., Izumi Garden Tower 13F, 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6013, Japan
| | - Atsuko Kamiya
- SBI Pharmaceuticals Co., Ltd., Izumi Garden Tower 13F, 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6013, Japan
| | - Masahiro Ishizuka
- SBI Pharmaceuticals Co., Ltd., Izumi Garden Tower 13F, 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6013, Japan
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., Izumi Garden Tower 13F, 1-6-1, Roppongi, Minato-ku, Tokyo, 106-6013, Japan
| | - Daisuke Yamada
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akiyoshi Saitoh
- Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
2
|
Huang S, Liu X, Li Z, Si Y, Yang L, Deng J, Luo Y, Xue YX, Lu L. Memory Reconsolidation Updating in Substance Addiction: Applications, Mechanisms, and Future Prospects for Clinical Therapeutics. Neurosci Bull 2025; 41:289-304. [PMID: 39264570 PMCID: PMC11794923 DOI: 10.1007/s12264-024-01294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/09/2024] [Indexed: 09/13/2024] Open
Abstract
Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
Collapse
Affiliation(s)
- Shihao Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Zhonghao Li
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Yue Si
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Liping Yang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China
| | - Yixiao Luo
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yan-Xue Xue
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Lin Lu
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Hong I, Kim J, Hainmueller T, Kim DW, Keijser J, Johnson RC, Park SH, Limjunyawong N, Yang Z, Cheon D, Hwang T, Agarwal A, Cholvin T, Krienen FM, McCarroll SA, Dong X, Leopold DA, Blackshaw S, Sprekeler H, Bergles DE, Bartos M, Brown SP, Huganir RL. Calcium-permeable AMPA receptors govern PV neuron feature selectivity. Nature 2024; 635:398-405. [PMID: 39358515 PMCID: PMC11560848 DOI: 10.1038/s41586-024-08027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
The brain helps us survive by forming internal representations of the external world1,2. Excitatory cortical neurons are often precisely tuned to specific external stimuli3,4. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective5. PV interneurons differ from excitatory neurons in their neurotransmitter receptor subtypes, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs)6,7. Excitatory neurons express calcium-impermeable AMPARs that contain the GluA2 subunit (encoded by GRIA2), whereas PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find low expression stoichiometry of GRIA2 mRNA relative to other subunits in PV interneurons that is conserved across ferrets, rodents, marmosets and humans, and causes abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Manipulations to induce sparse CP-AMPAR expression demonstrated that this increase was cell-autonomous and could occur with changes beyond development. Notably, excitatory-PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, which suggested that the selectivity of PV interneurons can be altered without markedly changing connectivity. In Gria2-knockout mice, in which all AMPARs are calcium-permeable, excitatory neurons showed significantly degraded orientation selectivity, which suggested that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Moreover, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, which indicated that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a new role of CP-AMPARs in maintaining low-selectivity sensory representation in PV interneurons and implicate a conserved molecular mechanism that distinguishes this cell type in the neocortex.
Collapse
Affiliation(s)
- Ingie Hong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Juhyun Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Dong Won Kim
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Joram Keijser
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Richard C Johnson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Soo Hyun Park
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Zhuonan Yang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - David Cheon
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Taeyoung Hwang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amit Agarwal
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | - Thibault Cholvin
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
| | - Seth Blackshaw
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henning Sprekeler
- Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Solange P Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L Huganir
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Stockwell I, Watson JF, Greger IH. Tuning synaptic strength by regulation of AMPA glutamate receptor localization. Bioessays 2024; 46:e2400006. [PMID: 38693811 PMCID: PMC7616278 DOI: 10.1002/bies.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Long-term potentiation (LTP) of excitatory synapses is a leading model to explain the concept of information storage in the brain. Multiple mechanisms contribute to LTP, but central amongst them is an increased sensitivity of the postsynaptic membrane to neurotransmitter release. This sensitivity is predominantly determined by the abundance and localization of AMPA-type glutamate receptors (AMPARs). A combination of AMPAR structural data, super-resolution imaging of excitatory synapses, and an abundance of electrophysiological studies are providing an ever-clearer picture of how AMPARs are recruited and organized at synaptic junctions. Here, we review the latest insights into this process, and discuss how both cytoplasmic and extracellular receptor elements cooperate to tune the AMPAR response at the hippocampal CA1 synapse.
Collapse
Affiliation(s)
- Imogen Stockwell
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jake F. Watson
- Institute of Science and Technology, Technology (IST) Austria, Klosterneuburg, Austria
| | - Ingo H. Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
5
|
Lee S, Kim J, Ryu HH, Jang H, Lee D, Lee S, Song JM, Lee YS, Ho Suh Y. SHP2 regulates GluA2 tyrosine phosphorylation required for AMPA receptor endocytosis and mGluR-LTD. Proc Natl Acad Sci U S A 2024; 121:e2316819121. [PMID: 38657042 PMCID: PMC11066993 DOI: 10.1073/pnas.2316819121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.
Collapse
Affiliation(s)
- Sanghyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Jungho Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Hyun-Hee Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Hanbyul Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - DoEun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Seungha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Jae-man Song
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Yong-Seok Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul03080, South Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul03080, South Korea
- Neuroscience Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul03080, South Korea
| |
Collapse
|
6
|
Miao S, Fourgeaud L, Burrola PG, Stern S, Zhang Y, Happonen KE, Novak SW, Gage FH, Lemke G. Tyro3 promotes the maturation of glutamatergic synapses. Front Neurosci 2024; 18:1327423. [PMID: 38410160 PMCID: PMC10894971 DOI: 10.3389/fnins.2024.1327423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
The receptor tyrosine kinase Tyro3 is abundantly expressed in neurons of the neocortex, hippocampus, and striatum, but its role in these cells is unknown. We found that neuronal expression of this receptor was markedly up-regulated in the postnatal mouse neocortex immediately prior to the final development of glutamatergic synapses. In the absence of Tyro3, cortical and hippocampal synapses never completed end-stage differentiation and remained electrophysiologically and ultrastructurally immature. Tyro3-/- cortical neurons also exhibited diminished plasma membrane expression of the GluA2 subunits of AMPA-type glutamate receptors, which are essential to mature synaptic function. Correspondingly, GluA2 membrane insertion in wild-type neurons was stimulated by Gas6, a Tyro3 ligand widely expressed in the postnatal brain. Behaviorally, Tyro3-/- mice displayed learning enhancements in spatial recognition and fear-conditioning assays. Together, these results demonstrate that Tyro3 promotes the functional maturation of glutamatergic synapses by driving plasma membrane translocation of GluA2 AMPA receptor subunits.
Collapse
Affiliation(s)
- Sheng Miao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Lawrence Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Patrick G Burrola
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yuhan Zhang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kaisa E Happonen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
7
|
Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R. Distinct effects of AMPAR subunit depletion on spatial memory. iScience 2023; 26:108116. [PMID: 37876813 PMCID: PMC10590979 DOI: 10.1016/j.isci.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacolog, University of Washington, Seattle, WA, USA
| | - Ilaria Bertocchi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute - Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Andrei Rozov
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhniy, 603022 Novgorod, Russia
- Federal Center of Brain Research and Neurotechnology, 117997 Moscow, Russia
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thilo Borchardt
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Amy Taylor
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catia C. Proenca
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Rolf Sprengel
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
8
|
Zhang Y, Li X, Liu Z, Zhao X, Chen L, Hao G, Ye X, Meng S, Xiao G, Mu J, Mu X, Qiu J, Qian Y. The neurobehavioral impacts of typical antibiotics toward zebrafish larvae. CHEMOSPHERE 2023; 340:139829. [PMID: 37598953 DOI: 10.1016/j.chemosphere.2023.139829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Due to the widely usage in livestock, aquaculture and clinics, antibiotic residues are existed in aqueous environments and their potential toxicity to aquatic organisms is concerning. Here, we used zebrafish as the model to investigate the neurotoxicity and involved mechanism of seven antibiotics that were frequently detected in surface waters. The results revealed that the short-term exposure to clarithromycin (CLA), chlortetracycline (CTC) and roxithromycin (ROX) induced behavioral effects, with effective concentration of 1 μg/L (CTC and ROX) and 100 μg/L (CLA, CTC and ROX) respectively. A significant decrease in the travel distance and velocity as well as an increase in turn angle was measured. TUNEL assay identified increased cell apoptosis in brain sections of larvae exposed to three neurotoxic antibiotics, which raised the possibility that the behavioral symptoms were associated with neural damage. Transcriptome sequencing showed that the three antibiotics could affect the nervous system of zebrafish including the alteration of synaptogenesis and neurotransmission. Additionally, ROX and CTC affected pathways involved in mitochondrial stress response and endocrine system in zebrafish larvae. Besides, BDNF, ASCL1, and CREBBP are potential upstream regulatory factors that mediated these impacts. These findings indicated that exposure of CTC, ROX and CLA may cause abnormal behavior toward zebrafish larvae under environmental relevant concentration and revealed the potential role of neural cell apoptosis and synaptogenesis signaling in mediating this effect.
Collapse
Affiliation(s)
- Yining Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xueping Ye
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu Province, China.
| | - Guohua Xiao
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, China; Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao, China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, China; Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao, China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Qin Y, Zhang XY, Liu Y, Ma Z, Tao S, Li Y, Peng R, Wang F, Wang J, Feng J, Qiu Z, Jin L, Wang H, Gong X. Downregulation of mGluR1-mediated signaling underlying autistic-like core symptoms in Shank1 P1812L-knock-in mice. Transl Psychiatry 2023; 13:329. [PMID: 37880287 PMCID: PMC10600164 DOI: 10.1038/s41398-023-02626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms that consist of social deficits and repetitive behaviors. Unfortunately, no effective medication is available thus far to target the core symptoms of ASD, since the pathogenesis remains largely unknown. To investigate the pathogenesis of the core symptoms in ASD, we constructed Shank1 P1812L-knock-in (KI) mice corresponding to a recurrent ASD-related mutation, SHANK1 P1806L, to achieve construct validity and face validity. Shank1 P1812L-KI heterozygous (HET) mice presented with social deficits and repetitive behaviors without the presence of confounding comorbidities. HET mice also exhibited downregulation of metabotropic glutamate receptor (mGluR1) and associated signals, along with structural abnormalities in the dendritic spines and postsynaptic densities. Combined with findings from Shank1 R882H-KI mice, our study confirms that mGluR1-mediated signaling dysfunction is a pivotal mechanism underlying the core symptoms of ASD. Interestingly, Shank1 P1812L-KI homozygous (HOM) mice manifested behavioral signs of impaired long-term memory rather than autistic-like core traits; thus, their phenotype was markedly different from that of Shank1 P1812L-KI HET mice. Correspondingly, at the molecular level, Shank1 P1812L-KI HOM displayed upregulation of AMPA receptor (GluA2)-related signals. The different patterns of protein changes in HOM and HET mice may explain the differences in behaviors. Our study emphasizes the universality of mGluR1-signaling hypofunction in the pathogenesis of the core symptoms in ASD, providing a potential target for therapeutic drugs. The precise correspondence between genotype and phenotype, as shown in HOM and HET mice, indicates the importance of reproducing disease-related genotypes in mouse models.
