1
|
Foglia NO, Maganas D, Neese F. Going beyond the Electric-Dipole Approximation in the Calculation of Absorption and (Magnetic) Circular Dichroism Spectra including Scalar Relativistic and Spin-Orbit Coupling Effects. J Chem Phys 2022; 157:084120. [DOI: 10.1063/5.0094709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, a time-dependent density functional theory (TD-DFT) scheme for computing optical spectroscopic properties in the framework of linearly and circularly polarized light is presented. The scheme is based on a previously formulated theory for predicting optical absorption and magnetic circular dichroism (MCD) spectra. The scheme operates in the framework of the full semi-classical field-matter interaction operator, thus generating a powerful and general computational scheme capable of computing the absorption (ABS), circular dichroism (CD), and MCD spectra. In addition, our implementation includes the treatment of relativistic effects in the framework of quasidegenerate perturbation theory, which accounts for scalar relativistic effects (in the self-consistent field step) and spin-orbit coupling (in the TD-DFT step), as well as external magnetic field perturbations. Hence, this formalism is also able to probe spin-forbidden transitions. The random orientations of molecules are taken into account by a semi-numerical approach involving a Lebedev numerical quadrature alongside analytical integration. It is demonstrated the numerical quadrature requires as few as 14 points for satisfactory converged results thus leading to a highly efficient scheme, while the calculation of the exact transition moments creates no computational bottlenecks. It is demonstrated that at zero magnetic field, the CD spectrum is recovered while the sum of left and right circularly polarized light contributions provides the linear absorption spectrum. The virtues of this efficient and general protocol are demonstrated on a selected set of organic molecules where the various contributions to the spectral intensities have been analyzed in detail.
Collapse
Affiliation(s)
- Nicolas Oscar Foglia
- Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Germany
| | | | - Frank Neese
- Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Germany
| |
Collapse
|
2
|
Ghidinelli S, Abbate S, Santoro E, Belviso S, Longhi G. Characterization of "Free Base" and Metal Complex Thioalkyl Porphyrazines by Magnetic Circular Dichroism and TDDFT Calculations. J Phys Chem B 2021; 125:264-280. [PMID: 33351631 PMCID: PMC8016196 DOI: 10.1021/acs.jpcb.0c09277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
UV–vis
absorption and magnetic circular dichroism (MCD)
spectra of octakis thioethyl “free base” porphyrazine
H2OESPz and its metal complexes MOESPz (M = Mg, Zn, Ni,
Pd, Cu), as well as of [MnOESPz(SH)] were recorded. In the last case,
MCD proved to have quite good sensitivity to the coordination of this
complex with 1-methylimidazole (1-mim) in benzene. Time-dependent
density functional theory (TDDFT) calculations were carried out for
the considered porphyrazine complexes and showed good performance
on comparing with MCD and UV–vis experimental spectra, even
in the open-shell Cu and Mn cases. Calculations accounted for the
red shift observed in the thioalkyl compounds and allowed us to reveal
the role of sulfur atoms in spectroscopically relevant molecular orbitals
and to highlight the importance of the conformations of the thioethyl
external groups. Calculated MCD spectra of [MnOESPz(SH)] confirm the
Mn(III) → Mn(II) redox process, which leads to the [Mn(OESPz)(1-mim)2] species, and the relevance of the spin state for MCD is
revealed.
