1
|
Dovale-Rosabal G, Espinosa A, Rodríguez A, Barriga A, Palomino-Calderón A, Romero N, Troncoso RH, Aubourg SP. Effect of Structured Phenolic Lipids with EPA/DHA and Gallic Acid against Metabolic-Associated Fatty Liver Disease (MAFLD) in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227702. [PMID: 36431812 PMCID: PMC9696657 DOI: 10.3390/molecules27227702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Obesity is the leading risk factor for developing metabolic (dysfunction)-associated fatty liver disease (MAFLD). The food industry has an essential role in searching for new strategies to improve primary food sources to revert some of the metabolic alterations induced by obesity. There is consistent evidence that long-chain polyunsaturated fatty acids (n-3 LCPUFA) belonging to the n-3 series, i.e., eicosapentaenoic (20:5n-3, EPA) and docosahexaenoic (22:6n-3, DHA) acids, could revert some alterations associated with obesity-induced metabolic diseases. A relevant tool is the synthesis of structured acylglycerols (sAG), which include EPA or DHA at the sn-2 position. On the other hand, it has been reported that a crucial role of antioxidants is the reversion of MAFLD. In this work, we studied the effects of new molecules incorporating gallic acid (GA) into EPA/DHA-rich structured lipids. Mice were fed with a high-fat diet (60%) for three months and were then divided into five groups for supplementation with sAG and sAG structured with gallic acid (structured phenolic acylglycerols, sPAG). sPAG synthesis was optimized using a 2²-screening factorial design based on the response surface methodology (RSM). Our results show that treatment of sPAG was effective in decreasing visceral fat, fasting glycemia, fasting insulin, suggesting that this new molecule has a potential use in the reversal of MAFLD-associated alterations.
Collapse
Affiliation(s)
- Gretel Dovale-Rosabal
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Alejandra Espinosa
- Escuela de Medicina, Campus San Felipe, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Department of Medical Technology, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380000, Chile
| | - Alicia Rodríguez
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile
- Correspondence: (A.R.); (S.P.A.)
| | - Andrés Barriga
- Centre of Studies for the Development of Chemistry (CEPEDEQ), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Alan Palomino-Calderón
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Carlos Lorca Tobar 964, Santiago 8380494, Chile
| | - Rodrigo Hernán Troncoso
- Laboratory of Nutrition and Physical Activity (LABINAF), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830490, Chile
| | - Santiago Pedro Aubourg
- Department of Food Technology, Marine Research Institute (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
- Correspondence: (A.R.); (S.P.A.)
| |
Collapse
|
2
|
Synthesis of EPA- and DHA-Enriched Structured Acylglycerols at the sn-2 Position Starting from Commercial Salmon Oil by Enzymatic Lipase Catalysis under Supercritical Conditions. Molecules 2021; 26:molecules26113094. [PMID: 34067234 PMCID: PMC8196811 DOI: 10.3390/molecules26113094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/05/2022] Open
Abstract
There is consistent evidence that long-chain polyunsaturated fatty acids (LCPUFA) belonging to the n-3 series, i.e., eicosapentaenoic (20:5n-3, EPA) and docosahexaenoic (22:6n-3, DHA) acids, decrease the risk of heart, circulatory and inflammatory diseases. Furthermore, the bioavailability of such fatty acids has been shown to depend on their location in triacylglycerol (TG) molecules at the sn-2 position. Consequently, great attention has been accorded to the synthesis of structured acylglycerols (sAG), which include EPA or DHA at the sn-2 position. The aim of this work was to synthesize sAG starting from deodorized refined commercial salmon oil. For this, immobilized lipase B from Candida antarctica (nonspecific) was used as a catalyst for the intra–interesterification process under CO2 supercritical conditions (CO2SC). According to the CO2SC reaction time, three different fractions including sAG compounds were obtained. The location of EPA and DHA at the sn-2 position in the resulting glycerol backbone was identified by mass spectrometry (MALDI-TOF) analysis. In all fractions obtained, a marked decrease in the starting TG content was observed, while an increase in the DHA content at the sn-2 position was detected. The fraction obtained after the longest reaction time period (2 h) led to the highest yield of sn-2 position DHA in the resulting sAG molecule.