Collapse
Affiliation(s)
- Yue Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yanyan Liu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
| | - Zehan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuo Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Ying Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Rui Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jianfeng Feng
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Zaytseva A, Bouckova E, Wiles MJ, Wustrau MH, Schmidt IG, Mendez-Vazquez H, Khatri L, Kim S. Ketamine's rapid antidepressant effects are mediated by Ca 2+-permeable AMPA receptors. eLife 2023; 12:e86022. [PMID: 37358072 PMCID: PMC10319435 DOI: 10.7554/elife.86022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca2+-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.
Collapse
Affiliation(s)
- Anastasiya Zaytseva
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Evelina Bouckova
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - McKennon J Wiles
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Madison H Wustrau
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| | - Isabella G Schmidt
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | | | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of MedicineNew YorkUnited States
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| |
Collapse
|
11
|
Coombs I, Bats C, Sexton CA, Studniarczyk D, Cull-Candy SG, Farrant M. Enhanced functional detection of synaptic calcium-permeable AMPA receptors using intracellular NASPM. eLife 2023; 12:e66765. [PMID: 37042655 PMCID: PMC10168695 DOI: 10.7554/elife.66765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/11/2023] [Indexed: 04/13/2023] Open
Abstract
Calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) contribute to many forms of synaptic plasticity and pathology. They can be distinguished from GluA2-containing calcium-impermeable AMPARs by the inward rectification of their currents, which reflects voltage-dependent channel block by intracellular spermine. However, the efficacy of this weakly permeant blocker is differentially altered by the presence of AMPAR auxiliary subunits - including transmembrane AMPAR regulatory proteins, cornichons, and GSG1L - which are widely expressed in neurons and glia. This complicates the interpretation of rectification as a measure of CP-AMPAR expression. Here, we show that the inclusion of the spider toxin analog 1-naphthylacetyl spermine (NASPM) in the intracellular solution results in a complete block of GluA1-mediated outward currents irrespective of the type of associated auxiliary subunit. In neurons from GluA2-knockout mice expressing only CP-AMPARs, intracellular NASPM, unlike spermine, completely blocks outward synaptic currents. Thus, our results identify a functional measure of CP-AMPARs, that is unaffected by their auxiliary subunit content.
Collapse
Affiliation(s)
- Ian Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Cécile Bats
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Craig A Sexton
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Zhang J, Liu Z, Liu X, Wang X, Yu L. Intravenous Injection of GluR2-3Y Inhibits Repeated Morphine-Primed Reinstatement of Drug Seeking in Rats. Brain Sci 2023; 13:brainsci13040590. [PMID: 37190555 DOI: 10.3390/brainsci13040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Studies have demonstrated that the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor is essential to drug addiction. In this study, we explored the influence of GluR2-3Y, an interfering peptide to prevent the endocytosis of AMPA receptors containing the GluR2 subunit, on morphine-seeking behavior in the rat self-administration model. After self-administration was established, the rats received intravenous injections of GluR2-3Y during the extinction sessions. There were no significant differences in both active and inactive pokes compared to the control group of rats that received GluR2-3S, indicating that GluR2-3Y has no significant influences on the extinction of morphine self-administration. The other two groups of rats were trained, extinguished, and reinstated by repeated morphine priming (respectively, called Prime 1, Prime 2, and Prime 3). Only one intravenous injection of GluR2-3Y was performed before Prime 1. Compared to the control group, GluR2-3Y did not affect Prime 1, but significantly attenuated the morphine-seeking behavior during repeated morphine-primed reinstatement, indicating an inhibitory after effect of GluR2-3Y on morphine-seeking behavior in rats. The long-term depression (LTD) in the nucleus accumbens (NAc) shell was also assessed. Pretreatment with GluR2-3Y altered the ability of LTD induction to the level of that in the naive group, while pretreatment with GluR2-3S had no effects on LTD. Our results demonstrated that the intravenous injection of GluR2-3Y, to block the endocytosis of AMPA receptors, inhibited the reinstatement of morphine-seeking behavior, which may be induced by modulating the neuronal plasticity in the NAc shell of rats.
Collapse
Affiliation(s)
- Jianjun Zhang
- College of Basic Medical, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong 030619, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China
| | - Zhuo Liu
- School of Crime Investigation, People’s Public Security University of China, Beijing 100038, China
| | - Xiaodong Liu
- Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoqian Wang
- College of Basic Medical, Shanxi University of Chinese Medicine, Jinzhong 030619, China
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong 030619, China
| | - Longchuan Yu
- School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
The Role of Glutamate Receptors in Epilepsy. Biomedicines 2023; 11:biomedicines11030783. [PMID: 36979762 PMCID: PMC10045847 DOI: 10.3390/biomedicines11030783] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Glutamate is an essential excitatory neurotransmitter in the central nervous system, playing an indispensable role in neuronal development and memory formation. The dysregulation of glutamate receptors and the glutamatergic system is involved in numerous neurological and psychiatric disorders, especially epilepsy. There are two main classes of glutamate receptor, namely ionotropic and metabotropic (mGluRs) receptors. The former stimulate fast excitatory neurotransmission, are N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), and kainate; while the latter are G-protein-coupled receptors that mediate glutamatergic activity via intracellular messenger systems. Glutamate, glutamate receptors, and regulation of astrocytes are significantly involved in the pathogenesis of acute seizure and chronic epilepsy. Some glutamate receptor antagonists have been shown to be effective for the treatment of epilepsy, and research and clinical trials are ongoing.
Collapse
|
14
|
Boxer EE, Kim J, Dunn B, Aoto J. Ventral Subiculum Inputs to Nucleus Accumbens Medial Shell Preferentially Innervate D2R Medium Spiny Neurons and Contain Calcium Permeable AMPARs. J Neurosci 2023; 43:1166-1177. [PMID: 36609456 PMCID: PMC9962776 DOI: 10.1523/jneurosci.1907-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Ventral subiculum (vSUB) is the major output region of ventral hippocampus (vHIPP) and sends major projections to nucleus accumbens medial shell (NAcMS). Hyperactivity of the vSUB-NAcMS circuit is associated with substance use disorders and the modulation of vSUB activity alters drug seeking and drug reinstatement behavior in rodents. However, to the best of our knowledge, the cell type-specific connectivity and synaptic transmission properties of the vSUB-NAcMS circuit have never been directly examined. Instead, previous functional studies have focused on total ventral hippocampal (vHIPP) output to NAcMS without distinguishing vSUB from other subregions of vHIPP, including ventral CA1 (vCA1). Using ex vivo electrophysiology, we systematically characterized the vSUB-NAcMS circuit with cell type- and synapse-specific resolution in male and female mice and found that vSUB output to dopamine receptor type-1 (D1R) and type-2 (D2R) expressing medium spiny neurons (MSNs) displays a functional connectivity bias for D2R MSNs. Furthermore, we found that vSUB-D1R and vSUB-D2R MSN synapses contain calcium-permeable AMPA receptors in drug-naive mice. Finally, we find that, distinct from other glutamatergic inputs, cocaine exposure selectively induces plasticity at vSUB-D2R synapses. Importantly, we directly compared vSUB and vCA1 output to NAcMS and found that vSUB synapses are functionally distinct and that vCA1 output recapitulated the synaptic properties previously ascribed to vHIPP. Our work highlights the need to consider the contributions of individual subregions of vHIPP to substance use disorders and represents an important first step toward understanding how the vSUB-NAcMS circuit contributes to the etiologies that underlie substance use disorders.SIGNIFICANCE STATEMENT Inputs to nucleus accumbens (NAc) dopamine receptor type 1 (D1R) and D2R medium spiny neurons (MSNs) are critically involved in reward seeking behavior. Ventral subiculum (vSUB) provides robust synaptic input to nucleus accumbens medial shell (NAcMS) and activity of this circuit is linked to substance use disorders. Despite the importance of the vSUB to nucleus accumbens circuit, the functional connectivity and synaptic transmission properties have not been tested. Here, we systematically interrogated these properties and found that basal connectivity and drug-induced plasticity are biased for D2R medium spiny neurons. Overall, we demonstrate that this circuit is distinct from synaptic inputs from other brain regions, which helps to explain how vSUB dysfunction contributes to the etiologies that underlie substance use disorders.
Collapse
Affiliation(s)
- Emma E Boxer
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - JungMin Kim
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Brett Dunn
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Jason Aoto
- University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
15
|
Gimenez-Gomez P, Le T, Martin GE. Modulation of neuronal excitability by binge alcohol drinking. Front Mol Neurosci 2023; 16:1098211. [PMID: 36866357 PMCID: PMC9971943 DOI: 10.3389/fnmol.2023.1098211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Drug use poses a serious threat to health systems throughout the world. The number of consumers rises every year being alcohol the drug of abuse most consumed causing 3 million deaths (5.3% of all deaths) worldwide and 132.6 million disability-adjusted life years. In this review, we present an up-to-date summary about what is known regarding the global impact of binge alcohol drinking on brains and how it affects the development of cognitive functions, as well as the various preclinical models used to probe its effects on the neurobiology of the brain. This will be followed by a detailed report on the state of our current knowledge of the molecular and cellular mechanisms underlying the effects of binge drinking on neuronal excitability and synaptic plasticity, with an emphasis on brain regions of the meso-cortico limbic neurocircuitry.