Collapse
Affiliation(s)
- Simone Ghidinelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Research Unit of Brescia, CNR, Istituto Nazionale di Ottica (INO), c/o CSMT, via Branze 45, 25123 Brecia, Italy
| | - Ernesto Santoro
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Dipartimento di Scienze, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Sandra Belviso
- Dipartimento di Scienze, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Research Unit of Brescia, CNR, Istituto Nazionale di Ottica (INO), c/o CSMT, via Branze 45, 25123 Brecia, Italy
| |
Collapse
|
3
|
Gorski A, Kijak M, Zenkevich E, Knyukshto V, Starukhin A, Semeikin A, Lyubimova T, Roliński T, Waluk J. Magnetic Circular Dichroism of meso-Phenyl-Substituted Pd-Octaethylporphyrins. J Phys Chem A 2020; 124:8144-8158. [PMID: 32935546 PMCID: PMC7584373 DOI: 10.1021/acs.jpca.0c06669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Absorption and magnetic circular dichroism (MCD) spectra have been measured and theoretically simulated for a series of palladium octaethylporphyrins substituted at the meso positions with phenyl groups (n = 0-4). Analysis of the spectra included the perimeter model and time-dependent density functional theory (TDDFT) calculations. With the increasing number of phenyl substituents, the molecule is transformed from a positive hard (ΔHOMO > ΔLUMO) to a soft (ΔHOMO ≈ ΔLUMO) chromophore. This is manifested by a drastic decrease of the absorption intensity in the 0-0 region of the Q-band and by the strongly altered ratio of MCD intensities in the Q and Soret regions. Such behavior can be readily predicted using perimeter model, by analyzing frontier orbital shifts caused by various perturbations: alkyl and aryl substitution, insertion of a metal, and deviations from planarity. TDDFT calculations confirm the trends predicted by the perimeter model, but they fail in cases of less symmetrical derivatives to properly reproduce the MCD spectra in the Soret region. Our results confirm the power of the perimeter model in predicting absorption and MCD spectra of large organic molecules, porphyrins in particular. We also postulate, contrary to previous works, that the isolated porphyrin dianion is not a soft chromophore, but rather a strongly positive-hard one.
Collapse
Affiliation(s)
- A Gorski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - M Kijak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - E Zenkevich
- National Technical University of Belarus, Department of Information Technologies and Robotics, Nezavisimosti Ave., 65, Minsk 220013, Belarus
| | - V Knyukshto
- B.I. Stepanov Institute of Physics, National Academy of Science of Belarus, Nezavisimosti Ave., 70, 220072 Minsk, Belarus
| | - A Starukhin
- B.I. Stepanov Institute of Physics, National Academy of Science of Belarus, Nezavisimosti Ave., 70, 220072 Minsk, Belarus
| | - A Semeikin
- Ivanovo State University of Chemistry and Technology, Prospect Sheremetjevskii 7, 153000 Ivanovo, Russia
| | - T Lyubimova
- Ivanovo State University of Chemistry and Technology, Prospect Sheremetjevskii 7, 153000 Ivanovo, Russia
| | - T Roliński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - J Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
4
|
Heit YN, Sergentu DC, Autschbach J. Magnetic circular dichroism spectra of transition metal complexes calculated from restricted active space wavefunctions. Phys Chem Chem Phys 2019; 21:5586-5597. [DOI: 10.1039/c8cp07849a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Multiconfigurational restricted active space (RAS) self-consistent field (SCF) or configuration interaction (CI) approaches, augmented with a treatment of spin–orbit coupling by state interaction, were used to calculate the magnetic circular dichroism , , and/or for closed- and open-shell transition metal complexes.
Collapse
Affiliation(s)
- Yonaton N. Heit
- Department of Chemistry
- University at Buffalo, State University of New York
- Buffalo
- USA
| | | | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo, State University of New York
- Buffalo
- USA
| |
Collapse
|
5
|
|
6
|
Carpenter SH, Neidig ML. A Physical-Inorganic Approach for the Elucidation of Active Iron Species and Mechanism in Iron-Catalyzed Cross-Coupling. Isr J Chem 2017; 57:1106-1116. [PMID: 29622838 DOI: 10.1002/ijch.201700036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Detailed studies of iron speciation and mechanism in iron-catalyzed cross-coupling reactions are critical for providing the necessary fundamental insight to drive new reaction development. However, such insight is challenging to obtain due to the prevalence of mixtures of unstable, paramagnetic organoiron species that can form in this chemistry. A physical-inorganic research approach combining freeze-trapped inorganic spectroscopic studies, organometallic synthesis and GC/kinetic studies provides a powerful method for studying such systems. Mössbauer, EPR and MCD spectroscopy enable the direct investigation of in situ formed iron species and, combined with GC analysis, the direct correlation of reactions of specific iron species to the generation of organic products. This review focuses on a description of the key methods involved in this physical-inorganic approach, as well as examples of its application to investigations of iron-SciOPP catalyzed cross-coupling catalysis.