Collapse
|
3
|
Supercritical carbon dioxide as solvent in the lipase-catalyzed ethanolysis of fish oil: Kinetic study. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2016.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Hu L, Llibin S, Li J, Qi L, Zhang X, Yu D, Walid E, Jiang L. Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2. Bioprocess Biosyst Eng 2015; 38:2343-7. [DOI: 10.1007/s00449-015-1469-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
|
5
|
Rubio-Rodríguez N, Beltrán S, Jaime I, de Diego SM, Sanz MT, Carballido JR. Production of omega-3 polyunsaturated fatty acid concentrates: A review. INNOV FOOD SCI EMERG 2010. [DOI: 10.1016/j.ifset.2009.10.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Zarevúcka M, Wimmer Z. Plant products for pharmacology: application of enzymes in their transformations. Int J Mol Sci 2008; 9:2447-2473. [PMID: 19330086 PMCID: PMC2635649 DOI: 10.3390/ijms9122447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/24/2008] [Accepted: 12/03/2008] [Indexed: 12/16/2022] Open
Abstract
Different plant products have been subjected to detailed investigations due to their increasing importance for improving human health. Plants are sources of many groups of natural products, of which large number of new compounds has already displayed their high impact in human medicine. This review deals with the natural products which may be found dissolved in lipid phase (phytosterols, vitamins etc.). Often subsequent convenient transformation of natural products may further improve the pharmacological properties of new potential medicaments based on natural products. To respect basic principles of sustainable and green procedures, enzymes are often employed as efficient natural catalysts in such plant product transformations. Transformations of lipids and other natural products under the conditions of enzyme catalysis show increasing importance in environmentally safe and sustainable production of pharmacologically important compounds. In this review, attention is focused on lipases, efficient and convenient biocatalysts for the enantio- and regioselective formation / hydrolysis of ester bond in a wide variety of both natural and unnatural substrates, including plant products, eg. plant oils and other natural lipid phase compounds. The application of enzymes for preparation of acylglycerols and transformation of other natural products provides big advantage in comparison with employing of conventional chemical methods: Increased selectivity, higher product purity and quality, energy conservation, elimination of heavy metal catalysts, and sustainability of the employed processes, which are catalyzed by enzymes. Two general procedures are used in the transformation of lipid-like natural products: (a) Hydrolysis/alcoholysis of triacylglycerols and (b) esterification of glycerol. The reactions can be performed under conventional conditions or in supercritical fluids/ionic liquids. Enzyme-catalyzed reactions in supercritical fluids combine the advantages of biocatalysts (substrate specificity under mild reaction conditions) and supercritical fluids (high mass-transfer rate, easy separation of reaction products from the solvent, environmental benefits based on excluding organic solvents from the production process).
Collapse
Affiliation(s)
- Marie Zarevúcka
- Institute of Organic Chemistry and Biochemistry, AS CR, Flemingovo náměstí 2, 166 10 Prague 6 – Dejvice, Czech Republic. E-Mail:
| | - Zdeněk Wimmer
- Institute of Experimental Botany AS CR, Isotope Laboratory, Vídeňská 1083, 142 20 Prague 4 – Krč, Czech Republic
| |
Collapse
|
7
|
|
8
|
Weber A, Catchpole O, Eltringham W. Supercritical fluid assisted, integrated process for the synthesis and separation of different lipid derivatives. J Sep Sci 2008; 31:1346-51. [DOI: 10.1002/jssc.200800082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Nei HZN, Fatemi S, Mehrnia MR, Salimi A. Mathematical modeling and study of mass transfer parameters in supercritical fluid extraction of fatty acids from Trout powder. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Weber A, Lee EH, Shin SK, Chun BS. A Supercritical Fluid-Assisted, Integrated Process for By-Products from Fat and Lipid Production. Chem Eng Technol 2007. [DOI: 10.1002/ceat.200700002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Kondo M, Rezaei K, Temelli F, Goto M. On-line Extraction−Reaction of Canola Oil with Ethanol by Immobilized Lipase in SC-CO2. Ind Eng Chem Res 2002. [DOI: 10.1021/ie010816o] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mitsuru Kondo
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan, and Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Karamat Rezaei
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan, and Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Feral Temelli
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan, and Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Motonobu Goto
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan, and Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| |
Collapse
|
12
|
Nakaya H, Nakamura K, Miyawaki O. Lipase-catalyzed esterification of stearic acid with ethanol, and hydrolysis of ethyl stearate, near the critical point in supercritical carbon dioxide. J AM OIL CHEM SOC 2002. [DOI: 10.1007/s11746-002-0429-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Hideki Nakaya
- ; Department of Applied Biological Chemistry; The University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Kozo Nakamura
- ; Department of Applied Biological Chemistry; The University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Osato Miyawaki
- ; Department of Applied Biological Chemistry; The University of Tokyo; 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| |
Collapse
|