Collapse
Affiliation(s)
- Pablo Gimenez-Gomez
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| | - Timmy Le
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Gilles E. Martin
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| |
Collapse
|
16
|
Ishida K, Takeda K, Takehara Y, Takabayashi T, Miyara M, Sanoh S, Kawai H, Ohta S, Kotake Y. Methylmercury Decreases AMPA Receptor Subunit GluA2 Levels in Cultured Rat Cortical Neurons. Biol Pharm Bull 2023; 46:292-300. [PMID: 36724957 DOI: 10.1248/bpb.b22-00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methylmercury (MeHg) is a well-known environmental pollutant that has harmful effects on the central nervous systems of humans and animals. The molecular mechanisms of MeHg-induced neurotoxicity at low concentrations are not fully understood. Here, we investigated the effects of low-concentration MeHg on the cell viability, Ca2+ homeostasis, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2 levels, which determine Ca2+ permeability of AMPA receptors, in rat primary cortical neurons. Exposure of cortical neurons to 100 and 300 nM MeHg for 7 d resulted in a decrease in GluA2 levels, an increase in basal intracellular Ca2+ concentration, increased phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2 and p38, and decreased cell viability. Moreover, glutamate stimulation exacerbated the decrease in cell viability and increased intracellular Ca2+ levels in MeHg-treated neurons compared to control neurons. MeHg-induced neuronal cell death was ameliorated by 1-naphthyl acetyl spermine, a specific antagonist of Ca2+-permeable, GluA2-lacking AMPA receptors. Our findings raise the possibility that decreased neuronal GluA2 levels and the subsequent increase in intracellular Ca2+ concentration may contribute to MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Keishi Ishida
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Kazuki Takeda
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yuki Takehara
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Masatsugu Miyara
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,Wakayama Medical University
| | - Hidehiko Kawai
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,Wakayama Medical University
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
17
|
Gerlai R. Zebrafish (Danio rerio): A newcomer with great promise in behavioral neuroscience. Neurosci Biobehav Rev 2023; 144:104978. [PMID: 36442644 DOI: 10.1016/j.neubiorev.2022.104978] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Behavioral neuroscience is an interdisciplinary field aimed at understanding the neurobiology of behavior. Numerous investigators turn to animals to model and understand the mechanisms underlying vertebrate brain function including human brain disorders, species that share evolutionary history with us. The zebrafish is a relatively new study species for such purposes. However, as this review attempts to demonstrate, it will likely have a good future in behavioral neuroscience. It is a simple vertebrate that is small and cheap to keep and study in the laboratory. Yet, it is similar enough to our own species, thus, we are able to use it for both translational as well as basic research. In this invited review, I will discuss its advantages and some of its disadvantages, the reasons and counterarguments why it should or should not be employed in research. I will focus on its utility in behavioral neuroscience, and will also provide a brief historical account of the evolution between zebrafish research and the science represented by the International Behavioral Neuroscience Society.
Collapse
Affiliation(s)
- Robert Gerlai
- Department of Psychology, Rm CCT4004, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
18
|
Pitzer EM, Sugimoto C, Regan SL, Gudelsky GA, Williams MT, Vorhees CV. Developmental deltamethrin: Sex-specific hippocampal effects in Sprague Dawley rats. Curr Res Toxicol 2022; 3:100093. [PMID: 36393872 PMCID: PMC9661443 DOI: 10.1016/j.crtox.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Pyrethroid pesticides are widely used and can cause long-term effects after early exposure. Epidemiological and animal studies reveal associations between pyrethroid exposure and altered cognition following prenatal and/or neonatal exposure. However, little is known about the cellular effects of such exposure. Sprague Dawley rats were gavaged with 0 or 1.0 mg/kg deltamethrin (DLM), a Type II pyrethroid, in corn oil (dose volume 5 mL/kg) once per day from postnatal day (P) 3-20 and assessed shortly after dosing ended or as adults. No effects of DLM exposure were found on striatal dopaminergic markers, nor on AMPA receptor subunits or on NMDA-NR1. However, DLM increased NMDA-NR2A and decreased NMDA-NR2B levels in the hippocampus, in males but not females. Additionally, adult hippocampal CA1 long-term potentiation was increased in DLM-treated males but not females. Potassium stimulated extracellular glutamate release in the hippocampus was not affected using in vivo microdialysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) showed increased apoptotic cells in the dentate gyrus of male rats, in the absence of changes in cleaved caspase-3 at P21. Proinflammatory cytokines interferon gamma trended up in striatum, interleukin-1β trended down in nucleus accumbens, IL-13 trended up in hippocampus, and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO or CXCL1) was significantly increased in the hippocampus in male DLM-treated rats on P20. The data point to the developing hippocampus as a susceptible region to DLM-induced adverse effects.
Collapse
Affiliation(s)
- Emily M. Pitzer
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chiho Sugimoto
- Dept. of Physiology, Michigan State University, 766 Service Rd. 5401 Interdisciplinary Science and Technology Building, East Lansing, MI 48824, USA
| | - Samantha L. Regan
- Dept. of Human Genetics, University of Michigan Medical Center, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI 48109-5618, USA
| | - Gary A. Gudelsky
- College of Pharmacy, Div. of Pharmaceutical Sciences, 3212 Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Michael T. Williams
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Charles V. Vorhees
- Dept. of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Ma X, Li L, Li Z, Huang Z, Yang Y, Liu P, Guo D, Li Y, Wu T, Luo R, Xu J, Ye W, Jiang B, Shi L. eEF2 in the prefrontal cortex promotes excitatory synaptic transmission and social novelty behavior. EMBO Rep 2022; 23:e54543. [PMID: 35993189 PMCID: PMC9535807 DOI: 10.15252/embr.202154543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 08/24/2023] Open
Abstract
Regulation of mRNA translation is essential for brain development and function. Translation elongation factor eEF2 acts as a molecular hub orchestrating various synaptic signals to protein synthesis control and participates in hippocampus-dependent cognitive functions. However, whether eEF2 regulates other behaviors in different brain regions has been unknown. Here, we construct a line of Eef2 heterozygous (HET) mice, which show a reduction in eEF2 and protein synthesis mainly in excitatory neurons of the prefrontal cortex. The mice also show lower spine density, reduced excitability, and AMPAR-mediated synaptic transmission in pyramidal neurons of the medial prefrontal cortex (mPFC). While HET mice exhibit normal learning and memory, they show defective social behavior and elevated anxiety. Knockdown of Eef2 in excitatory neurons of the mPFC specifically is sufficient to impair social novelty preference. Either chemogenetic activation of excitatory neurons in the mPFC or mPFC local infusion of the AMPAR potentiator PF-4778574 corrects the social novelty deficit of HET mice. Collectively, we identify a novel role for eEF2 in promoting prefrontal AMPAR-mediated synaptic transmission underlying social novelty behavior.
Collapse
Affiliation(s)
- Xuanyue Ma
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Liuren Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ziming Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhengyi Huang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Yaorong Yang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Peng Liu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Daji Guo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Clinical Neuroscience InstituteThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yueyao Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Tianying Wu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ruixiang Luo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Junyu Xu
- Department of Neurobiology and Department of Rehabilitation of the Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Wen‐Cai Ye
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Lei Shi
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
20
|
Hajji K, Sedmík J, Cherian A, Amoruso D, Keegan LP, O'Connell MA. ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations. RNA (NEW YORK, N.Y.) 2022; 28:1281-1297. [PMID: 35863867 PMCID: PMC9479739 DOI: 10.1261/rna.079266.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The adenosine deaminase acting on RNA (ADAR) enzymes are essential for neuronal function and innate immune control. ADAR1 RNA editing prevents aberrant activation of antiviral dsRNA sensors through editing of long, double-stranded RNAs (dsRNAs). In this review, we focus on the ADAR2 proteins involved in the efficient, highly site-specific RNA editing to recode open reading frames first discovered in the GRIA2 transcript encoding the key GLUA2 subunit of AMPA receptors; ADAR1 proteins also edit many of these sites. We summarize the history of ADAR2 protein research and give an up-to-date review of ADAR2 structural studies, human ADARBI (ADAR2) mutants causing severe infant seizures, and mouse disease models. Structural studies on ADARs and their RNA substrates facilitate current efforts to develop ADAR RNA editing gene therapy to edit disease-causing single nucleotide polymorphisms (SNPs). Artificial ADAR guide RNAs are being developed to retarget ADAR RNA editing to new target transcripts in order to correct SNP mutations in them at the RNA level. Site-specific RNA editing has been expanded to recode hundreds of sites in CNS transcripts in Drosophila and cephalopods. In Drosophila and C. elegans, ADAR RNA editing also suppresses responses to self dsRNA.
Collapse
Affiliation(s)
- Khadija Hajji
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Jiří Sedmík
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | - Anna Cherian
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | | - Liam P Keegan
- CEITEC Masaryk University, Brno 62500, Czech Republic
| | | |
Collapse
|
21
|
Han JX, Wen CX, Sun R, Tang MY, Li XM, Lian H. The dorsal hippocampal CA3 regulates spatial reference memory through the CtBP2/GluR2 pathway. FASEB J 2022; 36:e22456. [PMID: 35969153 DOI: 10.1096/fj.202101609rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
The dorsal hippocampus plays a pivotal role in spatial memory. However, the role of subregion-specific molecular pathways in spatial cognition remains unclear. We observed that the transcriptional coregulator C-terminal binding protein 2 (CtBP2) presented CA3-specific enrichment in expression. RNAi interference of CtBP2 in the dorsal CA3 (dCA3) neurons, but not the ventral CA3 (vCA3), specifically impaired spatial reference memory and reduced the expression of GluR2, the calcium permeability determinant subunit of AMPA receptors. Application of an antagonist for GluR2-absent calcium permeable AMPA receptors rescued spatial memory deficits in dCA3 CtBP2 knockdown animals. Transcriptomic analysis suggest that CtBP2 may regulate GluR2 protein level through post-translational mechanisms, especially by the endocytosis pathway which regulates AMPA receptor sorting. Consistently, CtBP2 deficiency altered the mRNA expression of multiple endocytosis-regulatory genes, and CtBP2 knockdown in primary hippocampal neurons enhanced GluR2-containing AMPA receptor endocytosis. Together, our results provide evidence that the dCA3 regulates spatial reference memory by the CtBP2/GluR2 pathway through the modulation of calcium permeable AMPA receptors.