Collapse
Affiliation(s)
- Stephanie H Carpenter
- Department of Chemistry, University of Rochester, Rochester, New York 14627 (USA), Tel: 585-276-6006
| | - Michael L Neidig
- Department of Chemistry, University of Rochester, Rochester, New York 14627 (USA), Tel: 585-276-6006
| |
Collapse
|
7
|
Tanaka H, Inoue Y, Nakano T, Mori T. Absolute configuration determination through the unique intramolecular excitonic coupling in the circular dichroisms of o,p′-DDT and o,p′-DDD. A combined experimental and theoretical study. Photochem Photobiol Sci 2017; 16:606-610. [DOI: 10.1039/c6pp00438e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular dichroisms (CDs) of theo,p′-isomers of 1,1,1-trichloro- and 1,1-dichloro-2,2-bis(chlorophenyl)ethanes (DDTandDDD) were investigated experimentally and theoretically.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Yoshihisa Inoue
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Takeshi Nakano
- Research Center for Environmental Preservation
- Osaka University
- Suita
- Japan
| | - Tadashi Mori
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
8
|
Ye S, Kupper C, Meyer S, Andris E, Navrátil R, Krahe O, Mondal B, Atanasov M, Bill E, Roithová J, Meyer F, Neese F. Magnetic Circular Dichroism Evidence for an Unusual Electronic Structure of a Tetracarbene-Oxoiron(IV) Complex. J Am Chem Soc 2016; 138:14312-14325. [PMID: 27682505 DOI: 10.1021/jacs.6b07708] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In biology, high valent oxo-iron(IV) species have been shown to be pivotal intermediates for functionalization of C-H bonds in the catalytic cycles of a range of O2-activating iron enzymes. This work details an electronic-structure investigation of [FeIV(O)(LNHC)(NCMe)]2+ (LNHC = 3,9,14,20-tetraaza-1,6,12,17-tetraazoniapenta-cyclohexacosane-1(23),4,6(26),10,12(25),15,17(24),21-octaene, complex 1) using helium tagging infrared photodissociation (IRPD), absorption, and magnetic circular dichroism (MCD) spectroscopy, coupled with DFT and highly correlated wave function based multireference calculations. The IRPD spectrum of complex 1 reveals the Fe-O stretching vibration at 832 ± 3 cm-1. By analyzing the Franck-Condon progression, we can determine the same vibration occurring at 616 ± 10 cm-1 in the E(dxy → dxz,yz) excited state. Both values are similar to those measured for [FeIV(O)(TMC)(NCMe)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). The low-temperature MCD spectra of complex 1 exhibit three pseudo A-term signals around 12 500, 17 000, and 24 300 cm-1. We can unequivocally assign them to the ligand field transitions of dxy → dxz,yz, dxz,yz → dz2, and dxz,yz → dx2-y2, respectively, through direct calculations of MCD spectra and independent determination of the MCD C-term signs from the corresponding electron donating and accepting orbitals. In comparison with the corresponding transitions observed for [FeIV(O) (SR-TPA)(NCMe)]2+ (SR-TPA = tris(3,5-dimethyl-4-methoxypyridyl-2-methy)amine), the excitations within the (FeO)2+ core of complex 1 have similar transition energies, whereas the excitation energy for dxz,yz → dx2-y2 is significantly higher (∼12 000 cm-1 for [FeIV(O)(SR-TPA)(NCMe)]2+). Our results thus substantiate that the tetracarbene ligand (LNHC) of complex 1 does not significantly affect the bonding in the (FeO)2+ unit but strongly destabilizes the dx2-y2 orbital to eventually lift it above dz2. As a consequence, this unusual electron configuration leads to an unprecedentedly larger quintet-triplet energy separation for complex 1, which largely rules out the possibility that the H atom transfer reaction may take place on the quintet surface and hence quenches two-state reactivity. The resulting mechanistic implications are discussed.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Claudia Kupper
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Steffen Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Oliver Krahe
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Bhaskar Mondal
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Mihail Atanasov
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences , 1113 Sofia, Bulgaria
| | - Eckhard Bill
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 128 43 Praha 2, Czech Republic