Collapse
Affiliation(s)
- Jia-Xuan Han
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Xi Wen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Sun
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng-Yu Tang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Li
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Lian
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Bae YS, Yoon SH, Kim YS, Oh SP, Song WS, Cha JH, Kim MH. Suppression of exaggerated NMDAR activity by memantine treatment ameliorates neurological and behavioral deficits in aminopeptidase P1-deficient mice. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1109-1124. [PMID: 35922532 PMCID: PMC9440093 DOI: 10.1038/s12276-022-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Inborn errors of metabolism (IEMs) are common causes of neurodevelopmental disorders, including microcephaly, hyperactivity, and intellectual disability. However, the synaptic mechanisms of and pharmacological interventions for the neurological complications of most IEMs are unclear. Here, we report that metabolic dysfunction perturbs neuronal NMDA receptor (NMDAR) homeostasis and that the restoration of NMDAR signaling ameliorates neurodevelopmental and cognitive deficits in IEM model mice that lack aminopeptidase P1. Aminopeptidase P1-deficient (Xpnpep1–/–) mice, with a disruption of the proline-specific metalloprotease gene Xpnpep1, exhibit hippocampal neurodegeneration, behavioral hyperactivity, and impaired hippocampus-dependent learning. In this study, we found that GluN1 and GluN2A expression, NMDAR activity, and the NMDAR-dependent long-term potentiation (LTP) of excitatory synaptic transmission were markedly enhanced in the hippocampi of Xpnpep1–/– mice. The exaggerated NMDAR activity and NMDAR-dependent LTP were reversed by the NMDAR antagonist memantine. A single administration of memantine reversed hyperactivity in adult Xpnpep1–/– mice without improving learning and memory. Furthermore, chronic administration of memantine ameliorated hippocampal neurodegeneration, hyperactivity, and impaired learning and memory in Xpnpep1–/– mice. In addition, abnormally enhanced NMDAR-dependent LTP and NMDAR downstream signaling in the hippocampi of Xpnpep1–/– mice were reversed by chronic memantine treatment. These results suggest that the metabolic dysfunction caused by aminopeptidase P1 deficiency leads to synaptic dysfunction with excessive NMDAR activity, and the restoration of synaptic function may be a potential therapeutic strategy for the treatment of neurological complications related to IEMs. Addressing neurological symptoms may offer new treatments for inborn errors of metabolism (IEMs) affecting neurodevelopment. In such IEMs, mutation of an enzyme disrupts a metabolic pathway, causing buildup or lack of key molecules, with symptoms including hyperactivity, developmental delay, and intellectual disability. Because the detailed pathological mechanisms of most IEMs are unknown, there are no treatments for resulting neurological issues. Myoung-Hwan Kim at Seoul National University and co-workers investigated whether they could treat the neurological symptoms of the IEM, aminopeptidase P1 (APP1) deficiency. They found that APP1 deficiency in mice caused an increase in the neural receptor NMDAR. Suppressing NMDAR reduced both neurological and behavioral symptoms. These findings suggest potential treatments for APP1 deficiency, and indicate that neurodevelopmental disorders in IEMs may be treated by repairing the neural circuitry instead of the root metabolic cause.
Collapse
Affiliation(s)
- Young-Soo Bae
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang Ho Yoon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Young Sook Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sung Pyo Oh
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Woo Seok Song
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Jin Hee Cha
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea. .,Seoul National University Bundang Hospital, Seongnam, Gyeonggi, 13620, Korea.
| |
Collapse
|
23
|
Hyperoside improves learning and memory deficits by amyloid β1-42 in mice through regulating synaptic calcium-permeable AMPA receptors. Eur J Pharmacol 2022; 931:175188. [DOI: 10.1016/j.ejphar.2022.175188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
|
24
|
Stouffer MA, Khalaf-Nazzal R, Cifuentes-Diaz C, Albertini G, Bandet E, Grannec G, Lavilla V, Deleuze JF, Olaso R, Nosten-Bertrand M, Francis F. Doublecortin mutation leads to persistent defects in the Golgi apparatus and mitochondria in adult hippocampal pyramidal cells. Neurobiol Dis 2022; 168:105702. [PMID: 35339680 DOI: 10.1016/j.nbd.2022.105702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. DCX is a microtubule-associated protein which plays a key role during neurodevelopment in neuronal migration and differentiation. Dcx knockout (KO) mice show disorganized hippocampal pyramidal neurons. The CA2/CA3 pyramidal cell layer is present as two abnormal layers and disorganized CA3 KO pyramidal neurons are also more excitable than wild-type (WT) cells. To further identify abnormalities, we characterized Dcx KO hippocampal neurons at subcellular, molecular and ultrastructural levels. Severe defects were observed in mitochondria, affecting number and distribution. Also, the Golgi apparatus was visibly abnormal, increased in volume and abnormally organized. Transcriptome analyses from laser microdissected hippocampal tissue at postnatal day 60 (P60) highlighted organelle abnormalities. Ultrastructural studies of CA3 cells performed in P60 (young adult) and > 9 months (mature) tissue showed that organelle defects are persistent throughout life. Locomotor activity and fear memory of young and mature adults were also abnormal: Dcx KO mice consistently performed less well than WT littermates, with defects becoming more severe with age. Thus, we show that disruption of a neurodevelopmentally-regulated gene can lead to permanent organelle anomalies contributing to abnormal adult behavior.
Collapse
Affiliation(s)
- M A Stouffer
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - R Khalaf-Nazzal
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - C Cifuentes-Diaz
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - G Albertini
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - E Bandet
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - G Grannec
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - V Lavilla
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
| | - J-F Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
| | - R Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
| | - M Nosten-Bertrand
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France
| | - F Francis
- INSERM UMR-S 1270, Paris 75005, France; Sorbonne Université, Université Pierre et Marie Curie, Paris 75005, France; Institut du Fer à Moulin, Paris 75005, France.
| |
Collapse
|
25
|
Chater TE, Goda Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front Synaptic Neurosci 2022; 14:833782. [PMID: 35387308 PMCID: PMC8979068 DOI: 10.3389/fnsyn.2022.833782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotransmission is critically dependent on the number, position, and composition of receptor proteins on the postsynaptic neuron. Of these, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are responsible for the majority of postsynaptic depolarization at excitatory mammalian synapses following glutamate release. AMPARs are continually trafficked to and from the cell surface, and once at the surface, AMPARs laterally diffuse in and out of synaptic domains. Moreover, the subcellular distribution of AMPARs is shaped by patterns of activity, as classically demonstrated by the synaptic insertion or removal of AMPARs following the induction of long-term potentiation (LTP) and long-term depression (LTD), respectively. Crucially, there are many subtleties in the regulation of AMPARs, and exactly how local and global synaptic activity drives the trafficking and retention of synaptic AMPARs of different subtypes continues to attract attention. Here we will review how activity can have differential effects on AMPAR distribution and trafficking along with its subunit composition and phosphorylation state, and we highlight some of the controversies and remaining questions. As the AMPAR field is extensive, to say the least, this review will focus primarily on cellular and molecular studies in the hippocampus. We apologise to authors whose work could not be cited directly owing to space limitations.
Collapse
|
26
|
Ntagwabira F, Trujillo M, McElroy T, Brown T, Simmons P, Sykes D, Allen AR. Piperlongumine as a Neuro-Protectant in Chemotherapy Induced Cognitive Impairment. Int J Mol Sci 2022; 23:2008. [PMID: 35216124 PMCID: PMC8880369 DOI: 10.3390/ijms23042008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Advances in the early diagnosis and treatment have led to increases in breast cancer survivorship. Survivors report cognitive impairment symptoms such as loss of concentration and learning and memory deficits which significantly reduce the patient's quality of life. Additional therapies are needed to prevent these side effects and, the precise mechanisms of action responsible are not fully elucidated. However, increasing evidence points toward the use of neuroprotective compounds with antioxidants and anti-inflammatory properties as tools for conserving learning and memory. Here, we examine the ability of piperlongumine (PL), an alkaloid known to have anti-inflammatory and antioxidant effects, to play a neuroprotective role in 16-week-old female C57BL/6J mice treated with a common breast cancer regimen of doxorubicin, cyclophosphamide, and docetaxel (TAC). During social memory testing, TAC-treated mice exhibited impairment, while TAC/PL co-treated mice did not exhibit measurable social memory deficits. Proteomics analysis showed ERK1/2 signaling is involved in TAC and TAC/PL co-treatment. Reduced Nrf2 mRNA expression was also observed. mRNA levels of Gria2 were increased in TAC treated mice and reduced in TAC/PL co-treated mice. In this study, PL protects against social memory impairment when co-administered with TAC via multifactorial mechanisms involving oxidative stress and synaptic plasticity.
Collapse
Affiliation(s)
- Fabio Ntagwabira
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (F.N.); (M.T.); (T.M.); (T.B.); (P.S.)
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (F.N.); (M.T.); (T.M.); (T.B.); (P.S.)
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (F.N.); (M.T.); (T.M.); (T.B.); (P.S.)
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | - Taurean Brown
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (F.N.); (M.T.); (T.M.); (T.B.); (P.S.)
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | - Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (F.N.); (M.T.); (T.M.); (T.B.); (P.S.)
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | | | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA; (F.N.); (M.T.); (T.M.); (T.B.); (P.S.)
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| |
Collapse
|
27
|
Abstract
Knowledge of the biology of ionotropic glutamate receptors (iGluRs) is a prerequisite for any student of the neurosciences. But yet, half a century ago, the situation was quite different. There was fierce debate on whether simple amino acids, such as l-glutamic acid (L-Glu), should even be considered as putative neurotransmitter candidates that drive excitatory synaptic signaling in the vertebrate brain. Organic chemist, Jeff Watkins, and physiologist, Dick Evans, were amongst the pioneering scientists who shed light on these tribulations. By combining their technical expertise, they performed foundational work that explained that the actions of L-Glu were, in fact, mediated by a family of ion-channels that they named NMDA-, AMPA- and kainate-selective iGluRs. To celebrate and reflect upon their seminal work, Neuropharmacology has commissioned a series of issues that are dedicated to each member of the Glutamate receptor superfamily that includes both ionotropic and metabotropic classes. This issue brings together nine timely reviews from researchers whose work has brought renewed focus on AMPA receptors (AMPARs), the predominant neurotransmitter receptor at central synapses. Together with the larger collection of papers on other GluR family members, these issues highlight that the excitement, passion, and clarity that Watkins and Evans brought to the study of iGluRs is unlikely to fade as we move into a new era on this most interesting of ion-channel families.
Collapse
|
28
|
Late-Onset Behavioral and Synaptic Consequences of L-Type Ca 2+ Channel Activation in the Basolateral Amygdala of Developing Rats. eNeuro 2022; 9:ENEURO.0282-21.2022. [PMID: 35064022 PMCID: PMC8868026 DOI: 10.1523/eneuro.0282-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Postnatal CNS development is fine-tuned to drive the functional needs of succeeding life stages; accordingly, the emergence of sensory and motor functions, behavioral patterns and cognitive abilities relies on a complex interplay of signaling pathways. Strictly regulated Ca2+ signaling mediated by L-type channels (LTCCs) is crucial in neural circuit development and aberrant increases in neuronal LTCC activity are linked to neurodevelopmental and psychiatric disorders. In the amygdala, a brain region that integrates signals associated with aversive and rewarding stimuli, LTCCs contribute to NMDA-independent long-term potentiation (LTP) and are required for the consolidation and extinction of fear memory. In vitro studies have elucidated distinct electrophysiological and synaptic properties characterizing the transition from immature to functionally mature basolateral subdivision of the amygdala (BLA) principal neurons. Further, acute increase of LTCC activity selectively regulates excitability and spontaneous synaptic activity in immature BLA neurons, suggesting an age-dependent regulation of BLA circuitry by LTCCs. This study aimed to elucidate whether early life alterations in LTCC activity subsequently affect synaptic strength and amygdala-dependent behaviors in early adulthood. In vivo intra-amygdala injection of an LTCC agonist at a critical period of postnatal neurodevelopment in male rat pups was used to examine synaptic plasticity of BLA excitatory inputs, expression of immediate early genes (IEGs) and glutamate receptors, as well as anxiety and social affiliation behaviors at a juvenile age. Results indicate that enhanced LTCC activity in immature BLA principal neurons trigger persistent changes in the developmental trajectory to modify membrane properties and synaptic LTP at later stages, concomitant with alterations in amygdala-related behavioral patterns.
Collapse
|
29
|
Eapen AV, Fernández-Fernández D, Georgiou J, Bortolotto ZA, Lightman S, Jane DE, Volianskis A, Collingridge GL. Multiple roles of GluN2D-containing NMDA receptors in short-term potentiation and long-term potentiation in mouse hippocampal slices. Neuropharmacology 2021; 201:108833. [PMID: 34637787 PMCID: PMC8607330 DOI: 10.1016/j.neuropharm.2021.108833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/07/2023]
Abstract
The GluN2 subunits of N-methyl-d-aspartate receptors (NMDARs) are key drivers of synaptic plasticity in the brain, where the particular GluN2 composition endows the NMDAR complex with distinct pharmacological and physiological properties. Compared to GluN2A and GluN2B subunits, far less is known about the role of the GluN2D subunit in synaptic plasticity. In this study, we have used a GluN2C/2D selective competitive antagonist, UBP145, in combination with a GluN2D global knockout (GluN2D KO) mouse line to study the contribution of GluN2D-containing NMDARs to short-term potentiation (STP) and long-term potentiation (LTP) in the CA1 region of mouse hippocampal slices. We made several distinct observations: First, GluN2D KO mice have higher levels of LTP compared to wild-type (WT) mice, an effect that was occluded by blockade of GABA receptor-mediated inhibition or by using a strong LTP induction protocol. Second, UBP145 partially inhibited LTP in WT but not GluN2D KO mice. Third, UBP145 inhibited a component of STP, termed STP2, in WT but not GluN2D KO mice. Taken together, these findings suggest an involvement for GluN2D-containing NMDARs in both STP and LTP in mouse hippocampus.
Collapse
Affiliation(s)
- Alen V Eapen
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.
| | - Diego Fernández-Fernández
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | - David E Jane
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Arturas Volianskis
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Bristol Medical School, University of Bristol, Bristol, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Graham L Collingridge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Kopach O, Voitenko N. Spinal AMPA receptors: Amenable players in central sensitization for chronic pain therapy? Channels (Austin) 2021; 15:284-297. [PMID: 33565904 PMCID: PMC7889122 DOI: 10.1080/19336950.2021.1885836] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
The activity-dependent trafficking of AMPA receptors (AMPAR) mediates synaptic strength and plasticity, while the perturbed trafficking of the receptors of different subunit compositions has been linked to memory impairment and to causing neuropathology. In the spinal cord, nociceptive-induced changes in AMPAR trafficking determine the central sensitization of the dorsal horn (DH): changes in AMPAR subunit composition compromise the balance between synaptic excitation and inhibition, rendering interneurons hyperexcitable to afferent inputs, and promoting Ca2+ influx into the DH neurons, thereby amplifying neuronal hyperexcitability. The DH circuits become over-excitable and carry out aberrant sensory processing; this causes an increase in pain sensation in central sensory pathways, giving rise to chronic pain syndrome. Current knowledge of the contribution of spinal AMPAR to the cellular mechanisms relating to chronic pain provides opportunities for developing target-based therapies for chronic pain intervention.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Present Address: Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, UK
| | - Nana Voitenko
- Department of Sensory Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
31
|
Xie MJ, Iwata K, Ishikawa Y, Nomura Y, Tani T, Murata K, Fukazawa Y, Matsuzaki H. Autistic-Like Behavior and Impairment of Serotonin Transporter and AMPA Receptor Trafficking in N-Ethylmaleimide Sensitive Factor Gene-Deficient Mice. Front Genet 2021; 12:748627. [PMID: 34745222 PMCID: PMC8563833 DOI: 10.3389/fgene.2021.748627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
Autism spectrum disorder (ASD), characterized by profound impairment in social interactions and communication skills, is the most common neurodevelopmental disorder. Many studies on the mechanisms underlying the development of ASD have focused on the serotonergic system; however, these studies have failed to completely elucidate the mechanisms. We previously identified N-ethylmaleimide-sensitive factor (NSF) as a new serotonin transporter (SERT)-binding protein and described its importance in SERT membrane trafficking and uptake in vitro. In the present study, we generated Nsf +/- mice and investigated their behavioral, neurotransmitter, and neurophysiological phenotypes in vivo. Nsf +/- mice exhibited abnormalities in sociability, communication, repetitiveness, and anxiety. Additionally, Nsf loss led to a decrease in membrane SERT expression in the raphe and accumulation of glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors at the synaptic membrane surface in the hippocampal CA1 region. We found that postsynaptic density and long-term depression were impaired in the hippocampal CA1 region of Nsf +/- mice. Taken together, these findings demonstrate that NSF plays a role in synaptic plasticity and glutamatergic and serotonergic systems, suggesting a possible mechanism by which the gene is linked to the pathophysiology of autistic behaviors.
Collapse
Affiliation(s)
- Min-Jue Xie
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka University, Osaka, Japan
| | - Keiko Iwata
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka University, Osaka, Japan
| | - Yasuyuki Ishikawa
- Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Japan
| | - Yuki Nomura
- School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tomomi Tani
- School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Koshi Murata
- Division of Brain Structures and Function, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yugo Fukazawa
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,Division of Brain Structures and Function, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideo Matsuzaki
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Hosaka T, Tsuji H, Kwak S. RNA Editing: A New Therapeutic Target in Amyotrophic Lateral Sclerosis and Other Neurological Diseases. Int J Mol Sci 2021; 22:10958. [PMID: 34681616 PMCID: PMC8536083 DOI: 10.3390/ijms222010958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
The conversion of adenosine to inosine in RNA editing (A-to-I RNA editing) is recognized as a critical post-transcriptional modification of RNA by adenosine deaminases acting on RNAs (ADARs). A-to-I RNA editing occurs predominantly in mammalian and human central nervous systems and can alter the function of translated proteins, including neurotransmitter receptors and ion channels; therefore, the role of dysregulated RNA editing in the pathogenesis of neurological diseases has been speculated. Specifically, the failure of A-to-I RNA editing at the glutamine/arginine (Q/R) site of the GluA2 subunit causes excessive permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors to Ca2+, inducing fatal status epilepticus and the neurodegeneration of motor neurons in mice. Therefore, an RNA editing deficiency at the Q/R site in GluA2 due to the downregulation of ADAR2 in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients suggests that Ca2+-permeable AMPA receptors and the dysregulation of RNA editing are suitable therapeutic targets for ALS. Gene therapy has recently emerged as a new therapeutic opportunity for many heretofore incurable diseases, and RNA editing dysregulation can be a target for gene therapy; therefore, we reviewed neurological diseases associated with dysregulated RNA editing and a new therapeutic approach targeting dysregulated RNA editing, especially one that is effective in ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
- Department of Internal Medicine, Tsukuba University Hospital Kensei Area Medical Education Center, Chikusei 308-0813, Ibaraki, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Ibaraki, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
33
|
Díaz-Alonso J, Nicoll RA. AMPA receptor trafficking and LTP: Carboxy-termini, amino-termini and TARPs. Neuropharmacology 2021; 197:108710. [PMID: 34271016 PMCID: PMC9122021 DOI: 10.1016/j.neuropharm.2021.108710] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
AMPA receptors (AMPARs) are fundamental elements in excitatory synaptic transmission and synaptic plasticity in the CNS. Long term potentiation (LTP), a form of synaptic plasticity which contributes to learning and memory formation, relies on the accumulation of AMPARs at the postsynapse. This phenomenon requires the coordinated recruitment of different elements in the AMPAR complex. Based on recent research reviewed herein, we propose an updated AMPAR trafficking and LTP model which incorporates both extracellular as well as intracellular mechanisms. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Javier Díaz-Alonso
- Department of Anatomy and Neurobiology, USA; Center for the Neurobiology of Learning and Memory, University of California at Irvine, USA.