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen , Tammannstr. 4, D-37077 Göttingen, Germany
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Štěpánek P, Straka M, Šebestík J, Bouř P. Magnetic circular dichroism of chlorofullerenes: Experimental and computational study. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ye S, Xue G, Krivokapic I, Petrenko T, Bill E, Que Jr L, Neese F. Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(IV) complexes. Chem Sci 2015; 6:2909-2921. [PMID: 26417426 PMCID: PMC4583211 DOI: 10.1039/c4sc03268c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/26/2015] [Indexed: 12/13/2022] Open
Abstract
High-valent iron(IV)-oxo species are key intermediates in the catalytic cycles of a range of O2-activating iron enzymes. This work presents a detailed study of the electronic structures of mononuclear ([FeIV(O)(L)(NCMe)]2+, 1, L = tris(3,5-dimethyl-4-methoxylpyridyl-2-methyl)amine) and dinuclear ([(L)FeIV(O)(μ-O)FeIV(OH)(L)]3+, 2) iron(IV) complexes using absorption (ABS), magnetic circular dichroism (MCD) spectroscopy and wave-function-based quantum chemical calculations. For complex 1, the experimental MCD spectra at 2-10 K are dominated by a broad positive C-term band between 12000 and 18000 cm-1. As the temperature increases up to ~20 K, this feature is gradually replaced by a derivative-shaped signal. The computed MCD spectra are in excellent agreement with experiment, which reproduce not only the excitation energies and the MCD signs of key transitions but also their temperature-dependent intensity variations. To further corroborate the assignments suggested by the calculations, the individual MCD sign for each transition is independently determined from the corresponding electron donating and accepting orbitals. Thus, unambiguous assignments can be made for the observed transitions in 1. The ABS/MCD data of complex 2 exhibit ten features that are assigned as ligand-field transitions or oxo- or hydroxo-to-metal charge transfer bands, based on MCD/ABS intensity ratios, calculated excitation energies, polarizations, and MCD signs. In comparison with complex 1, the electronic structure of the FeIV=O site is not significantly perturbed by the binding to another iron(IV) center. This may explain the experimental finding that complexes 1 and 2 have similar reactivities toward C-H bond activation and O-atom transfer.
Collapse
Affiliation(s)
- Shengfa Ye
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Genqiang Xue
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , Minnesota 55455 , USA .
| | - Itana Krivokapic
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Taras Petrenko
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Eckhard Bill
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| | - Lawrence Que Jr
- Department of Chemistry , Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant St. SE , Minneapolis , Minnesota 55455 , USA .
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany . ; ;
| |
Collapse
|
11
|
Fahleson T, Kauczor J, Norman P, Santoro F, Improta R, Coriani S. TD-DFT Investigation of the Magnetic Circular Dichroism Spectra of Some Purine and Pyrimidine Bases of Nucleic Acids. J Phys Chem A 2015; 119:5476-89. [DOI: 10.1021/jp512468k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tobias Fahleson
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Joanna Kauczor
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Patrick Norman
- Department
of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM−CNR), Area della Ricerca del CNR, Via
Moruzzi 1, I-56124 Pisa, Italy
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 6, I-80134 Napoli, Italy
| | - Sonia Coriani
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Štěpánek P, Andrushchenko V, Ruud K, Bouř P. Porphyrin Protonation Studied by Magnetic Circular Dichroism. J Phys Chem A 2011; 116:778-83. [DOI: 10.1021/jp2105192] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Petr Štěpánek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague, 121 16 Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
| |
Collapse
|
13
|
A Chronicle About the Development of Electronic Structure Theories for Transition Metal Complexes. STRUCTURE AND BONDING 2011. [DOI: 10.1007/430_2011_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|