| | - Roger A Nicoll
- Departments of Cellular and Molecular Pharmacology, USA; Physiology, University of California at San Francisco, USA.
| |
Collapse
|
34
|
Guo C, Ma YY. Calcium Permeable-AMPA Receptors and Excitotoxicity in Neurological Disorders. Front Neural Circuits 2021; 15:711564. [PMID: 34483848 PMCID: PMC8416103 DOI: 10.3389/fncir.2021.711564] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is one of the primary mechanisms of cell loss in a variety of diseases of the central and peripheral nervous systems. Other than the previously established signaling pathways of excitotoxicity, which depend on the excessive release of glutamate from axon terminals or over-activation of NMDA receptors (NMDARs), Ca2+ influx-triggered excitotoxicity through Ca2+-permeable (CP)-AMPA receptors (AMPARs) is detected in multiple disease models. In this review, both acute brain insults (e.g., brain trauma or spinal cord injury, ischemia) and chronic neurological disorders, including Epilepsy/Seizures, Huntington’s disease (HD), Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), chronic pain, and glaucoma, are discussed regarding the CP-AMPAR-mediated excitotoxicity. Considering the low expression or absence of CP-AMPARs in most cells, specific manipulation of the CP-AMPARs might be a more plausible strategy to delay the onset and progression of pathological alterations with fewer side effects than blocking NMDARs.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
35
|
Sathler MF, Khatri L, Roberts JP, Schmidt IG, Zaytseva A, Kubrusly RCC, Ziff EB, Kim S. Phosphorylation of AMPA receptor subunit GluA1 regulates clathrin-mediated receptor internalization. J Cell Sci 2021; 134:272078. [PMID: 34369573 DOI: 10.1242/jcs.257972] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/29/2021] [Indexed: 11/20/2022] Open
Abstract
Synaptic strength is altered during synaptic plasticity by controlling the number of AMPA receptors (AMPARs) at excitatory synapses. During long-term potentiation and synaptic up-scaling, AMPARs are accumulated at synapses to increase synaptic strength. Neuronal activity leads to phosphorylation of AMPAR subunit GluA1 and subsequent elevation of GluA1 surface expression, either by an increase in receptor forward trafficking to the synaptic membrane or a decrease in receptor internalization. However, the molecular pathways underlying GluA1 phosphorylation-induced elevation of surface AMPAR expression are not completely understood. Here, we employ fluorescence recovery after photobleaching (FRAP) to reveal that phosphorylation of GluA1 Serine 845 (S845) predominantly plays a role in receptor internalization than forward trafficking during synaptic plasticity. Notably, internalization of AMPARs depends upon the clathrin adaptor, AP2, which recruits cargo proteins into endocytic clathrin coated pits. In fact, we further reveal that an increase in GluA1 S845 phosphorylation by two distinct forms of synaptic plasticity diminishes the binding of the AP2 adaptor, reducing internalization, and resulting in elevation of GluA1 surface expression. We thus demonstrate a mechanism of GluA1 phosphorylation-regulated clathrin-mediated internalization of AMPARs.
Collapse
Affiliation(s)
- Matheus F Sathler
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA.,Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO, 80525, USA.,Neuroscience Program, Department of Physiology and Pharmacology, Rua São João Batista, 187, sala 428, Fluminense Federal University, Niterói, RJ, 24020-005, Brazil
| | - Latika Khatri
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | - Regina C C Kubrusly
- Neuroscience Program, Department of Physiology and Pharmacology, Rua São João Batista, 187, sala 428, Fluminense Federal University, Niterói, RJ, 24020-005, Brazil
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Seonil Kim
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO, 80525, USA.,Molecular, Cellular and Integrative Neurosciences Program
| |
Collapse
|
36
|
Alhowail AH, Pinky PD, Eggert M, Bloemer J, Woodie LN, Buabeid MA, Bhattacharya S, Jasper SL, Bhattacharya D, Dhanasekaran M, Escobar M, Arnold RD, Suppiramaniam V. Doxorubicin induces dysregulation of AMPA receptor and impairs hippocampal synaptic plasticity leading to learning and memory deficits. Heliyon 2021; 7:e07456. [PMID: 34296005 PMCID: PMC8282984 DOI: 10.1016/j.heliyon.2021.e07456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent used widely to treat a variety of malignant cancers. However, Dox chemotherapy is associated with several adverse effects, including "chemobrain," the observation that cancer patients exhibit through learning and memory difficulties extending even beyond treatment. This study investigated the effect of Dox treatment on learning and memory as well as hippocampal synaptic plasticity. Dox-treated mice (5 mg/kg weekly x 5) demonstrated impaired performance in the Y-maze spatial memory task and a significant reduction in hippocampal long-term potentiation. The deficit in synaptic plasticity was mirrored by deficits in the functionality of synaptic `α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) channels, including reduced probability of opening, decreased dwell open time, and increased closed times. Furthermore, a reduction in the AMPAR subunit GluA1 level, its downstream signaling molecule Ca2+/calmodulin-dependent protein kinase (CaMKII), and brain-derived neurotrophic factor (BDNF) were observed. This was also accompanied by an increase in extracellular signal regulated kinase (ERK) and protein kinase B (AKT) activation. Together these data suggest that Dox-induced cognitive impairments are at least partially due to alterations in the expression and functionality of the glutamatergic AMPAR system.
Collapse
Affiliation(s)
- Ahmad H. Alhowail
- Department of Pharmacology and Toxicology, Qassim University, Buraydah, Saudi Arabia
| | - Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Matthew Eggert
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, USA
| | - Lauren N. Woodie
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, Alabama, USA
- Institute for Diabetes, Obesity and Metabolism, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manal A. Buabeid
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Shanese L. Jasper
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | | | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Martha Escobar
- Department of Psychology, Oakland University, Rochester, MI, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL, USA
| |
Collapse
|
37
|
Gugustea R, Jia Z. Genetic manipulations of AMPA glutamate receptors in hippocampal synaptic plasticity. Neuropharmacology 2021; 194:108630. [PMID: 34089730 DOI: 10.1016/j.neuropharm.2021.108630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the principal mediators of fast excitatory synaptic transmission and they are required for various forms of synaptic plasticity, including long-term potentiation (LTP) and depression (LTD), which are key mechanisms of learning and memory. AMPARs are tetrameric complexes assembled from four subunits (GluA1-4), however, the lack of subunit-specific pharmacological tools has made the assessment of individual subunits difficult. The application of genetic techniques, particularly gene targeting, allows for precise manipulation and dissection of each subunit in the regulation of neuronal function and behaviour. In this review, we summarize studies using various mouse models with genetically altered AMPARs and focus on their roles in basal synaptic transmission, LTP, and LTD at the hippocampal CA1 synapse. These studies provide strong evidence that there are multiple forms of LTP and LTD at this synapse which can be induced by various induction protocols, and they are differentially regulated by different AMPAR subunits and domains. We conclude that it is necessary to delineate the mechanism of each of these forms of plasticity and their contribution to memory and brain disorders.
Collapse
Affiliation(s)
- Radu Gugustea
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Elevating the Levels of Calcium Ions Exacerbate Alzheimer's Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau. Int J Mol Sci 2021; 22:ijms22115900. [PMID: 34072743 PMCID: PMC8198078 DOI: 10.3390/ijms22115900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with a high incidence rate. The main pathological features of AD are β-amyloid plaques (APs), which are formed by β-amyloid protein (Aβ) deposition, and neurofibrillary tangles (NFTs), which are formed by the excessive phosphorylation of the tau protein. Although a series of studies have shown that the accumulation of metal ions, including calcium ions (Ca2+), can promote the formation of APs and NFTs, there is no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD. In view of this, the current review summarizes the mechanisms by which Ca2+ is transported into and out of cells and organelles, such as the cell, endoplasmic reticulum, mitochondrial and lysosomal membranes to affect the balance of intracellular Ca2+ levels. In addition, dyshomeostasis of Ca2+ plays an important role in modulating the pathogenesis of AD by influencing the production and aggregation of Aβ peptides and tau protein phosphorylation and the ways that disrupting the metabolic balance of Ca2+ can affect the learning ability and memory of people with AD. In addition, the effects of these mechanisms on the synaptic plasticity are also discussed. Finally, the molecular network through which Ca2+ regulates the pathogenesis of AD is introduced, providing a theoretical basis for improving the clinical treatment of AD.
Collapse
|
39
|
Alkadhi KA. NMDA receptor-independent LTP in mammalian nervous system. Prog Neurobiol 2021; 200:101986. [PMID: 33400965 DOI: 10.1016/j.pneurobio.2020.101986] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022]
Abstract
Long-term potentiation (LTP) of synaptic transmission is a form of activity-dependent synaptic plasticity that exists at most synapses in the nervous system. In the central nervous system (CNS), LTP has been recorded at numerous synapses and is a prime candidate mechanism associating activity-dependent plasticity with learning and memory. LTP involves long-lasting increase in synaptic strength with various underlying mechanisms. In the CNS, the predominant type of LTP is believed to be dependent on activation of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR), which is highly calcium-permeable. However, various forms of NMDAR-independent LTP have been identified in diverse areas of the nervous system. The NMDAR-independent LTP may require activation of glutamate metabotropic receptors (mGluR) or ionotropic receptors other than NMDAR such as nicotinic acetylcholine receptor (α7-nAChR), serotonin 5-HT3 receptor or calcium-permeable AMPA receptor (CP-AMPAR). In this review, NMDAR-independent LTP of various areas of the central and peripheral nervous systems are discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
40
|
Pitzer EM, Williams MT, Vorhees CV. Effects of pyrethroids on brain development and behavior: Deltamethrin. Neurotoxicol Teratol 2021; 87:106983. [PMID: 33848594 PMCID: PMC8440325 DOI: 10.1016/j.ntt.2021.106983] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/09/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Deltamethrin (DLM) is a Type II pyrethroid pesticide widely used in agriculture, homes, public spaces, and medicine. Epidemiological studies report that increased pyrethroid exposure during development is associated with neurobehavioral disorders. This raises concern about the safety of these chemicals for children. Few animal studies have explored the long-term effects of developmental exposure to DLM on the brain. Here we review the CNS effects of pyrethroids, with emphasis on DLM. Current data on behavioral and cognitive effects after developmental exposure are emphasized. Although, the acute mechanisms of action of DLM are known, how these translate to long-term effects is only beginning to be understood. But existing data clearly show there are lasting effects on locomotor activity, acoustic startle, learning and memory, apoptosis, and dopamine in mice and rats after early exposure. The most consistent neurochemical findings are reductions in the dopamine transporter and the dopamine D1 receptor. The data show that DLM is developmentally neurotoxic but more research on its mechanisms of long-term effects is needed.
Collapse
Affiliation(s)
- Emily M Pitzer
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America; Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27709, United States of America.
| | - Michael T Williams
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| | - Charles V Vorhees
- Dept. of Pediatrics, University of Cincinnati College of Medicine, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America.
| |
Collapse
|
41
|
Rodriguez-Chavez V, Moran J, Molina-Salinas G, Zepeda Ruiz WA, Rodriguez MC, Picazo O, Cerbon M. Participation of Glutamatergic Ionotropic Receptors in Excitotoxicity: The Neuroprotective Role of Prolactin. Neuroscience 2021; 461:180-193. [PMID: 33647379 DOI: 10.1016/j.neuroscience.2021.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023]
Abstract
Glutamate (Glu) is known as the main excitatory neurotransmitter in the central nervous system. It can trigger a series of processes ranging from synaptic plasticity to neurophysiological regulation. To carry out its functions, Glu acts via interaction with its cognate receptors, which are ligand-dependent. Glutamatergic receptors include ionotropic and metabotropic categories. The first allows the passage of ions through the postsynaptic membrane, while the metabotropic subtype activates signaling cascades through second messengers. It is well known that an excess of extracellular Glu concentration induces overstimulation of ionotropic glutamatergic receptors (iGluRs), causing the excitotoxicity phenomenon that leads to neuronal damage and cell death. Excitotoxicity plays a crucial role in different brain pathologies such as brain strokes, epilepsy and neurodegenerative disorders. However, until now, there are no effective neuroprotective compounds to prevent or rescue neurons from excitotoxicity. Thus, the continuous elucidation of the molecular mechanisms underlying excitotoxicity in order to prevent damage or neuronal death is necessary. Therefore, the aim of this review was to summarize the current knowledge regarding iGluRs, while describing their structures and molecular mechanisms of action, including their role in excitotoxicity, as well as the current strategies to reduce excitotoxic damage. Particularly, strategies mediated by prolactin, a somatotropin family-related hormone that displays a significant neuroprotective effect against both Glu and kainic acid-induced excitotoxicity in the hippocampus, are described. Finally, the role of prolactin as a possible molecule in the treatment of excitotoxicity in neurological diseases is discussed.
Collapse
Affiliation(s)
- V Rodriguez-Chavez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - J Moran
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - G Molina-Salinas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - W A Zepeda Ruiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico
| | - M C Rodriguez
- Instituto Nacional de Salud Pública, CISEI, Cuernavaca, Morelos 62100, Mexico
| | - O Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Sto. Tomás, 11340 Ciudad de México, Mexico.
| | - M Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico.
| |
Collapse
|
42
|
Campanelli F, Laricchiuta D, Natale G, Marino G, Calabrese V, Picconi B, Petrosini L, Calabresi P, Ghiglieri V. Long-Term Shaping of Corticostriatal Synaptic Activity by Acute Fasting. Int J Mol Sci 2021; 22:ijms22041916. [PMID: 33671915 PMCID: PMC7918979 DOI: 10.3390/ijms22041916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Food restriction is a robust nongenic, nonsurgical and nonpharmacologic intervention known to improve health and extend lifespan in various species. Food is considered the most essential and frequently consumed natural reward, and current observations have demonstrated homeostatic responses and neuroadaptations to sustained intermittent or chronic deprivation. Results obtained to date indicate that food deprivation affects glutamatergic synapses, favoring the insertion of GluA2-lacking α-Ammino-3-idrossi-5-Metil-4-idrossazol-Propionic Acid receptors (AMPARs) in postsynaptic membranes. Despite an increasing number of studies pointing towards specific changes in response to dietary restrictions in brain regions, such as the nucleus accumbens and hippocampus, none have investigated the long-term effects of such practice in the dorsal striatum. This basal ganglia nucleus is involved in habit formation and in eating behavior, especially that based on dopaminergic control of motivation for food in both humans and animals. Here, we explored whether we could retrieve long-term signs of changes in AMPARs subunit composition in dorsal striatal neurons of mice acutely deprived for 12 hours/day for two consecutive days by analyzing glutamatergic neurotransmission and the principal forms of dopamine and glutamate-dependent synaptic plasticity. Overall, our data show that a moderate food deprivation in experimental animals is a salient event mirrored by a series of neuroadaptations and suggest that dietary restriction may be determinant in shaping striatal synaptic plasticity in the physiological state.
Collapse
Affiliation(s)
- Federica Campanelli
- Dipartmento di Medicina, Università di Perugia, 06129 Perugia, Italy; (F.C.); (G.N.); (G.M.); (V.C.)
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Daniela Laricchiuta
- Laboratorio di Neurofisiologia Sperimentale e del Comportamento, IRCCS Fondazione Santa Lucia c/o CERC, 00143 Rome, Italy; (D.L.); (L.P.)
| | - Giuseppina Natale
- Dipartmento di Medicina, Università di Perugia, 06129 Perugia, Italy; (F.C.); (G.N.); (G.M.); (V.C.)
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Gioia Marino
- Dipartmento di Medicina, Università di Perugia, 06129 Perugia, Italy; (F.C.); (G.N.); (G.M.); (V.C.)
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Valeria Calabrese
- Dipartmento di Medicina, Università di Perugia, 06129 Perugia, Italy; (F.C.); (G.N.); (G.M.); (V.C.)
- IRCCS San Raffaele Pisana, Rome 00176, Italy;
| | - Barbara Picconi
- IRCCS San Raffaele Pisana, Rome 00176, Italy;
- Università Telematica San Raffaele, 00166 Rome, Italy
| | - Laura Petrosini
- Laboratorio di Neurofisiologia Sperimentale e del Comportamento, IRCCS Fondazione Santa Lucia c/o CERC, 00143 Rome, Italy; (D.L.); (L.P.)
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Clinica Neurologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Veronica Ghiglieri
- Laboratorio di Neurofisiologia Sperimentale e del Comportamento, IRCCS Fondazione Santa Lucia c/o CERC, 00143 Rome, Italy; (D.L.); (L.P.)
- Università Telematica San Raffaele, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
43
|
Park P, Kang H, Georgiou J, Zhuo M, Kaang BK, Collingridge GL. Further evidence that CP-AMPARs are critically involved in synaptic tag and capture at hippocampal CA1 synapses. Mol Brain 2021; 14:26. [PMID: 33526063 PMCID: PMC7851922 DOI: 10.1186/s13041-021-00737-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/16/2021] [Indexed: 11/10/2022] Open
Abstract
The synaptic tag and capture (STC) hypothesis provides an important theoretical basis for understanding the synaptic basis of associative learning. We recently provided pharmacological evidence that calcium-permeable AMPA receptors (CP-AMPARs) are a crucial component of this form of heterosynaptic metaplasticity. Here we have investigated two predictions that arise on the basis of CP-AMPARs serving as a trigger of STC. Firstly, we compared the effects of the order in which we delivered a strong theta burst stimulation (TBS) protocol (75 pulses) and a weak TBS protocol (15 pulses) to two independent inputs. We only observed significant heterosynaptic metaplasticity when the strong TBS preceded the weak TBS. Second, we found that pausing stimulation following either the sTBS or the wTBS for ~20 min largely eliminates the heterosynaptic metaplasticity. These observations are consistent with a process that is triggered by the synaptic insertion of CP-AMPARs and provide a framework for establishing the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Pojeong Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Glutamate Receptor Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Heather Kang
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Glutamate Receptor Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Min Zhuo
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Bong-Kiun Kaang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Graham L Collingridge
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.
- Glutamate Receptor Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
44
|
Yang Y, Okada S, Sakurai M. Adenosine-to-inosine RNA editing in neurological development and disease. RNA Biol 2021; 18:999-1013. [PMID: 33393416 DOI: 10.1080/15476286.2020.1867797] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is one of the most prevalent post-transcriptional RNA modifications in metazoan. This reaction is catalysed by enzymes called adenosine deaminases acting on RNA (ADARs). RNA editing is involved in the regulation of protein function and gene expression. The numerous A-to-I editing sites have been identified in both coding and non-coding RNA transcripts. These editing sites are also found in various genes expressed in the central nervous system (CNS) and play an important role in neurological development and brain function. Aberrant regulation of RNA editing has been associated with the pathogenesis of neurological and psychiatric disorders, suggesting the physiological significance of RNA editing in the CNS. In this review, we discuss the current knowledge of editing on neurological disease and development.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Shunpei Okada
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Masayuki Sakurai
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| |
Collapse
|
45
|
RAB39B-mediated trafficking of the GluA2-AMPAR subunit controls dendritic spine maturation and intellectual disability-related behaviour. Mol Psychiatry 2021; 26:6531-6549. [PMID: 34035473 PMCID: PMC8760075 DOI: 10.1038/s41380-021-01155-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Mutations in the RAB39B gene cause X-linked intellectual disability (XLID), comorbid with autism spectrum disorders or early Parkinson's disease. One of the functions of the neuronal small GTPase RAB39B is to drive GluA2/GluA3 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) maturation and trafficking, determining AMPAR subunit composition at glutamatergic postsynaptic neuronal terminals. Taking advantage of the Rab39b knockout murine model, we show that a lack of RAB39B affects neuronal dendritic spine refinement, prompting a more Ca2+-permeable and excitable synaptic network, which correlates with an immature spine arrangement and behavioural and cognitive alterations in adult mice. The persistence of immature circuits is triggered by increased hypermobility of the spine, which is restored by the Ca2+-permeable AMPAR antagonist NASPM. Together, these data confirm that RAB39B controls AMPAR trafficking, which in turn plays a pivotal role in neuronal dendritic spine remodelling and that targeting Ca2+-permeable AMPARs may highlight future pharmaceutical interventions for RAB39B-associated disease conditions.
Collapse
|
46
|
Banke TG, Barria A. Transient Enhanced GluA2 Expression in Young Hippocampal Neurons of a Fragile X Mouse Model. Front Synaptic Neurosci 2020; 12:588295. [PMID: 33343326 PMCID: PMC7745073 DOI: 10.3389/fnsyn.2020.588295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
AMPA-type glutamate receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits and play important roles in synaptic transmission and plasticity. Here, we have investigated the development of AMPAR-mediated synaptic transmission in the hippocampus of the Fmr1 knock-out (KO) mouse, a widely used model of Fragile X syndrome (FXS). FXS is the leading monogenic cause of intellectual disability and autism spectrum disorders (ASD) and it is considered a neurodevelopmental disorder. For that reason, we investigated synaptic properties and dendritic development in animals from an early stage when synapses are starting to form up to adulthood. We found that hippocampal CA1 pyramidal neurons in the Fmr1-KO mouse exhibit a higher AMPAR-NMDAR ratio early in development but reverses to normal values after P13. This increase was accompanied by a larger presence of the GluA2-subunit in synaptic AMPARs that will lead to altered Ca2+ permeability of AMPARs that could have a profound impact upon neural circuits, learning, and diseases. Following this, we found that young KO animals lack Long-term potentiation (LTP), a well-understood model of synaptic plasticity necessary for proper development of circuits, and exhibit an increased frequency of spontaneous miniature excitatory postsynaptic currents, a measure of synaptic density. Furthermore, post hoc morphological analysis of recorded neurons revealed altered dendritic branching in the KO group. Interestingly, all these anomalies are transitory and revert to normal values in older animals. Our data suggest that loss of FMRP during early development leads to temporary upregulation of the GluA2 subunit and this impacts synaptic plasticity and altering morphological dendritic branching.
Collapse
Affiliation(s)
- Tue G Banke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
47
|
Liu A, Ji H, Ren Q, Meng Y, Zhang H, Collingride G, Xie W, Jia Z. The Requirement of the C-Terminal Domain of GluA1 in Different Forms of Long-Term Potentiation in the Hippocampus Is Age-Dependent. Front Synaptic Neurosci 2020; 12:588785. [PMID: 33192442 PMCID: PMC7661473 DOI: 10.3389/fnsyn.2020.588785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Long-term potentiation (LTP) at glutamatergic synapses is an extensively studied form of long-lasting synaptic plasticity widely regarded as the cellular basis for learning and memory. At the CA1 synapse, there are multiple forms of LTP with distinct properties. Although AMPA glutamate receptors (AMPARs) are a key target of LTP expression, whether they are required in all forms of LTP remains unclear. To address this question, we have used our recently developed mouse line, GluA1C2KI, where the c-terminal domain (CTD) of the endogenous GluA1 is replaced by that of GluA2. Unlike traditional GluA1 global or conditional KO mice, GluA1C2KI mice have no changes in basal AMPAR properties or synaptic transmission allowing a better assessment of GluA1 in synaptic plasticity. We previously showed that these mice are impaired in LTP induced by high-frequency stimulation (HFS-LTP), but whether other forms of LTP are also affected in these mice is unknown. In this study, we compared various forms of LTP at CA1 synapses between GluA1C2KI and wild-type littermates by using several induction protocols. We show that HFS-LTP is impaired in both juvenile and adult GluA1C2KI mice. The LTP induced by theta-burst stimulation (TBS-LTP) is also abolished in juvenile GluA1C2KI mice. Interestingly, TBS-LTP can still be induced in adult GluA1C2KI mice, but its mechanisms are altered becoming more sensitive to protein synthesis and the extracellular signal-regulated kinase (ERK) inhibitors compared to wild type (WT) control. The GluA1C2KI mice are also differentially altered in several forms of LTP induced under whole-cell recording paradigms. These results indicate that the CTD of GluA1 is differentially involved in different forms of LTP at CA1 synapse highlighting the complexity and adaptative potential of LTP expression mechanisms in the hippocampus.
Collapse
Affiliation(s)
- An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Jiangsu Co-Innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Hong Ji
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Jiangsu Co-Innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Qiaoyun Ren
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Jiangsu Co-Innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Yanghong Meng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haiwang Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Graham Collingride
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Jiangsu Co-Innovation Center of Neuroregeneration, Southeast University, Nanjing, China
| | - Zhengping Jia
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
48
|
Lim SH, Shin S, Kim MH, Kim EC, Lee DY, Moon J, Park HY, Ryu YK, Kang YM, Kang YJ, Kim TH, Lee NY, Kim NS, Yu DY, Shim I, Gondo Y, Satake M, Kim E, Kim KS, Min SS, Lee JR. Depression-like behaviors induced by defective PTPRT activity through dysregulated synaptic functions and neurogenesis. J Cell Sci 2020; 133:jcs243972. [PMID: 32938684 DOI: 10.1242/jcs.243972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
PTPRT has been known to regulate synaptic formation and dendritic arborization of hippocampal neurons. PTPRT-/- null and PTPRT-D401A mutant mice displayed enhanced depression-like behaviors compared with wild-type mice. Transient knockdown of PTPRT in the dentate gyrus enhanced the depression-like behaviors of wild-type mice, whereas rescued expression of PTPRT ameliorated the behaviors of PTPRT-null mice. Chronic stress exposure reduced expression of PTPRT in the hippocampus of mice. In PTPRT-deficient mice the expression of GluR2 (also known as GRIA2) was attenuated as a consequence of dysregulated tyrosine phosphorylation, and the long-term potentiation at perforant-dentate gyrus synapses was augmented. The inhibitory synaptic transmission of the dentate gyrus and hippocampal GABA concentration were reduced in PTPRT-deficient mice. In addition, the hippocampal expression of GABA transporter GAT3 (also known as SLC6A11) was decreased, and its tyrosine phosphorylation was increased in PTPRT-deficient mice. PTPRT-deficient mice displayed reduced numbers and neurite length of newborn granule cells in the dentate gyrus and had attenuated neurogenic ability of embryonic hippocampal neural stem cells. In conclusion, our findings show that the physiological roles of PTPRT in hippocampal neurogenesis, as well as synaptic functions, are involved in the pathogenesis of depressive disorder.
Collapse
Affiliation(s)
- So-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Sangyep Shin
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Myoung-Hwan Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eung Chang Kim
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jeonghee Moon
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Young-Mi Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Yu Jeong Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Tae Hwan Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Na-Yoon Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Nam-Soon Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Dae-Yeul Yu
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yoichi Gondo
- Department of Molecular Life Sciences, Tokai University School of Medicine, Shimo-Kasuya, Isehara 259-1193, Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Jae-Ran Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
49
|
Guadagno A, Verlezza S, Long H, Wong TP, Walker CD. It Is All in the Right Amygdala: Increased Synaptic Plasticity and Perineuronal Nets in Male, But Not Female, Juvenile Rat Pups after Exposure to Early-Life Stress. J Neurosci 2020; 40:8276-8291. [PMID: 32978287 PMCID: PMC7577595 DOI: 10.1523/jneurosci.1029-20.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
Early-life stress (ELS) is associated with increased vulnerability to mental disorders. The basolateral amygdala (BLA) plays a critical role in fear conditioning and is extremely sensitive to ELS. Using a naturalistic rodent model of ELS, the limited bedding paradigm (LB) between postnatal days 1-10, we previously documented that LB male, but not female preweaning rat pups display increased BLA neuron spine density paralleled with enhanced evoked synaptic responses and altered BLA functional connectivity. Since ELS effects are often sexually dimorphic and amygdala processes exhibit hemispheric asymmetry, we investigated changes in synaptic plasticity and neuronal excitability of BLA neurons in vitro in the left and right amygdala of postnatal days 22-28 male and female offspring from normal bedding or LB mothers. We report that LB conditions enhanced synaptic plasticity in the right, but not the left BLA of males exclusively. LB males also showed increased perineuronal net density, particularly around parvalbumin (PV) cells, and impaired fear-induced activity of PV interneurons only in the right BLA. Action potentials fired from right BLA neurons of LB females displayed slower maximal depolarization rates and decreased amplitudes compared with normal bedding females, concomitant with reduced NMDAR GluN1 subunit expression in the right BLA. In LB males, reduced GluA2 expression in the right BLA might contribute to the enhanced LTP. These findings suggest that LB differentially programs synaptic plasticity and PV/perineuronal net development in the left and right BLA. Furthermore, our study demonstrates that the effects of ELS exposure on BLA synaptic function are sexually dimorphic and possibly recruiting different mechanisms.SIGNIFICANCE STATEMENT Early-life stress (ELS) induces long-lasting consequences on stress responses and emotional regulation in humans, increasing vulnerability to the development of psychopathologies. The effects of ELS in a number of brain regions, including the amygdala, are often sexually dimorphic, and have been reproduced using the rodent limited bedding paradigm of early adversity. The present study examines sex differences in synaptic plasticity and cellular activation occurring in the developing left and right amygdala after limited bedding exposure, a phenomenon that could shape long-term emotional behavioral outcomes. Studying how ELS selectively produces effects in one amygdala hemisphere during a critical period of brain development could guide further investigation into sex-dependent mechanisms and allow for more targeted and improved treatment of stress-and emotionality-related disorders.
Collapse
Affiliation(s)
- Angela Guadagno
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A 0G4, Canada
| | - Silvanna Verlezza
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Hong Long
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Tak Pan Wong
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 0G4, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 0G4, Canada
| |
Collapse
|
50
|
Dolgacheva LP, Tuleukhanov ST, Zinchenko VP. Participation of Ca2+-Permeable AMPA Receptors in Synaptic Plasticity. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747820030046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|